Skip to main content

Mechanisms of Acquired Resistance to Targeted Therapy in NSCLC: Role of Repeat Biopsy and Nursing Considerations

  • Chapter
  • First Online:
  • 437 Accesses

Abstract

Testing lung cancer tumors at the time of diagnosis for molecular driver mutations is widely accepted and recommended as best clinical practice, particularly for the subset of non-small cell lung cancers (NSCLC) with adenocarcinoma histology. Broad molecular profiling of tumors is part of the move towards personalized medicine, in which healthcare providers can use the unique genetic make-up of an individual’s tumor to identify treatment options that are specifically matched to that individual’s cancer. Identifying and harnessing the specific mutations in an individual’s tumor to guide treatment decisions leads to improved treatment response and better patient outcomes. Unfortunately, over time all tumors will develop escape mechanisms in the form of resistance or other mutations that allow them to overcome the efficacy of first-line anti-neoplastic therapies. Repeat biopsy (either through tissue or liquid biopsy) is an effective tool that healthcare providers can use to better understand the mechanisms of acquired resistance that have occurred in the tumor. The utility of repeat biopsy in EGFR and ALK mutant NSCLC patients is discussed, along with many of the known resistance mechanisms that may arise following targeted therapy for these mutations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Soria JC, Ohe Y, Vansteenkiste J, et al. Osimertinib in untreated EGFR-mutated advanced non-small-cell lung cancer. N Engl J Med. 2018;378(2):113–25.

    Article  CAS  Google Scholar 

  2. Peters S, Camidge DR, Shaw AT, et al. Alectinib versus crizotinib in untreated ALK-positive non–small-cell lung cancer. N Engl J Med. 2017;377:829–38.

    Article  CAS  Google Scholar 

  3. Lovly C, Horn L, Oxnard G, Pao W. EGFR c.2369C>T (T790M) mutation in non-small cell lung cancer. My Cancer Genome. 2016. https://www.mycancergenome.org/content/disease/lung-cancer/egfr/4/, Last updated 11 Nov 2016, Accessed Jan 2017.

  4. Polivka J Jr, Pesta M, Janku F. Testing for oncogenic molecular aberrations in cell-free DNA-based liquid biopsies in the clinic: are we there yet? Expert Rev Mol Diagn. 2015;15(12):1631–44.

    Article  CAS  Google Scholar 

  5. Aggarwal C, Thompson JC, Black TA, et al. Clinical implications of plasma-based genotyping with the delivery of personalized therapy in metastatic non–small cell lung cancer. JAMA Oncol. 2019;5(2):173–80. https://doi.org/10.1001/jamaoncol.2018.4305.

    Article  Google Scholar 

  6. Besse B, Remon J, Lacroix L, Mezquita L, Jovelet C, Howarth K, Plagnol V, Morris CD, Pannet C, Nicotra C, Green E, Soria J-C. Evaluation of liquid biopsies for molecular profiling in untreated patients with stage III/IV non-small cell lung cancer (NSCLC). J Clin Oncol. 2017;35(15_Suppl):11540.

    Article  Google Scholar 

  7. Chae YK, Davis AA, Jain S, Santa-Maria C, Flaum L, Beaubier N, Platanias LC, Gradishar W, Giles FJ, Cristofanilli M. Concordance of genomic alterations by next-generation sequencing in tumor tissue versus circulating tumor DNA in breast cancer. Mol Cancer Ther. 2017;16(7):1412–20.

    Article  CAS  Google Scholar 

  8. Chae YK, Davis AA, Carneiro BA, et al. Concordance between genomic alterations assessed by next-generation sequencing in tumor tissue or circulating cell-free DNA. Oncotarget. 2016;7(40):65364–73.

    Article  Google Scholar 

  9. Janku F, Angenendt P, Tsimberidou AM, et al. Actionable mutations in plasma cell-free DNA in patients with advanced cancers referred for experimental targeted therapies. Oncotarget. 2015;6(14):12809–21.

    Article  Google Scholar 

  10. Weber B, Meldgaard P, Hager H, et al. Detection of EGFR mutations in plasma and biopsies from non-small cell lung cancer patients by allele-specific PCR assays. BMC Cancer. 2014;14:294.

    Article  Google Scholar 

  11. Rotow J, Bivona TG. Understanding and targeting resistance mechanisms in NSCLC. Nat Rev Cancer. 2017;17:637–58.

    Article  CAS  Google Scholar 

  12. Bivona TG, Doebele RC. A framework for understanding and targeting residual disease in oncogene-driven solid cancers. Nat Med. 2016;22:472–8.

    Article  CAS  Google Scholar 

  13. Yang JC, Ahn MJ, Kim DW, Ramalingam SS, Sequist LV, Su WC, Kim SW, Kim JH, Planchard D, Felip E, Blackhall F, Haggstrom D, Yoh K, Novello S, Gold K, Hirashima T, Lin CC, Mann H, Cantarini M, Ghiorghiu S, Jänne PA. Osimertinib in pretreated T790M-positive advanced non-small-cell lung cancer: AURA study phase II extension component. J Clin Oncol. 2017;35(12):1288–96.

    Article  CAS  Google Scholar 

  14. Wong A. The emerging role of targeted therapy and immunotherapy in the management of brain metastases in non-small cell lung cancer. Front Oncol. 2017;7:33.

    Article  Google Scholar 

  15. Akamine T, Toyokawa G, Tagawa T, Seto T. Spotlight on lorlatinib and its potential in the treatment of NSCLC: the evidence to date. Onco Targets Ther. 2018;11:5093–101. https://doi.org/10.2147/OTT.S165511.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Dearden S, Stevens J, Wu YL, Blowers D. Mutation incidence and coincidence in non small-cell lung cancer: meta-analyses by ethnicity and histology (mutMap). Ann Oncol. 2013;24:2371–6.

    Article  CAS  Google Scholar 

  17. National Comprehensive Cancer Network. Non-small cell lung cancer. (Version3.2019). https://www.nccn.org/professionals/physician_gls/pdf/nscl.pdf. Accessed 18 Jan 2019.

  18. Yang JC, Sequist LV, Geater SL, et al. Clinical activity of afatinib in patients with advanced non-small-cell lung cancer harbouring uncommon EGFR mutations: a combined post-hoc analysis of LUX-lung 2, LUX-lung 3, and LUX-lung 6. Lancet Oncol. 2015;16:830–8.

    Article  CAS  Google Scholar 

  19. Zhong W-Z, Zhou Q, Wu Y-L. The resistance mechanisms and treatment strategies for EGFR-mutant advanced non-small-cell lung cancer. Oncotarget. 2017;8(41):71358–70.

    Article  Google Scholar 

  20. Yasuda H, Kobayashi S, Costa DB. EGFR exon 20 insertion mutations in non-small-cell lung cancer: preclinical data and clinical implications. Lancet Oncol. 2012;13:e23–31.

    Article  CAS  Google Scholar 

  21. Oxnard GR, Lo PC, Nishino M, Dahlberg SE, Lindeman NI, Butaney M, Jackman DM, Johnson BE, Jänne PA. Natural history and molecular characteristics of lung cancers harboring EGFR exon 20 insertions. J Thorac Oncol. 2013;8(2):179–84.

    Article  CAS  Google Scholar 

  22. Arcila ME, Nafa K, Chaft JE, Rekhtman N, Lau C, Reva BA, Zakowski MF, Kris MG, Ladanyi M. EGFR exon 20 insertion mutations in lung adenocarcinomas: prevalence, molecular heterogeneity, and clinicopathologic characteristics. Mol Cancer Ther. 2013;12(2):220–9.

    Article  CAS  Google Scholar 

  23. Bell DW, Gore I, Okimoto RA, Godin-Heymann N, Sordella R, Mulloy R, Sharma SV, Brannigan BW, Mohapatra G, Settleman J, Haber DA. Inherited susceptibility to lung cancer may be associated with the T790M drug resistance mutation in EGFR. Nat Genet. 2005;37(12):1315–6.

    Article  CAS  Google Scholar 

  24. Kobayashi S, Boggon TJ, Dayaram T, Jänne PA, Kocher O, Meyerson M, Johnson BE, Eck MJ, Tenen DG, Halmos B. EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N Engl J Med. 2005;352(8):786–92.

    Article  CAS  Google Scholar 

  25. Ramalingam, SS. Mechanisms of acquired resistance to first-line Osimertinib: preliminary data from the phase III FLAURA study. Presented at the ESMO 2018 Congress; Munich, October 20, 2018. Abstract LBA50.

    Google Scholar 

  26. Godin-Heymann N, Ulkus L, Brannigan BW, McDermott U, Lamb J, Maheswaran S, Settleman J, Haber DA. The T790M “gatekeeper” mutation in EGFR mediates resistance to low concentrations of an irreversible EGFR inhibitor. Mol Cancer Ther. 2008;7(4):874–9.

    Article  CAS  Google Scholar 

  27. Yu HA, Tian SK, Drilon AE, Borsu L, Riely GJ, Arcila ME, Ladanyi M. Acquired resistance of EGFR-mutant lung cancer to a T790M-specific EGFR inhibitor: emergence of a third mutation (C797S) in the EGFR tyrosine kinase domain. JAMA Oncol. 2015;1(7):982–4.

    Article  Google Scholar 

  28. Huang L, Fu L. Mechanisms of resistance to EGFR tyrosine kinase inhibitors. Acta Pharm Sin B. 2015;5(5):390–401.

    Article  Google Scholar 

  29. Morgillo F, Della Corte CM, Fasano M, Ciardiello F. Mechanisms of resistance to EGFR-targeted drugs: lung cancer. ESMO Open. 2016;1(3):e000060.

    Article  Google Scholar 

  30. Takezawa K, Pirazzoli V, Arcila ME, Nevhan CA, Song X, de Stanchina E, Ohashi K, Janjigian YY, Spitzler PJ, Melnick MA, Riely GJ. HER2 amplification: a potential mechanism of acquired resistance to EGFR inhibition in EGFR-mutant lung cancers that lack the second-site EGFRT790M mutation. Cancer Discov. 2012;2(10):922–33.

    Article  CAS  Google Scholar 

  31. Sequist LV, Waltman BA, Dias-Santagata D, Digumarthy S, Turke AB, Fidias P, Bergethon K, Shaw AT, Gettinger S, Cosper AK, Akhavanfard S, Heist RS, Temel J, Christensen JG, Wain JC, Lynch TJ, Vernovsky K, Mark EJ, Lanuti M, Iafrate AJ, Mino-Kenudson M, Engelman JA. Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci Transl Med. 2011;3(75):75ra26.

    Article  Google Scholar 

  32. Piotrowska Z, Sequist L. Tackling the next generation of resistance in EGFR-mutant lung cancer. J Thorac Oncol. 2017;12(3):419–21.

    Article  Google Scholar 

  33. Wang S, Tsui ST, Liu C, Song Y, Liu D. EGFR C797S mutation mediates resistance to third-generation inhibitors in T790M-positive non-small cell lung cancer. J Hematol Oncol. 2016;9:59.

    Article  Google Scholar 

  34. Gainor JF, Tan DS, De Pas T, Solomon BJ, Ahmad A, Lazzari C, De Marinis F, Spitaleri G, Schultz K, Friboulet L, Yeap BY. Progression-free and overall survival in ALK-positive NSCLC patients treated with sequential crizotinib and ceritinib. Clin Cancer Res. 2015;21:2745–52.

    Article  CAS  Google Scholar 

  35. Zhang S, Anjum R, Squillace R, Nadworny S, Zhou T, Keats J, Ning Y, Wardwell SD, Miller D, Song Y, Eichinger L, Moran L, Huang WS, Liu S, Zou D, Wang Y, Mohemmad Q, Jang HG, Ye E, Narasimhan N, Wang F, Miret J, Zhu X, Clackson T, Dalgarno D, Shakespeare WC, Rivera VM. The potent ALK inhibitor brigatinib (AP26113) overcomes mechanisms of resistance to first- and second-generation ALK inhibitors in preclinical models. Clin Cancer Res. 2016;22(22):5527–38.

    Article  CAS  Google Scholar 

  36. Lin JJ, Riely GJ, Shaw AT. Targeting ALK: precision medicine takes on drug resistance. Cancer Discov. 2017;7(2):137–55. https://doi.org/10.1158/2159-8290.CD-16-1123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Choi YL, Soda M, Yamashita Y, Ueno T, Takashima J, Nakajima T, Yatabe Y, Takeuchi K, Hamada T, Haruta H, Ishikawa Y, ALK Lung Cancer Study Group. EML4-ALK mutations in lung cancer that confer resistance to ALK inhibitors. N Engl J Med. 2010;363(18):1734–9.

    Article  CAS  Google Scholar 

  38. Doebele RC, Pilling AB, Aisner DL, Kutateladze TG, Le AT, Weickhardt AJ, Kondo KL, Linderman DJ, Heasley LE, Franklin WA, Varella-Garcia M. Mechanisms of resistance to crizotinib in patients with ALK gene rearranged non-small cell lung cancer. Clin Cancer Res. 2012;18(5):1472–82.

    Article  CAS  Google Scholar 

  39. Katayama R, Shaw AT, Khan TM, Mino-Kenudson M, Solomon BJ, Halmos B, Jessop NA, Wain JC, Yeo AT, Benes C, Drew L. Mechanisms of acquired crizotinib resistance in ALK-rearranged lung cancers. Sci Transl Med. 2012;4(120):120ra17.

    Article  Google Scholar 

  40. Sasaki T, Okuda K, Zheng W, Butrynski J, Capelletti M, Wang L, Gray NS, Wilner K, Christensen JG, Demetri G, Shapiro GI. The neuroblastoma-associated F1174L ALK mutation causes resistance to an ALK kinase inhibitor in ALK-translocated cancers. Cancer Res. 2010;70(24):10038–43.

    Article  CAS  Google Scholar 

  41. Sasaki T, Koivunen J, Ogino A, Yanagita M, Nikiforow S, Zheng W, Lathan C, Marcoux JP, Du J, Okuda K, Capelletti M. A novel ALK secondary mutation and EGFR signaling cause resistance to ALK kinase inhibitors. Cancer Res. 2011;71(18):6051–60.

    Article  CAS  Google Scholar 

  42. Gainor JF, Dardaei L, Yoda S, Friboulet L, Leshchiner I, Katayama R, Dagogo-Jack I, Gadgeel S, Schultz K, Singh M, Chin E. Molecular mechanisms of resistance to first- and second-generation ALK inhibitors in ALK-rearranged lung cancer. Cancer Discov. 2016;6(10):1118–33.

    Article  CAS  Google Scholar 

  43. Wu J, Savooji J, Liu D. Second- and third-generation ALK inhibitors for non-small cell lung cancer. J Hematol Oncol. 2016;9:19.

    Article  Google Scholar 

  44. Katayama R. Therapeutic strategies and mechanisms of drug resistance in anaplastic lymphoma kinase (ALK)-rearranged lung cancer. Pharmacol Ther. 2017;177:1–8.

    Article  CAS  Google Scholar 

  45. Sabari JK, Santini FC, Schram AM, Bergagnini I, Chen R, Mrad C, Lai WV, Arbour KC, Drilon A. The activity, safety, and evolving role of Brigatinib in patients with ALK-rearranged non-small cell lung cancers. OncoTargets Ther. 2017;10:1983–92.

    Article  CAS  Google Scholar 

  46. Tchekmedyian N, Ali SM, Miller VA, Haura EB. Acquired ALK L1152R mutation confers resistance to ceritinib and predicts response to alectinib. J Thorac Oncol. 2016;11(7):e87–8.

    Article  Google Scholar 

  47. Katayama R, Lovly CM, Shaw AT. Therapeutic targeting of anaplastic lymphoma kinase in lung cancer: a paradigm for precision cancer medicine. Clin Cancer Res. 2015;21(10):2227–35.

    Article  CAS  Google Scholar 

  48. Gettinger SN, Zhang S, Hodgson JG, Bazhenova L, Burgers S, Kim DW, Tan DS, Koh HA, Ho JCM, Ramirez SV, Shaw AT, Weiss GJ, Langer CJ, Huber RM, Ahn MJ, Reichmann WG, Kerstein D, Rivera VM, Camidge DR. Activity of Brigatinib (BRG) in Crizotinib (CRZ) resistant patients (pts) according to ALK mutation status. J Clin Oncol. 2016;34(15_Suppl):9060.

    Article  Google Scholar 

  49. Shaw AT, Peters S, Mok T, Gadgeel SM, Ahn JS, Ou SHI, Perol M, Dziadziuszko R, Kim DW, Rosell R, Zeaiter AH. Alectinib versus crizotinib in treatment-naive advanced ALK-positive non-small cell lung cancer (NSCLC): primary results of the global phase III ALEX study. J Clin Oncol. 2017;35(18_Suppl):LBA9008.

    Article  Google Scholar 

  50. Solomon BJ, Besse B, Bauer TM, Felip E, Soo RA, Camidge DR, Chiari R, Bearz A, Lin CC, Gadgeel SM, Riely GJ, Tan EH, Seto T, James LP, Clancy JS, Abbattista A, Martini JF, Chen J, Peltz G, Thurm H, Ou SI, Shaw AT. Lorlatinib in patients with ALK-positive non-small-cell lung cancer: results from a global phase 2 study. Lancet Oncol. 2018;19(12):1654–67. https://doi.org/10.1016/S1470-2045(18)30649-1.

    Article  CAS  PubMed  Google Scholar 

  51. Zou HY, Friboulet L, Kodack DP, Engstrom LD, Li Q, West M, Tang RW, Wang H, Tsaparikos K, Wang J, Timofeevski S. PF-06463922, an ALK/ROS1 inhibitor, overcomes resistance to first and second generation ALK inhibitors in preclinical models. Cancer Cell. 2015;28(1):70–81.

    Article  CAS  Google Scholar 

  52. Sharma GG, Mota I, Mologni L, Patrucco E, Gambacorti-Passerini C, Chiarle R. Tumor resistance against ALK targeted therapy-where it comes from and where it goes. Cancers. 2018;10(3):62. https://doi.org/10.3390/cancers10030062.

    Article  CAS  PubMed Central  Google Scholar 

  53. Sharma GG, Mologni L. We shall overcome (drug resistance) someday. Oncotarget. 2019;10(2):84–5. https://doi.org/10.18632/oncotarget.26550.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Yoda S, Lin JJ, Lawrence MS, Burke BJ, Friboulet L, Langenbucher A, Dardaei L, Prutisto-Chang K, Dagogo-Jack I, Timofeevski S, Hubbeling H, Gainor JF, Ferris LA, Riley AK, Kattermann KE, Timonina D, Heist RS, Iafrate A, Benes CH, Lennerz JK, Mino-Kenudson M, Engelman JA, Johnson TW, Hata AN, Shaw AT. Sequential ALK inhibitors can select for lorlatinib-resistant compound ALK mutations in ALK-positive lung cancer. Cancer Discov. 2018;8(6):714–29. https://doi.org/10.1158/2159-8290.CD-17-1256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emily Duffield .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Duffield, E. (2019). Mechanisms of Acquired Resistance to Targeted Therapy in NSCLC: Role of Repeat Biopsy and Nursing Considerations. In: Davies, M., Eaby-Sandy, B. (eds) Targeted Therapies in Lung Cancer: Management Strategies for Nurses and Practitioners. Springer, Cham. https://doi.org/10.1007/978-3-030-16550-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16550-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16549-9

  • Online ISBN: 978-3-030-16550-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics