Nanocosmetics pp 199-216 | Cite as

Characterization of Nanoparticles in Dermal Formulations

  • D. Knoth
  • R. W. Eckert
  • S. F. Hartmann
  • C. M. KeckEmail author


The characterization of nanoparticles in dermal formulations is challenging and there are several different aims to characterize nanoparticles in their respective dermal formulations. The major aim will be to observe the stability of the nanoparticles, i.e., to monitor if size, crystalline state, distribution of the particles within the vehicle and/ or incorporation of the actives are maintained during the shelf life of the product. Another reason to characterize nanoparticles in dermal products might be derived from regulatory bodies, which might be interested to determine if a dermal product contains nanoparticles or not. Due to the diverse nature of the different nanocarriers being available today and due to the diverse characterization aims no standard procedure is available for this. Hence, for each type of formulations an individual analysis protocol needs to be established. The aim of this chapter is to provide a brief overview of the existing methods for the characterization of nanoparticles in dermal formulations and to provide basic information on how to characterize nanoparticles in dermal formulations on a day to day basis.


Nanocarriers Size Crystallinity Stability Agglomeration Vehicle Microscopy Spectroscopy Separation 



The authors would like to thank Abraham Abraham, Noor Almohsen, Pascal Stahr, and Florian Stumpf for their contribution and help with the preparation of this chapter.


  1. 1.
    López-Serrano A, Olivas RM, Landaluze JS, Cámara C. Nanoparticles: a global vision. Characterization, separation, and quantification methods. Potential environmental and health impact. Anal Methods. 2014;6:38–56.CrossRefGoogle Scholar
  2. 2.
    Tiede K, Boxall ABA, Tear SP, Lewis J, et al. Detection and characterization of engineered nanoparticles in food and the environment. Food Addit Contam Part A: Chem Anal Control Expo Risk Assess. 2008;25:795–821.CrossRefGoogle Scholar
  3. 3.
    Lu P-J, Huang S-C, Chen Y-P, Chiueh L-C, et al. Analysis of titanium dioxide and zinc oxide nanoparticles in cosmetics. J Food Drug Anal. 2015;23:587–94.CrossRefGoogle Scholar
  4. 4.
    Möckl L, Lamb DC, Bräuchle C. Super-resolved fluorescence microscopy: nobel prize in chemistry 2014 for Eric Betzig, Stefan Hell, and William E. Moerner. Angew Chem. 2014;53:13972–7.CrossRefGoogle Scholar
  5. 5.
    Alexiev U, Volz P, Boreham A, Brodwolf R. Time-resolved fluorescence microscopy (FLIM) as an analytical tool in skin nanomedicine. Eur J Pharm Biopharm. 2017;116:111–24.CrossRefGoogle Scholar
  6. 6.
    Alnasif N, Zoschke C, Fleige E, Brodwolf R, et al. Penetration of normal, damaged and diseased skin—an in vitro study on dendritic core-multishell nanotransporters. J Controlled Release. 2014;185:45–50.CrossRefGoogle Scholar
  7. 7.
    Balke J, Volz P, Neumann F, Brodwolf R, et al. Visualizing oxidative cellular stress induced by nanoparticles in the subcytotoxic range using fluorescence lifetime imaging. Small. 2018;14:e1800310.CrossRefGoogle Scholar
  8. 8.
    Boreham A, Kim T-Y, Spahn V, Stein C, et al. Exploiting fluorescence lifetime plasticity in FLIM: target molecule localization in cells and tissues. ACS Med Chem Lett. 2011;2:724–8.CrossRefGoogle Scholar
  9. 9.
    Boreham A, Brodwolf R, Walker K, Haag R, et al. Time-resolved fluorescence spectroscopy and fluorescence lifetime imaging microscopy for characterization of dendritic polymer nanoparticles and applications in nanomedicine. Molecules. 2016;22.CrossRefGoogle Scholar
  10. 10.
    Edlich A, Volz P, Brodwolf R, Unbehauen M, et al. Crosstalk between core-multishell nanocarriers for cutaneous drug delivery and antigen-presenting cells of the skin. Biomaterials. 2018;162:60–70.CrossRefGoogle Scholar
  11. 11.
    Ostrowski A, Nordmeyer D, Boreham A, Holzhausen C, et al. Overview about the localization of nanoparticles in tissue and cellular context by different imaging techniques. Beilstein J Nanotechnol. 2015;6:263–80.CrossRefGoogle Scholar
  12. 12.
    Radbruch M, Pischon H, Ostrowski A, Volz P, et al. Dendritic core-multishell nanocarriers in murine models of healthy and atopic skin. Nanoscale Res Lett. 2017;12:64.CrossRefGoogle Scholar
  13. 13.
    Volz P, Schilrreff P, Brodwolf R, Wolff C, et al. Pitfalls in using fluorescence tagging of nanomaterials: tecto-dendrimers in skin tissue as investigated by Cluster-FLIM. Ann NY Acad Sci. 2017;1405:202–14.CrossRefGoogle Scholar
  14. 14.
    Witting M, Boreham A, Brodwolf R, Vávrová K, et al. Interactions of hyaluronic acid with the skin and implications for the dermal delivery of biomacromolecules. Mol Pharm. 2015;12:1391–401.CrossRefGoogle Scholar
  15. 15.
    Zhu Y, Choe C-S, Ahlberg S, Meinke MC, et al. Penetration of silver nanoparticles into porcine skin ex vivo using fluorescence lifetime imaging microscopy, Raman microscopy, and surface-enhanced Raman scattering microscopy. J Biomed Optics. 2015;20:51006.CrossRefGoogle Scholar
  16. 16.
    Ajito K, Ueno Y, Kim J-Y, Sumikama T. Capturing the freeze-drying dynamics of NaCl nanoparticles using THz spectroscopy. J Am Chem Soc. 2018.Google Scholar
  17. 17.
    Chen ZH, Kim C, Zeng X-B, Hwang SH, et al. Characterizing size and porosity of hollow nanoparticles: SAXS, SANS, TEM, DLS, and adsorption isotherms compared. Langmuir. 2012;28:15350–61.CrossRefGoogle Scholar
  18. 18.
    Follens LRA, Aerts A, Haouas M, Caremans TP, et al. Characterization of nanoparticles in diluted clear solutions for Silicalite-1 zeolite synthesis using liquid 29Si NMR, SAXS and DLS. Phys Chem Chem Phys. 2008;10:5574–83.CrossRefGoogle Scholar
  19. 19.
    Keck CM. Particle size analysis of nanocrystals: improved analysis method. Int J Pharm. 2010;390:3–12.CrossRefGoogle Scholar
  20. 20.
    Keck CM, Müller RH. Size analysis of submicron particles by laser diffractometry–90% of the published measurements are false. Int J Pharm. 2008;355:150–63.CrossRefGoogle Scholar
  21. 21.
    Lee Y-T, Li DS, Ilavsky J, Kuzmenko I, et al. Ultrasound-based formation of nano-pickering emulsions investigated via in-situ SAXS. J Colloid Interface Sci. 2019;536:281–90.CrossRefGoogle Scholar
  22. 22.
    Sunaina Sethi V, Mehta SK, Ganguli AK, et al. Understanding the role of co-surfactants in microemulsions on the growth of copper oxalate using SAXS. Phys Chem Chem Phys. 2018;21:336–48.CrossRefGoogle Scholar
  23. 23.
    Schmitt T, Gupta R, Lange S, Sonnenberger S, et al. Impact of the ceramide subspecies on the nanostructure of stratum corneum lipids using neutron scattering and molecular dynamics simulations. Part I: impact of CERNS. Chem Phys Lipids. 2018;214:58–68.CrossRefGoogle Scholar
  24. 24.
    Schroeter A, Stahlberg S, Školová B, Sonnenberger S, et al. Phase separation in ceramide NP containing lipid model membranes: neutron diffraction and solid-state NMR. Soft Matter. 2017;13:2107–19.CrossRefGoogle Scholar
  25. 25.
    Sonnenberger S, Eichner A, Schmitt T, Hauß T, et al. Synthesis of specific deuterated derivatives of the long chained stratum corneum lipids EOS and EOP and characterization using neutron scattering. J Labelled Compd Radiopharm. 2017;60:316–30.CrossRefGoogle Scholar
  26. 26.
    Caddeo C, Manconi M, Fadda AM, Lai F, et al. Nanocarriers for antioxidant resveratrol: formulation approach, vesicle self-assembly and stability evaluation. Colloids Surf B: Biointerfaces. 2013;111:327–32.CrossRefGoogle Scholar
  27. 27.
    Fernandes AR, Ferreira NR, Fangueiro JF, Santos AC, et al. Ibuprofen nanocrystals developed by 22 factorial design experiment: a new approach for poorly water-soluble drugs. Saudi Pharm J. 2017;25:1117–24.CrossRefGoogle Scholar
  28. 28.
    Gross-Rother J, Herrmann N, Blech M, Pinnapireddy SR, et al. The application of STEP-technology® for particle and protein dispersion detection studies in biopharmaceutical research. Int J Pharm. 2018;543:257–68.CrossRefGoogle Scholar
  29. 29.
    Mäkinen OE, Uniacke-Lowe T, O’Mahony JA, Arendt EK. Physicochemical and acid gelation properties of commercial UHT-treated plant-based milk substitutes and lactose free bovine milk. Food Chem. 2015;168:630–8.CrossRefGoogle Scholar
  30. 30.
    Pereira I, Zielińska A, Ferreira NR, Silva AM, et al. Optimization of linalool-loaded solid lipid nanoparticles using experimental factorial design and long-term stability studies with a new centrifugal sedimentation method. Int J Pharm. 2018;549:261–70.CrossRefGoogle Scholar
  31. 31.
    Thompson KL, Derry MJ, Hatton FL, Armes SP. Long-term stability of n-alkane-in-water pickering nanoemulsions: effect of aqueous solubility of droplet phase on Ostwald ripening. Langmuir. 2018;34:9289–97.CrossRefGoogle Scholar
  32. 32.
    Xu D, Qi Y, Wang X, Li X, et al. The influence of flaxseed gum on the microrheological properties and physicochemical stability of whey protein stabilized β-carotene emulsions. Food Funct. 2017;8:415–23.CrossRefGoogle Scholar
  33. 33.
    Zielińska A, Martins-Gomes C, Ferreira NR, Silva AM, et al. Anti-inflammatory and anti-cancer activity of citral: optimization of citral-loaded solid lipid nanoparticles (SLN) using experimental factorial design and LUMiSizer®. Int J Pharm. 2018;553:428–40.CrossRefGoogle Scholar
  34. 34.
    Miller R, Lerche D, Schäffler M. (editors). Dispersionseigenschaften, 2D-Rheologie, 3D-Rheologie, Stabilität. Eigenverlag. 2014.Google Scholar
  35. 35.
    Peters R, ten Dam G, Bouwmeester H, Helsper H, et al. Identification and characterization of organic nanoparticles in food. Trends Anal Chem. 2011;30:100–12.CrossRefGoogle Scholar
  36. 36.
    Goodhew PJ, Humphreys J, Beanland R. Electron microscopy and analysis. 3rd ed. London/UK: Taylor & Francis; 2001.Google Scholar
  37. 37.
    Aulton ME, Taylor K. Aulton’s pharmaceutics: the design and manufacture of medicines. 5th ed. New York, USA: Elsevier; 2018.Google Scholar
  38. 38.
    ISO 13320, Particle size analysis—laser diffraction methods. 2009.Google Scholar
  39. 39.
    Müller RH, Schuhmann R. Teilchengrößenmessung der Laborpraxis. Stuttgart/Germany: Wissenschaftliche Verlagsgesellschaft mbH Stuttgart; 1998.Google Scholar
  40. 40.
    Varenne F, Makky A, Gaucher-Delmas M, Violleau F, et al. Multimodal dispersion of nanoparticles: a comprehensive evaluation of size distribution with 9 size measurement methods. Pharm Res. 2016;33:1220–34.CrossRefGoogle Scholar
  41. 41.
    Acar Kübart S, Keck CM. Laser diffractometry of nanoparticles: frequent pitfalls & overlooked opportunities. J Pharm Technol Drug Res. 2013;2:2–17.CrossRefGoogle Scholar
  42. 42.
    Malvern Instruments Ltd. Mastersizer 2000—User Manual. Malvern Instruments Ltd., Worcestershire/UK. 2007.Google Scholar
  43. 43.
    Beckman Coulter Inc. LS 13 320 Series—Particle Size Analyzer. Beckman Coulter Inc., Fullerton/USA. 2004.Google Scholar
  44. 44.
    Pathak P, Nagarsenker M. Formulation and evaluation of lidocaine lipid nanosystems for dermal delivery. AAPS PharmSciTech. 2009;10:985–92.CrossRefGoogle Scholar
  45. 45.
    Olejnik A, Goscianska J, Zielinska A, Nowak I. Stability determination of the formulations containing hyaluronic acid. Int J Cosmet Sci. 2015;37:401–7.CrossRefGoogle Scholar
  46. 46.
    Li X. Nanocrystals for topical delivery: nanocrystals, nanoemulsions & smartLipids. Ph.D. Thesis, Freie Universität Berlin. 2016.Google Scholar
  47. 47.
    Unruh T, Westesen K, Bösecke P, Lindner P, et al. Self-assembly of triglyceride nanocrystals in suspension. Langmuir. 2002;18:1796–800.CrossRefGoogle Scholar
  48. 48.
    Souto EB, Müller RH. Investigation of the factors influencing the incorporation of clotrimazole in SLN and NLC prepared by hot high-pressure homogenization. J Microencapsul. 2006;23:377–88.CrossRefGoogle Scholar
  49. 49.
    Souto E. SLN and NLC for topical delivery of antifungals. Ph.D-Thesis, Berlin. 2005.Google Scholar
  50. 50.
    Pardeike J. Nanosuspensions of phospholipase A2 inhibitors and coenzyme Q10-loaded nanostructured lipid carriers for dermal application. Ph.D-Thesis, Berlin. 2008.Google Scholar
  51. 51.
    Höhne GWH, Hemminger W, Flammersheim H-J, Theoretical fundamentals of differential scanning calorimeters. In: Höhne GWH, Hemminger W, Flammersheim H-J, editors. Differential scanning calorimetry: an introduction for practitioners. Heidelberg: Springer. p. 21–40.CrossRefGoogle Scholar
  52. 52.
    Jenning V, Thünemann AF, Gohla SH. Characterisation of a novel solid lipid nanoparticle carrier system based on binary mixtures of liquid and solid lipids. Int J Pharm. 2000;199:167–77.CrossRefGoogle Scholar
  53. 53.
    Pireddu R, Sinico C, Ennas G, Marongiu F, et al. Novel nanosized formulations of two diclofenac acid polymorphs to improve topical bioavailability. Eur J Pharm Sci. 2015;77:208–15.CrossRefGoogle Scholar
  54. 54.
    Sahoo NG, Kakran M, Shaal LA, Li L, et al. Preparation and characterization of quercetin nanocrystals. J Pharm Sci. 2011;100:2379–90.CrossRefGoogle Scholar
  55. 55.
    Lv Q, Yu A, Xi Y, Li H, et al. Development and evaluation of penciclovir-loaded solid lipid nanoparticles for topical delivery. Int J Pharm. 2009;372:191–8.CrossRefGoogle Scholar
  56. 56.
    Castelli F, Puglia C, Sarpietro MG, Rizza L, et al. Characterization of indomethacin-loaded lipid nanoparticles by differential scanning calorimetry. Int J Pharm. 2005;304:231–8.CrossRefGoogle Scholar
  57. 57.
    Müller RH, Dingler A. The next generation after liposomes: solid lipid nanoparticles (SLN Lipopearls) as dermal carrier in cosmetics. Eurocosmetics. 1998;7(8):19–26.Google Scholar
  58. 58.
    Pardeike J, Schwabe K, Müller RH. Influence of nanostructured lipid carriers (NLC) on the physical properties of the Cutanova Nanorepair Q10 cream and the in vivo skin hydration effect. Int J Pharm. 2010;396:166–73.CrossRefGoogle Scholar
  59. 59.
    de Vringer T, de Ronde HAG. Preparation and structure of a water-in-oil cream containing lipid nanoparticles. J Pharm Sci. 1995;84:466–72.CrossRefGoogle Scholar
  60. 60.
    Dingler A, Blum RP, Niehus H, Müller RH, et al. Solid lipid nanoparticles (SLN/Lipopearls)-a pharmaceutical and cosmetic carrier for the application of vitamin E in dermal products. J Microencapsul. 1999;16:751–67.CrossRefGoogle Scholar
  61. 61.
    Pérez-Monterroza E, Ciro-Velásquez HJ. Study of the crystallization and polymorphic structures formed in oleogels from avocado oil. Revista Facultad Nacional de Agronomía. 2016;69:7945–54.CrossRefGoogle Scholar
  62. 62.
    Müller RH, Shegokar R, Keck CM. 20 years of lipid nanoparticles (SLN and NLC): present state of development and industrial applications. Curr Drug Discovery Technol. 2011;8:207–27.CrossRefGoogle Scholar
  63. 63.
    Biltonen RL, Lichtenberg D. The use of differential scanning calorimetry as a tool to characterize liposome preparations. Chem Phys Lipids. 1993;64:129–42.CrossRefGoogle Scholar
  64. 64.
    Smyth MS, Martin JHJ. X-ray crystallography. Mol Pathol. 2000;53:8–14.CrossRefGoogle Scholar
  65. 65.
    Spieß L, Teichert G, Schwarzer R, Behnken H, Genzel C. Moderne Röntgenbeugung: Röntgendiffraktometrie für Materialwissenschaftler, Physiker und Chemiker. 2nd ed. Wiesbaden/Germany: Vieweg+Teubner Verlag/GWV Fachverlage GmbH Wiesbaden; 2009.CrossRefGoogle Scholar
  66. 66.
    Waseda Y, Matsubara E, Shinoda K. X-ray diffraction crystallography. Heidelberg, Germany: Springer; 2011.CrossRefGoogle Scholar
  67. 67.
    Wade M, Tucker I, Cunningham P, Skinner R, et al. Investigating the origins of nanostructural variations in differential ethnic hair types using X-ray scattering techniques. Int J Cosmet Sci. 2013;35:430–41.CrossRefGoogle Scholar
  68. 68.
    Radtke M. Grundlegende Untersuchungen zur Arzneistoffinkorporation, -freisetzung und Struktur von SLN und NLC. Ph.D. Thesis, Berlin/Germany. 2003.Google Scholar
  69. 69.
    Romero GB, Chen R, Keck CM, Müller RH. Industrial concentrates of dermal hesperidin smartCrystals®—production, characterization & long-term stability. Int J Pharm. 2015;482:54–60.CrossRefGoogle Scholar
  70. 70.
    Souto EB, Müller RH. Investigation of the factors influencing the incorporation of clotrimazole in SLN and NLC prepared by hot high-pressure homogenization. J Microencapsul. 2006;23:377–88.CrossRefGoogle Scholar
  71. 71.
    Oka T, Miyahara R, Teshigawara T, Watanabe K. Development of novel cosmetic base using sterol surfactant. I. Preparation of novel emulsified particles with sterol surfactant+. J Oleo Sci. 2008;57:567–75.CrossRefGoogle Scholar
  72. 72.
    Lu PJ, Fang SW, Cheng WL, Huang SC, et al. Characterization of titanium dioxide and zinc oxide nanoparticles in sunscreen powder by comparing different measurement methods. J Food Drug Anal. 2018;26:1192–200.CrossRefGoogle Scholar
  73. 73.
    Marsh JM, Brown MA, Felts TJ, Hutton HD, et al. Gel network shampoo formulation and hair health benefits. Int J Cosmet Sci. 2017;39:543–9.CrossRefGoogle Scholar
  74. 74.
    Choudhury P, Kumar S, Singh A, Kumar A, et al. Hydroxyethyl methacrylate grafted carboxy methyl tamarind (CMT-g-HEMA) polysaccharide based matrix as a suitable scaffold for skin tissue engineering. Carbohydr Polym. 2018;189:87–98.CrossRefGoogle Scholar
  75. 75.
    Hoppel M, Caneri M, Glatter O, Valenta C. Self-assembled nanostructured aqueous dispersions as dermal delivery systems. Int J Pharm. 2015;495:459–62.CrossRefGoogle Scholar
  76. 76.
    Guillot S, Tomsic M, Sagalowicz L, Leser ME, et al. Internally self-assembled particles entrapped in thermoreversible hydrogels. J Colloid Interface Sci. 2009;330:175–9.CrossRefGoogle Scholar
  77. 77.
    Barbosa RM, Casadei BR, Duarte EL, Severino P, et al. Electron paramagnetic resonance and small-angle X-ray scattering characterization of solid lipid nanoparticles and nanostructured lipid carriers for dibucaine encapsulation. Langmuir. 2018;34:13296–304.CrossRefGoogle Scholar
  78. 78.
    Boge L, Hallstensson K, Ringstad L, Johansson J, et al. Cubosomes for topical delivery of the antimicrobial peptide LL-37. Eur J Pharm Biopharm. 2019;134:60–7.CrossRefGoogle Scholar
  79. 79.
    Hunter SJ, Thompson KL, Lovett JR, Hatton FL, et al. Synthesis, characterization, and pickering emulsifier performance of anisotropic cross-linked block copolymer worms: effect of aspect ratio on emulsion stability in the presence of surfactant. Langmuir. 2018.Google Scholar
  80. 80.
    Li T, Senesi AJ, Lee B. Small angle X-ray scattering for nanoparticle research. In Li T, Senesi AJ, Lee B, editors. Chemical. Chemical Reviews 2016. p. 11128–80.CrossRefGoogle Scholar
  81. 81.
    Detloff T, Lerche D, Sobisch T. Particle size distribution by space or time dependent extinction profiles obtained by analytical centrifugation. In: Particle & particle systems characterization, p. 184–7.Google Scholar
  82. 82.
    Detloff T, Sobisch T, Lerche D. Particle size distribution by space or time dependent extinction profiles obtained by analytical centrifugation. Part Part Syst Charact. 2006;23:184–7.CrossRefGoogle Scholar
  83. 83.
    ISO 13318-2. Determination of particle size distribution by centrifugal liquid sedimentation methods. Part 2: Photocentrifuge method. 2007.Google Scholar
  84. 84.
    European Commission—Scientific Committee on Consumer Products (SCCP), SCCP/1147/07—Opinion on safety of nanomaterials in cosmetic products. 2007.Google Scholar
  85. 85.
    Keck CM, Müller RH. Nanotoxicological classification system (NCS)—a guide for the risk-benefit assessment of nanoparticulate drug delivery systems. Eur J Pharm Biopharm. 2013;84:445–8.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • D. Knoth
    • 1
  • R. W. Eckert
    • 1
  • S. F. Hartmann
    • 1
  • C. M. Keck
    • 1
    Email author
  1. 1.Department of Pharmaceutics and BiopharmaceuticsPhilipps-Universität MarburgMarburgGermany

Personalised recommendations