Skip to main content

Applications of Carbon-Based Nanomaterials for Antimicrobial Photodynamic Therapy

  • Chapter
  • First Online:
Microbial Nanobionics

Part of the book series: Nanotechnology in the Life Sciences ((NALIS))

Abstract

The emergence of drug-resistant strains among pathogenic microorganisms urges the need for alternative treatment methods which provide less or no sign of resistance development. The indiscriminate use of antimicrobial drugs and quick adaptability of microorganisms to these agents are the two reasons for the emergence of drug-resistant strains. The modern healthcare system is facing difficulty to combat infectious diseases caused by drug-resistant planktonic and biofilm-embedded microorganisms. It is evident that the developments of new therapeutic strategies are required to fight against microbial diseases. Antimicrobial photodynamic inactivation (aPDT) is being accepted as a potential alternative candidate to inactivate and kill drug-resistant microbial strains. aPDT involves the integration of a nontoxic dye (photosensitizer) and light of specific wavelength to activate PS to produce cytotoxic reactive oxygen species (ROS). The produced reactive oxygen species further damage the bacterial cell membrane and mediate microbial death. To achieve an effective photodynamic inactivation, different kinds of nanoparticles are employed which aid in the enhanced antimicrobial photodynamic inactivation of photosensitizers (PS). Recently, carbon nanostructures gained much attention in the phototherapy of microbial strains which increased the solubility of PS, photogeneration of ROS, and enhanced uptake and delivery of PS to the target cells. This chapter focused on the antimicrobial photodynamic inactivation of microorganisms using different carbon nanostructures such as fullerenes, graphene oxide, carbon nanotubes, and carbon nanodots and their mechanism of action. The general mechanism of action of these carbon nanostructures includes ROS generation, cell membrane damage, leakage of cytoplasmic contents, oxidative death, protein denaturation, DNA damage, and lipid peroxidation. Carbon nanomedicine and its application in aPDT are an emerging field which enhances the potential to prevent, treat, and control infectious diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aboofazeli R, Hadidi N, Kobarfard F, Nafissi-Varcheh N (2011) Optimization of single-walled carbon nanotube solubility by noncovalent PEGylation using experimental design methods. Int J Nanomedicine 6:737–746

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Abrahamse H, Kruger CA, Kadanyo S, Mishra A (2017) Nanoparticles for advanced photodynamic therapy of cancer. Photomed Laser Surg 35(11):581–588

    Article  PubMed  Google Scholar 

  • Akasaka T, Matsuoka M, Hashimoto T, Abe S, Uo M, Watari F (2010) The bactericidal effect of carbon nanotube/agar composites irradiated with near-infrared light on Streptococcus mutans. Mater Sci Eng B 173(1–3):187–190

    Article  CAS  Google Scholar 

  • Akhavan O, Ghaderi E (2009) Photocatalytic reduction of graphene oxide nanosheets on TiO2 thin film for photoinactivation of bacteria in solar light irradiation. J Phys Chem C 113(47):20214–20220

    Article  CAS  Google Scholar 

  • Al Awak MM, Wang P, Wang S, Tang Y, Sun Y-P, Yang L (2017) Correlation of carbon dots’ light-activated antimicrobial activities and fluorescence quantum yield. RSC Adv 7(48):30177–30184

    Article  PubMed  PubMed Central  Google Scholar 

  • Albert K, Hsu H-Y (2016) Carbon-based materials for photo-triggered theranostic applications. Molecules 21(11):1585

    Article  PubMed Central  CAS  Google Scholar 

  • Al-jumaili A, Alancherry S, Bazaka K, Jacob MV (2017) Review on the antimicrobial properties of carbon nanostructures. Materials 10(9):1066

    Article  PubMed Central  CAS  Google Scholar 

  • Altinbasak I, Jijie R, Barras A, Golba B, Sanyal R, Bouckaert J, Drider D, Bilyy R, Dumych T, Paryzhak S, Vovk V, Boukherroub R, Sanyal A, Szunerits S (2018) Reduced graphene-oxide-embedded polymeric nanofiber mats: An “On-Demand” photothermally triggered antibiotic release platform. ACS Appl Mater 10(48):41098–41106

    Article  CAS  Google Scholar 

  • Aoshima H, Kokubo K, Shirakawa S, Ito M, Yamana S, Oshima T (2009) Antimicrobial activity of fullerenes and their hydroxylated derivatives. Biocontrol Sci 14(2):69–72

    Article  CAS  PubMed  Google Scholar 

  • Araújo NC, Fontana CR, Bagnato VS, Gerbi MEM (2012) Photodynamic effects of curcumin against cariogenic pathogens. Photomed Laser Surg 30(7):393–399. https://doi.org/10.1089/pho.2011.3195

    Article  CAS  PubMed  Google Scholar 

  • Arias LR, Yang L (2009) Inactivation of bacterial pathogens by carbon nanotubes in suspensions. Langmuir 25(5):3003–3012. https://doi.org/10.1021/la802769m

    Article  CAS  PubMed  Google Scholar 

  • Badireddy AR, Hotze EM, Chellam S, Alvarez, Wiesner MR (2007) Inactivation of bacteriophages via photosensitization of Fullerol nanoparticles. Environ Sci Technol 41(18):6627–6632

    Article  CAS  PubMed  Google Scholar 

  • Banerjee I, Douaisi MP, Mondal D, Kane RS (2012) Light-activated nanotube–porphyrin conjugates as effective antiviral agents. Nanotechnology 23(10):105101

    Article  PubMed  CAS  Google Scholar 

  • Basak S, Singh P, Rajurkar M (2016) Multidrug resistant and extensively drug resistant bacteria: a study. J Pathog 2016:1–5. https://doi.org/10.1155/2016/4065603

    Article  CAS  Google Scholar 

  • Beytollahi L, Pourhajibagher M, Chiniforush N et al (2017) The efficacy of photodynamic and photothermal therapy on biofilm formation of streptococcus mutans: an in vitro study. Photodiagn Photodyn Ther 17:56–60. https://doi.org/10.1016/j.pdpdt.2016.10.006

    Article  CAS  Google Scholar 

  • Biliński J, Grzesiowski P, Muszyński J et al (2016) Fecal microbiota transplantation inhibits multidrug-resistant gut pathogens: preliminary report performed in an immunocompromised host. Arch Immunol Ther Exp 64(3):255–258. https://doi.org/10.1007/s00005-016-0387-9

    Article  Google Scholar 

  • Brooks BD, Brooks AE (2014) Therapeutic strategies to combat antibiotic resistance. Adv Drug Deliv Rev 78:14–27. https://doi.org/10.1016/j.addr.2014.10.027

    Article  CAS  PubMed  Google Scholar 

  • Brunet L, Lyon DY, Zodrow K, Rouch J-C, Caussat B, Serp P, Remigy JC, Wiesner MR, Alvarez PJJ (2008) Properties of membranes containing semi-dispersed carbon nanotubes. Environ Eng Sci 25(4):565–576

    Article  CAS  Google Scholar 

  • Buzea C, Pacheco II, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2(4):MR17–MR71

    Article  PubMed  Google Scholar 

  • Chaudhary AS (2016) A review of global initiatives to fight antibiotic resistance and recent antibiotics′ discovery. Acta Pharm Sin B 6(6):552–556. https://doi.org/10.1016/j.apsb.2016.06.004

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Ma L, Liu Y, Chen C (2012) Applications of functionalized fullerenes in tumor theranostics. Theranostics 2(3):238–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen H, Wang B, Gao D, Guan M, Zheng L, Ouyang H, Chai Z, Zhao Y, Feng W (2013) Broad-spectrum antibacterial activity of carbon nanotubes to human gut bacteria. Small 9(16):2735–2746

    Article  CAS  PubMed  Google Scholar 

  • Choi J, Seo Y, Hwang J, Kim J, Jeong Y, Hwang M (2014) Antibacterial activity and cytotoxicity of multi-walled carbon nanotubes decorated with silver nanoparticles. Int J Nanomedicine 9(1):4621

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Colino C, Millán C, Lanao J (2018) Nanoparticles for signaling in biodiagnosis and treatment of infectious diseases. Int J Mol Sci 19(6):1627. https://doi.org/10.3390/ijms19061627

    Article  CAS  PubMed Central  Google Scholar 

  • Constantin C, Neagu M, Ion RM, Gherghiceanu M, Stavaru C (2010) Fullerene-porphyrin nanostructures in photodynamic therapy. Nanomedicine 5(2):307–317

    Article  CAS  PubMed  Google Scholar 

  • Crow JR, Davis SL, Chaykosky DM, Smith TT, Smith JM (2015) Probiotics and fecal microbiota transplant for primary and secondary prevention of Clostridium difficile infection. Pharmacother J Hum Pharmacol Drug Ther 35(11):1016–1025. https://doi.org/10.1002/phar.1644

    Article  CAS  Google Scholar 

  • Deokar AR, Nagvenkar AP, Kalt I, Shani L, Yeshurun Y, Gedanken A, Sarid R (2017) Graphene-based “hot plate” for the capture and destruction of the herpes simplex virus type 1. Bioconjug Chem 28(4):1115–1122

    Article  CAS  PubMed  Google Scholar 

  • Deryabin DG, Davydova OK, Yankina ZZ, Vasilchenko AS, Miroshnikov SA, Kornev AB et al (2014) The activity of [60]fullerene derivatives bearing amine and carboxylic solubilizing groups against Escherichia coli : a comparative study. J Nanomater 2014:1–9

    Article  CAS  Google Scholar 

  • Dong L, Henderson A, Field C (2012) Antimicrobial activity of single-walled carbon nanotubes suspended in different surfactants. J Nanotechnol 2012:1–7

    Google Scholar 

  • Dostalova S, Moulick A, Milosavljevic V, Guran R, Kominkova M, Cihalova K et al (2016) Antiviral activity of fullerene C60 nanocrystals modified with derivatives of anionic antimicrobial peptide maximin H5. Monatshefte für Chemie – Chem Mon 147(5):905–918

    Article  CAS  Google Scholar 

  • Friedman ND, Temkin E, Carmeli Y (2016) The negative impact of antibiotic resistance. Clin Microbiol Infect 22(5):416–422. https://doi.org/10.1016/j.cmi.2015.12.002

    Article  CAS  PubMed  Google Scholar 

  • Frieri M, Kumar K, Boutin A (2017) Antibiotic resistance. J Infect Public Health 10(4):369–378. https://doi.org/10.1016/j.jiph.2016.08.007

    Article  PubMed  Google Scholar 

  • Fu W, Forster T, Mayer O, Curtin JJ, Lehman SM, Donlan RM (2010) Bacteriophage cocktail for the prevention of biofilm formation by Pseudomonas aeruginosa on catheters in an in vitro model system. Antimicrob Agents Chemother 54(1):397–404. https://doi.org/10.1128/AAC.00669-09

    Article  CAS  PubMed  Google Scholar 

  • Gao Y, Wu J, Ren X, Tan X, Hayat T, Alsaedi A et al (2017) Impact of graphene oxide on the antibacterial activity of antibiotics against bacteria. Environ Sci Nano 4(5):1016–1024

    Article  CAS  Google Scholar 

  • Garcez AS, Núñez SC, Baptista MS et al (2011) Antimicrobial mechanisms behind photodynamic effect in the presence of hydrogen peroxide. Photochem Photobiol Sci 10(4):483–490. https://doi.org/10.1039/C0PP00082E

    Article  CAS  PubMed  Google Scholar 

  • Gholibegloo E, Karbasi A, Pourhajibagher M, Chiniforush N, Ramazani A, Akbari T, Bahador A (2017) Khoobi M (2018) Carnosine-graphene oxide conjugates decorated with hydroxyapatite as promising nanocarrier for ICG loading with enhanced antibacterial effects in photodynamic therapy against Streptococcus mutans. Photochem Photobiol B Biol 181:14–22

    Article  CAS  Google Scholar 

  • Grinholc M, Nakonieczna J, Fila G, Taraszkiewicz A, Kawiak A, Szewczyk G, Sarna T, Lilge T, Bielawski KP (2015) Antimicrobial photodynamic therapy with fulleropyrrolidine: photoinactivation mechanism of Staphylococcus aureus, in vitro and in vivo studies. Appl Microbiol Biotechnol 99(9):4031–4043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamblin MR (2016) Antimicrobial photodynamic inactivation: a bright new technique to kill resistant microbes. Curr Opin Microbiol 33:67–73. https://doi.org/10.1016/j.mib.2016.06.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamblin MR, Hasan T (2004) Photodynamic therapy: a new antimicrobial approach to infectious disease? Photochem Photobiol Sci 3(5):436. https://doi.org/10.1039/b311900a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hancock REW, Nijnik A, Philpott DJ (2012) Modulating immunity as a therapy for bacterial infections. Nat Rev Microbiol 10(4):243–254. https://doi.org/10.1038/nrmicro2745

    Article  CAS  PubMed  Google Scholar 

  • Harper D, Parracho H, Walker J et al (2014) Bacteriophages and biofilms. Antibiotics 3(3):270–284. https://doi.org/10.3390/antibiotics3030270

    Article  CAS  PubMed Central  Google Scholar 

  • Hauser AR, Mecsas J, Moir DT (2016) Beyond antibiotics: new therapeutic approaches for bacterial infections. Weinstein RA, ed. Clin Infect Dis 63(1):89–95. https://doi.org/10.1093/cid/ciw200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hegge ABEE, Andersen T, Melvik JE, Kristensen S, Tønnesen HH (2010) Evaluation of novel alginate foams as drug delivery systems in antimicrobial photodynamic therapy (aPDT) of infected wounds — an in vitro study : studies on curcumin and curcuminoides XL. J Pharm Sci 99(8):3499–3513. https://doi.org/10.1002/jps

    Article  CAS  PubMed  Google Scholar 

  • Huang YY, Sharma SK, Dai T, Chung H, Yaroslavsky A, Garcia-Diaz M, Chang J, Chiang LY, Hamblin MR (2012) Can nanotechnology potentiate photodynamic therapy? Nanotechnol Rev 1(2):111–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ibrahim SO, Abdulkareem AS, Isah KU, Ahmadu U, Bankole MT, Kariim I (2018) Anti-bacteria activity of carbon nanotubes grown on trimetallic catalyst. Adv Nat Sci Nanosci Nanotechnol 9(2):025008. https://doi.org/10.1088/2043-6254/aac29d

    Article  CAS  Google Scholar 

  • Jijie R, Barras A, Bouckaert J, Dumitrascu N, Szunerits S, Boukherroub R (2018) Enhanced antibacterial activity of carbon dots functionalized with ampicillin combined with visible light triggered photodynamic effects. Colloids Surf B Biointerfaces 170(June):347–354

    Article  CAS  PubMed  Google Scholar 

  • Kang S, Herzberg M, Rodrigues DF, Elimelech M (2008) Antibacterial effects of carbon nanotubes: size does matter! Lan 24(13):6409–6413

    Article  CAS  Google Scholar 

  • Khameneh B, Diab R, Ghazvini K, Fazly Bazzaz BS (2016) Breakthroughs in bacterial resistance mechanisms and the potential ways to combat them. Microb Pathog 95:32–42. https://doi.org/10.1016/j.micpath.2016.02.009

    Article  CAS  PubMed  Google Scholar 

  • Kim J-W, Shashkov EV, Galanzha EI, Kotagiri N, Zharov VP (2007) Photothermal antimicrobial nanotherapy and nanodiagnostics with self-assembling carbon nanotube clusters. Lasers Surg Med 39(7):622–634

    Article  PubMed  Google Scholar 

  • Li Y-H, Tian X (2012) Quorum sensing and bacterial social interactions in biofilms. Sensors 12(3):2519–2538. https://doi.org/10.3390/s120302519

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Mahendra S, Lyon DY, Brunet L, Liga MV, Li D, Alvarez PJJ (2008) Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Res 42(18):4591–4602

    Article  CAS  PubMed  Google Scholar 

  • Li J, Wang G, Zhu H, Zhang M, Zheng X, Di Z, Liu X, Wang X (2015) Antibacterial activity of large-area monolayer graphene film manipulated by charge transfer. Sci Rep 4(1):4359

    Article  CAS  Google Scholar 

  • Li H, Huang J, Song Y, Zhang M, Wang H, Lu F et al (2018) Degradable carbon dots with broad-spectrum antibacterial activity. ACS Appl Mater 10(32):26936–26946

    Article  CAS  Google Scholar 

  • Liebana E, Carattoli A, Coque TM et al (2013) Public health risks of enterobacterial isolates producing extended-spectrum -lactamases or AmpC -lactamases in food and food-producing animals: an EU perspective of epidemiology, analytical methods, risk factors, and control options. Clin Infect Dis 56(7):1030–1037. https://doi.org/10.1093/cid/cis1043

    Article  PubMed  Google Scholar 

  • Liu H, Ye T, Mao C (2007) Fluorescent carbon nanoparticles derived from candle soot. Angew Chemie Int Ed 46(34):6473–6475

    Article  CAS  Google Scholar 

  • Lu Z, Dai T, Huang L, Kurup DB, Tegos GP, Jahnke A, Wharton A, Hamblin MR (2010) Photodynamic therapy with a cationic functionalized fullerene rescues mice from fatal wound infections. Nanomedicin 5(10):1525–1533

    Article  CAS  Google Scholar 

  • Lyon DY, Adams LK, Falkner JC, Alvarez PJJ (2006) Antibacterial activity of fullerene water suspensions: effects of preparation method and particle size. Environ Sci Technol 40(14):4360–4366

    Article  CAS  PubMed  Google Scholar 

  • Maas M (2016) Carbon nanomaterials as antibacterial colloids. Materials (Basel) 9(8):617. https://doi.org/10.3390/ma9080617

    Article  CAS  Google Scholar 

  • Machado SM, Pacheco-Soares C, Marciano FR, Lobo AO, da Silva NS (2014) Photodynamic therapy in the cattle protozoan Tritrichomonas foetus cultivated on superhydrophilic carbon nanotube. Mater Sci Eng C 36(1):180–186

    Article  CAS  Google Scholar 

  • Maleki Dizaj S, Mennati A, Jafari S, Khezri K, Adibkia K (2015) Antimicrobial activity of carbon-based nanoparticles. Adv Pharm Bull 5(1):19–23. https://doi.org/10.5681/apb.2015.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manjón F, Santana-Magaña M, García-Fresnadillo D, Orellana G (2014) Are silicone-supported [C60]-fullerenes an alternative to Ru(ii) polypyridyls for photodynamic solar water disinfection? Photochem Photobiol 13(2):397

    Article  CAS  Google Scholar 

  • Manke A, Wang L, Rojanasakul Y (2013) Mechanisms of nanoparticle-induced oxidative stress and toxicity. Biomed Res Int 2013:1–15

    Article  CAS  Google Scholar 

  • Marshall NC, Finlay BB (2014) Targeting the type III secretion system to treat bacterial infections. Expert Opin Ther Targets 18(2):137–152. https://doi.org/10.1517/14728222.2014.855199

    Article  CAS  PubMed  Google Scholar 

  • Mesquita MQ, Dias CJ, Neves MGPMS, Almeida A, Faustino MAF (2018) Revisiting current photoactive materials for antimicrobial photodynamic therapy. Molecules 23(10):2424

    Article  CAS  Google Scholar 

  • Mizuno K, Zhiyentayev T, Huangv L, Khalil S, Nasim F, Tegos GP, Gali H, Jahnke A, Wharton T, Hamblin MR (2011) Antimicrobial photodynamic therapy with functionalized fullerenes: quantitative structure-activity relationships. J Nanomed Nanotechnol 02(02):1–9

    Article  CAS  Google Scholar 

  • Mocan T, Matea CT, Pop T et al (2017) Carbon nanotubes as anti-bacterial agents. Cell Mol Life Sci 74(19):3467–3479. https://doi.org/10.1007/s00018-017-2532-y

    Article  CAS  PubMed  Google Scholar 

  • Mroz P, Pawlak A, Satti M, Lee H, Wharton T, Gali H, Sarna T, Hamblin MR (2007) Functionalized fullerenes mediate photodynamic killing of cancer cells: Type I versus Type II photochemical mechanism. Free Radic Biol Med 43(5):711–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakanishi I, Fukuzumi S, Konishi T, Ohkubo K, Fujitsuka M, Ito O, Miyata M (2002) DNA cleavage via superoxide anion formed in photoinduced electron transfer from NADH to γ-cyclodextrin-bicapped C 60 in an oxygen-saturated aqueous solution. J Phys Chem B 106(9):2372–2380

    Article  CAS  Google Scholar 

  • Nepal D, Balasubramanian S, Simonian AL, Davis VA (2008) Strong antimicrobial coatings: Single-walled carbon nanotubes armored with biopolymers. Nano Lett 8(7):1896–1901

    Article  CAS  PubMed  Google Scholar 

  • Oruba Z, Łabuz P, Macyk W, Chomyszyn-Gajewska M (2015) Antimicrobial photodynamic therapy—A discovery originating from the pre-antibiotic era in a novel periodontal therapy. Photodiagn Photodyn Ther 12(4):612–618. https://doi.org/10.1016/j.pdpdt.2015.10.007

    Article  CAS  Google Scholar 

  • Oza G, Pandey S, Gupta A, Shinde S, Mewada A, Jagadale P, Sharon M, Sharon M (2013) Photocatalysis-assisted water filtration: using TiO2-coated vertically aligned multi-walled carbon nanotube array for removal of Escherichia coli O157:H7. Mater Sci Eng C 33(7):4392–4400

    Article  CAS  Google Scholar 

  • Pelgrift RY, Friedman AJ (2013) Nanotechnology as a therapeutic tool to combat microbial resistance. Adv Drug Deliv Rev 65(13–14):1803–1815. https://doi.org/10.1016/j.addr.2013.07.011

    Article  CAS  PubMed  Google Scholar 

  • Perni S, Prokopovich P, Pratten J, Parkin IP, Wilson M (2011) Nanoparticles: their potential use in antibacterial photodynamic therapy. Photochem Photobiol Sci 10(5):712

    Article  CAS  PubMed  Google Scholar 

  • Prajapati VK, Awasthi K, Gautam S et al (2011) Targeted killing of Leishmania donovani in vivo and in vitro with amphotericin B attached to functionalized carbon nanotubes. J Antimicrob Chemother 66(4):874–879. https://doi.org/10.1093/jac/dkr002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prasad R, Pandey R, Varma A, Barman I (2017) Polymer based nanoparticles for drug delivery systems and cancer therapeutics. In: Natural Polymers for Drug Delivery (eds. Kharkwal H and Janaswamy S), CAB International, UK, pp. 53–70

    Google Scholar 

  • Priyadarsini S, Mohanty S, Mukherjee S, Basu S, Mishra M (2018) Graphene and graphene oxide as nanomaterials for medicine and biology application. J Nanostructure Chem 8(2):123–137

    Article  CAS  Google Scholar 

  • Ristic BZ, Milenkovic MM, Dakic IR, Todorovic-Markovic BM, Milosavljevic MS, Budimir MD, Paunovic VG, Dramicanin MD, Markovic ZM, Trajkovic VS (2014) Photodynamic antibacterial effect of graphene quantum dots. Biomaterials 35(15):4428–4435

    Article  CAS  PubMed  Google Scholar 

  • Robertson CA, Evans DH, Abrahamse H (2009) Journal of photochemistry and photobiology B : biology photodynamic therapy (PDT): a short review on cellular mechanisms and cancer research applications for PDT. J Photochem Photobiol B Biol 96(1):1–8. https://doi.org/10.1016/j.jphotobiol.2009.04.001

    Article  CAS  Google Scholar 

  • Roca I, Akova M, Baquero F et al (2015) The global threat of antimicrobial resistance: science for intervention. New Microbes New Infect 6:22–29. https://doi.org/10.1016/j.nmni.2015.02.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosa LP, Cristina F, Nader SA, Meira GA, Viana MS (2015) Effectiveness of antimicrobial photodynamic therapy using a 660 nm laser and methyline blue dye for inactivating Staphylococcus aureus biofilms in compact and cancellous bones : An in vitro study. Photodiagn Photodyn Ther 12(2):276–281. https://doi.org/10.1016/j.pdpdt.2015.01.001

    Article  CAS  Google Scholar 

  • Rout B, Liu CH, Wu WC (2016) Enhancement of photodynamic inactivation against Pseudomonas aeruginosa by a nano-carrier approach. Colloids Surf B Biointerfaces 140:472–480. https://doi.org/10.1016/j.colsurfb.2016.01.002

    Article  CAS  PubMed  Google Scholar 

  • Roy AK, Kim S-M, Paoprasert P, Park S-Y, In I (2015) Preparation of biocompatible and antibacterial carbon quantum dots derived from resorcinol and formaldehyde spheres. RSC Adv 5(40):31677–31682

    Article  CAS  Google Scholar 

  • Rud Y, Buchatskyy L, Prylutskyy Y, Marchenko O, Senenko A, Schütze C, Ritter U (2012) Using C 60 fullerenes for photodynamic inactivation of mosquito iridescent viruses. J Enzyme Inhib Med Chem 27(4):614–617

    Article  CAS  PubMed  Google Scholar 

  • Sah U, Sharma K, Chaudhri N, Sankar M, Gopinath P (2018) Antimicrobial photodynamic therapy: single-walled carbon nanotube (SWCNT)-Porphyrin conjugate for visible light mediated inactivation of Staphylococcus aureus. Colloids Surf B Biointerfaces 162:108–117

    Article  CAS  PubMed  Google Scholar 

  • Sattarahmady N, Rezaie-Yazdi M, Tondro GH, Akbari N (2017) Bactericidal laser ablation of carbon dots: an in vitro study on wild-type and antibiotic-resistant Staphylococcus aureus. J Photochem Photobiol B Biol 166:323–332

    Article  CAS  Google Scholar 

  • Sharland M, Saroey P, Berezin EN (2015) The global threat of antimicrobial resistance - the need for standardized surveillance tools to define burden and develop interventions. J Pediatr 91(5):410–412. https://doi.org/10.1016/j.jped.2015.06.001

    Article  Google Scholar 

  • Sharma SK, Chiang LY, Hamblin MR (2011) Photodynamic therapy with fullerenes in vivo : reality or a dream? Nanomedicine 6(10):1813–1825

    Article  CAS  PubMed  Google Scholar 

  • Sharma A, Varshney M, Nanda SS, Shin HJ, Kim N, Yi DK et al (2018) Structural, electronic structure and antibacterial properties of graphene-oxide nano-sheets. Chem Phys Lett 698:85–92

    Article  CAS  Google Scholar 

  • Shvedova AA, Fabisiak JP, Kisin ER et al (2008) Sequential exposure to carbon nanotubes and bacteria enhances pulmonary inflammation and infectivity. Am J Respir Cell Mol Biol 38(5):579–590. https://doi.org/10.1165/rcmb.2007-0255OC

    Article  CAS  PubMed  Google Scholar 

  • Smith A (2005) Biofilms and antibiotic therapy: Is there a role for combating bacterial resistance by the use of novel drug delivery systems? Adv Drug Deliv Rev 57(10):1539–1550. https://doi.org/10.1016/j.addr.2005.04.007

    Article  CAS  PubMed  Google Scholar 

  • Spagnul C, Turner LC, Boyle RW (2015) Immobilized photosensitizers for antimicrobial applications. J Photochem Photobiol B Biol 150:11–30. https://doi.org/10.1016/j.jphotobiol.2015.04.021

    Article  CAS  Google Scholar 

  • Sperandio F, Huang Y-Y, Hamblin M (2013) Antimicrobial photodynamic therapy to kill gram-negative bacteria. Recent Pat Antiinfect Drug Discov 8(2):108–120. https://doi.org/10.2174/1574891X113089990012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sudhakara RR, Ramya K, Ramesh T, Subbarayudu G, Sai MN, Sai KC (2012) Photodynamic therapy in oral diseases. Int J Biol Med Res 3:1875–1883

    Google Scholar 

  • Sun Y-P, Zhou B, Lin Y, Wang W, Fernando KAS, Pathak P, Meziani MJ, Harruff BA, Wang X, Wang H, Luo PG, Yang H, Kose ME, Chen B, Veca LM, Xie S-Y (2006) Quantum-sized carbon dots for bright and colorful photoluminescence. J Am Chem Soc 128(24):7756–7757

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Liu Z, Welsher K, Robinson JT, Goodwin A, Zaric S, Dai H (2008) Nano-graphene oxide for cellular imaging and drug delivery. Nano Res 1(3):203–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teh S, Mok P, Abd Rashid M et al (2018) Recent updates on treatment of ocular microbial infections by stem cell therapy: a review. Int J Mol Sci 19(2):558. https://doi.org/10.3390/ijms19020558

    Article  CAS  PubMed Central  Google Scholar 

  • Tetro JA (2018) From hidden outbreaks to epidemic emergencies: the threat associated with neglecting emerging pathogens. Microbes Infect 0–5. https://doi.org/10.1016/j.micinf.2018.06.004

    Article  PubMed  Google Scholar 

  • Travlou NA, Giannakoudakis DA, Algarra M, Labella AM, Rodríguez-Castellón E, Bandosz TJ (2018) S- and N-doped carbon quantum dots: surface chemistry dependent antibacterial activity. Carbon 135:104–111

    Article  CAS  Google Scholar 

  • Vassena C, Fenu S, Giuliani F et al (2014) Photodynamic antibacterial and antibiofilm activity of RLP068/Cl against staphylococcus aureus and Pseudomonas aeruginosa forming biofilms on prosthetic material. Int J Antimicrob Agents 44(1):47–55. https://doi.org/10.1016/j.ijantimicag.2014.03.012

    Article  CAS  PubMed  Google Scholar 

  • Venkatesan J, Jayakumar R, Mohandas A, Bhatnagar I, Kim S-K (2014) Antimicrobial activity of chitosan-carbon nanotube hydrogels. Materials 7(5):3946–3955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vt A, Paramanantham P, Sb SL, Sharan A, Alsaedi MH, Dawoud TMS, Asad S, Busi S (2018) Antimicrobial photodynamic activity of rose bengal conjugated multi walled carbon nanotubes against planktonic cells and biofilm of Escherichia coli. Photodiagn Photodyn Ther 24:300–310

    Article  CAS  Google Scholar 

  • Wang Y, Li Z, Wang J, Li J, Lin (2011) Graphene and graphene oxide: biofunctionalization and applications in biotechnology. Trends Biotechnol 29(5):205–212

    Article  PubMed  CAS  Google Scholar 

  • Weissleder R (2001) A clearer vision for in vivo imaging. Nat Biotechnol 19(4):316–317

    Article  CAS  PubMed  Google Scholar 

  • Whitehead KA, Vaidya M, Liauw CM, Brownson DAC, Ramalingam P, Kamieniak J et al (2017) Antimicrobial activity of graphene oxide-metal hybrids. Int Biodeterior Biodegradation 123:182–190

    Article  CAS  Google Scholar 

  • Wong T-W, Wang Y-Y, Sheu H-M, Chuang Y-C (2005) Bactericidal effects of toluidine blue-mediated photodynamic action on vibrio vulnificus. Antimicrob Agents Chemother 49(3):895–902. https://doi.org/10.1128/AAC.49.3.895-902.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xin Q, Shah H, Nawaz A et al (2018) Antibacterial carbon-based nanomaterials. Adv Mater 1804838:1804838. https://doi.org/10.1002/adma.201804838

    Article  CAS  Google Scholar 

  • Yacoby I, Benhar I (2008) Antibacterial nanomedicine. Nanomedicine 3(3):329–341

    Article  CAS  PubMed  Google Scholar 

  • Yin R, Wang M, Huang YY, Landi G, Vecchio D, Chiang LY, Hamblin MR (2015) Antimicrobial photodynamic inactivation with decacationic functionalized fullerenes: oxygen-independent photokilling in presence of azide and new mechanistic insights. Free Radic Biol Med 79:14–27

    Article  CAS  PubMed  Google Scholar 

  • Zaidi S, Misba L, Khan AU (2017) Nano-therapeutics: a revolution in infection control in post antibiotic era. Nanomed Nanotechnol, Biol Med 13(7):2281–2301. https://doi.org/10.1016/j.nano.2017.06.015

    Article  CAS  Google Scholar 

  • Zhu S, Xu G (2010) Single-walled carbon nanohorns and their applications. Nanoscale 2(12):2538

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Radovic-Moreno AF, Wu J, Langer R, Shi J (2014) Nanomedicine in the management of microbial infection – overview and perspectives. Nano Today 9(4):478–498. https://doi.org/10.1016/j.nantod.2014.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Paramanantham, P., Anju, V.T., Dyavaiah, M., Siddhardha, B. (2019). Applications of Carbon-Based Nanomaterials for Antimicrobial Photodynamic Therapy. In: Prasad, R. (eds) Microbial Nanobionics. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-16534-5_12

Download citation

Publish with us

Policies and ethics