Advertisement

Repetitive DNA: The Dark Matter of Avian Genomics

  • Matthias H. Weissensteiner
  • Alexander SuhEmail author
Chapter

Abstract

How much do we really know about bird genomes? Like other eukaryotic genomes, the genomes of birds contain repetitive DNA—tandem repeats, transposable elements, and endogenous viruses. Repetitive regions are notoriously difficult to assemble and often remain inaccessible as gaps within genome assemblies, a situation which may be metaphorically referred to as genomic “dark matter.” Here we review avian repetitive DNA from an integrated avian genomics and cytogenetics perspective. While bird genomes are generally relatively repeat-poor, some genomic regions consist almost entirely of repetitive elements. Particularly repeat-rich are centromeres, telomeres, and surrounding regions, as well as the female-specific non-recombining W chromosome. Many of these regions are entirely inaccessible with short-read sequencing but may be much better resolved with long-read sequencing and other single-molecule technologies. We further discuss how repetitive elements may have directly impacted bird speciation through host–parasite arms races, meiotic drive, and changes in genome structure. We conclude with a model for improving genome assemblies and anticipate that the resolution of genomic “dark matter” will permit a deeper understanding of bird genomes.

Keywords

Bird evolution Genome assembly Cytogenetics Repetitive element Transposon Virus Centromere Telomere Sex chromosome Speciation 

Notes

Acknowledgments

We thank Anne-Marie Dion-Côté and Cormac Kinsella for helpful discussions and Anne-Marie Dion-Côté, Cormac Kinsella, and Karen Miga for comments on earlier versions of this manuscript. We are also grateful for comments from Robert Kraus and three anonymous reviewers who further improved this manuscript. A.S. was supported by grants from the Swedish Science Foundation (2016-05139) and the SciLifeLab Swedish Biodiversity Program (2015-R14).

References

  1. Abbott JK, Nordén AK, Hansson B (2017) Sex chromosome evolution: historical insights and future perspectives. Proc R Soc B 284(1854):20162806.  https://doi.org/10.1098/rspb.2016.2806 CrossRefPubMedGoogle Scholar
  2. Asghar M, Hasselquist D, Hansson B et al (2015) Hidden costs of infection: chronic malaria accelerates telomere degradation and senescence in wild birds. Science 347:436–438.  https://doi.org/10.1126/science.1261121 CrossRefPubMedGoogle Scholar
  3. Axelsson E, Albrechtsen A, van AP et al (2010) Segregation distortion in chicken and the evolutionary consequences of female meiotic drive in birds. Heredity 105:290–298.  https://doi.org/10.1038/hdy.2009.193 CrossRefPubMedGoogle Scholar
  4. Bachtrog D (2013) Y-chromosome evolution: emerging insights into processes of Y-chromosome degeneration. Nat Rev Genet 14(2):113–124CrossRefGoogle Scholar
  5. Backström N, Ceplitis H, Berlin S, Ellegren H (2005) Gene conversion drives the evolution of HINTW, an ampliconic gene on the female-specific avian W chromosome. Mol Biol Evol 22(10):1992–1999.  https://doi.org/10.1093/molbev/msi198 CrossRefPubMedGoogle Scholar
  6. Backström N, Forstmeier W, Schielzeth H, Mellenius H, Nam K, Bolund E, Webster MT, Öst T, Schneider M, Kempenaers B, Ellegren H (2010) The recombination landscape of the zebra finch Taeniopygia guttata genome. Genome Res 20(4):485–495.  https://doi.org/10.1101/gr.101410.109 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Baker AJ, Haddrath O, McPherson JD, Cloutier A (2014) Genomic support for a moa-tinamou clade and adaptive morphological convergence in flightless ratites. Mol Biol Evol 31(7):1686–1696.  https://doi.org/10.1093/molbev/msu153 CrossRefPubMedGoogle Scholar
  8. Bejerano G, Lowe CB, Ahituv N, King B, Siepel A, Salama SR, Rubin EM, James Kent W, Haussler D (2006) A distal enhancer and an ultraconserved exon are derived from a novel retroposon. Nature 441(7089):87–90.  https://doi.org/10.1038/nature04696 CrossRefPubMedGoogle Scholar
  9. Bellott DW, Hughes JF, Skaletsky H, Brown LG, Pyntikova T, Cho T-J, Koutseva N, Zaghlul S, Graves T, Rock S, Kremitzki C, Fulton RS, Dugan S, Ding Y, Morton D, Khan Z, Lewis L, Buhay C, Wang Q, Watt J, Holder M, Lee S, Nazareth L, Rozen S, Muzny DM, Warren WC, Gibbs RA, Wilson RK, Page DC (2014) Mammalian Y chromosomes retain widely expressed dosage-sensitive regulators. Nature 508(7497):494–499.  https://doi.org/10.1038/nature13206 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Bellott DW, Skaletsky H, Cho T-J, Brown L, Locke D, Chen N, Galkina S, Pyntikova T, Koutseva N, Graves T, Kremitzki C, Warren WC, Clark AG, Gaginskaya E, Wilson RK, Page DC (2017) Avian W and mammalian Y chromosomes convergently retained dosage-sensitive regulators. Nat Genet 49(3):387–394.  https://doi.org/10.1038/ng.3778 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bersani F et al (2015) Pericentromeric satellite repeat expansions through RNA-derived DNA intermediates in cancer. Proc Natl Acad Sci U S A 112(49):15148–15153.  https://doi.org/10.1073/pnas.1518008112 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Bertocchi NA, Torres FP, Garnero AV, Gunski RJ, Wallau GL (2017) Evolutionary history of the mariner element galluhop in avian genomes. Mob DNA 8:11.  https://doi.org/10.1186/s13100-017-0094-z CrossRefPubMedPubMedCentralGoogle Scholar
  13. Betrán E, Demuth JP, Williford A (2012) Why chromosome palindromes? Int J Evol Biol 2012:14.  https://doi.org/10.1155/2012/207958 CrossRefGoogle Scholar
  14. Bickhart DM, Rosen BD, Koren S et al (2017) Single-molecule sequencing and chromatin conformation capture enable de novo reference assembly of the domestic goat genome. Nat Genet 49:643–650.  https://doi.org/10.1038/ng.3802 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Biederman MK, Nelson MM, Asalone KC, Pedersen AL, Saldanha CJ, Bracht JR (2018) Discovery of the first germline-restricted gene by subtractive transcriptomic analysis in the zebra finch, Taeniopygia guttata. Curr Biol 28:1620–1627.  https://doi.org/10.1016/j.cub.2018.03.067 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Bilaud T, Brun C, Ancelin K et al (1997) Telomeric localization of TRF2, a novel human telobox protein. Nat Genet 17:236–239.  https://doi.org/10.1038/ng1097-236 CrossRefPubMedGoogle Scholar
  17. Blackburn EH, Greider CW, Szostak JW (2006) Telomeres and telomerase: the path from maize, Tetrahymena and yeast to human cancer and aging. Nat Med 12:1133–1138.  https://doi.org/10.1038/nm1006-1133 CrossRefPubMedGoogle Scholar
  18. Braun EL et al (2019) Resolving the avian tree of life from top to bottom: the promise and potential boundaries of the phylogenomic era. In: Kraus RHS (ed) Avian genomics in ecology and evolution. Springer, ChamGoogle Scholar
  19. Buckler ES IV, Phelps-Durr TL, Buckler CSK et al (1999) Meiotic drive of chromosomal knobs reshaped the maize genome. Genetics 153:415–426.  https://doi.org/10.1111/evo.12741 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Burt DW (2002) Origin and evolution of avian microchromosomes. Cytogenet Genome Res 96(1–4):97–112CrossRefGoogle Scholar
  21. Burt A, Trivers R (2006) Genes in conflict: the biology of selfish genetic elements. Harvard University Press, Cambridge, MACrossRefGoogle Scholar
  22. Camacho JPM (2005) B chromosomes. In: Gregory TR (ed) The evolution of the genome. Academic, New York, pp 223–286CrossRefGoogle Scholar
  23. Chaisson MJP, Wilson RK, Eichler EE (2015) Genetic variation and the de novo assembly of human genomes. Nat Rev Genet 16(11):627–640.  https://doi.org/10.1038/nrg3933 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Chang K-W et al (2018) Stage-dependent piRNAs in chicken implicated roles in modulating male germ cell development. BMC Genomics 19:425.  https://doi.org/10.1186/s12864-018-4820-9 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Charlesworth B, Charlesworth D (2000) The degeneration of Y chromosomes. Philos Trans R Soc B 355(1403):1563–1572.  https://doi.org/10.1098/rstb.2000.0717 CrossRefGoogle Scholar
  26. Charlesworth D, Charlesworth B, Marais G (2005) Steps in the evolution of heteromorphic sex chromosomes. Heredity 95(2):118–128CrossRefGoogle Scholar
  27. Chen J-M, Cooper DN, Chuzhanova N et al (2007) Gene conversion: mechanisms, evolution and human disease. Nat Rev Genet 8:762–775.  https://doi.org/10.1038/nrg2193 CrossRefPubMedGoogle Scholar
  28. Christidis L (1990) Animal cytogenetics, vol 4. Chordata 3. B. Aves. Gebrüder Borntraeger, BerlinGoogle Scholar
  29. Chuong EB, Elde NC, Feschotte C (2017) Regulatory activities of transposable elements: from conflicts to benefits. Nat Rev Genet 18:71–86.  https://doi.org/10.1038/nrg.2016.139 CrossRefPubMedGoogle Scholar
  30. Cloutier A, Sackton TB, Grayson P, Clamp M, Baker AJ, Edwards SV (2018) Whole-genome analyses resolve the phylogeny of flightless birds (Palaeognathae) in the presence of an empirical anomaly zone. bioRxiv.  https://doi.org/10.1101/262949
  31. Craig R, Suh A, Wang M, Ellegren H (2018) Natural selection beyond genes: identification and analyses of evolutionary conserved elements in the genome of the collared flycatcher (Ficedula albicollis). Mol Ecol 27(2):476–492.  https://doi.org/10.1111/mec.14462 CrossRefPubMedGoogle Scholar
  32. Crooijmans RP, van Oers PA, Strijk JA et al (1996) Preliminary linkage map of the chicken (Gallus domesticus) genome based on microsatellite markers: 77 new markers mapped. Poult Sci 75:746–754.  https://doi.org/10.3382/ps.0750746 CrossRefPubMedGoogle Scholar
  33. Cui J, Holmes EC (2012) Endogenous hepadnaviruses in the genome of the budgerigar (Melopsittacus undulatus) and the evolution of avian hepadnaviruses. J Virol 86:7688–7691CrossRefGoogle Scholar
  34. Cui J, Zhao W, Huang Z, Jarvis E, Gilbert M, Walker P, Holmes E, Zhang G (2014) Low frequency of paleoviral infiltration across the avian phylogeny. Genome Biol 15(12):539CrossRefGoogle Scholar
  35. Damas J et al (2017) Upgrading short read animal genome assemblies to chromosome level using comparative genomics and a universal probe set. Genome Res 27:875–884.  https://doi.org/10.1101/gr.213660.116 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Damas J et al (2019) Avian chromosomal evolution. In: Kraus RHS (ed) Avian genomics in ecology and evolution. Springer, ChamGoogle Scholar
  37. Daron J, Slotkin RK (2017) EpiTEome: simultaneous detection of transposable element insertion sites and their DNA methylation levels. Genome Biol 18(1):91.  https://doi.org/10.1186/s13059-017-1232-0 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Davis JK, Thomas PJ, Thomas JW (2010) A W-linked palindrome and gene conversion in New World sparrows and blackbirds. Chromosom Res 18(5):543–553.  https://doi.org/10.1007/s10577-010-9134-y CrossRefGoogle Scholar
  39. Davis JK, Mittel LB, Lowman JJ, Thomas PJ, Maney DL, Martin CL, Program NCS, Thomas JW (2011) Haplotype-based genomic sequencing of a chromosomal polymorphism in the white-throated sparrow (Zonotrichia albicollis). J Hered 102(4):380–390.  https://doi.org/10.1093/jhered/esr043 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Dawson DA, Horsburgh GJ, Küpper C et al (2010) New methods to identify conserved microsatellite loci and develop primer sets of high cross-species utility – as demonstrated for birds. Mol Ecol Resour 10:475–494.  https://doi.org/10.1111/j.1755-0998.2009.02775.x CrossRefPubMedGoogle Scholar
  41. Dawson DA, Ball AD, Spurgin LG et al (2013) High-utility conserved avian microsatellite markers enable parentage and population studies across a wide range of species. BMC Genomics 14:176–176.  https://doi.org/10.1186/1471-2164-14-176 CrossRefPubMedPubMedCentralGoogle Scholar
  42. De Barba M, Miquel C, Lobréaux S et al (2016) High-throughput microsatellite genotyping in ecology: improved accuracy, efficiency, standardization and success with low-quantity and degraded DNA. Mol Ecol Resour 17:492–507.  https://doi.org/10.1111/1755-0998.12594 CrossRefPubMedGoogle Scholar
  43. de Massy B (2013) Initiation of meiotic recombination: how and where? Conservation and specificities among eukaryotes. Annu Rev Genet 47:563–599.  https://doi.org/10.1146/annurev-genet-110711-155423 CrossRefPubMedGoogle Scholar
  44. del Priore L, Pigozzi MI (2014) Histone modifications related to chromosome silencing and elimination during male meiosis in Bengalese finch. Chromosoma 123(3):293–302.  https://doi.org/10.1007/s00412-014-0451-3 CrossRefPubMedGoogle Scholar
  45. Delany ME, Krupkin AB (1999) Molecular characterization of ribosomal gene variation within and among NORs segregating in specialized populations of chicken. Genome 42:60–71CrossRefGoogle Scholar
  46. Delany ME, Daniels LM, Swanberg SE, Taylor HA (2003) Telomeres in the chicken: genome stability and chromosome ends. Poult Sci 82(6):917–926CrossRefGoogle Scholar
  47. Delany ME, Gessaro TM, Rodrigue KL, Daniels LM (2007) Chromosomal mapping of chicken mega-telomere arrays to GGA9, 16, 28 and W using a cytogenomic approach. Cytogenet Genome Res 117:54–63.  https://doi.org/10.1159/000103165 CrossRefPubMedGoogle Scholar
  48. Derks MFL, Schachtschneider KM, Madsen O, Schijlen E, Verhoeven KJF, van Oers K (2016) Gene and transposable element methylation in great tit (Parus major) brain and blood. BMC Genomics 17(1):1–13.  https://doi.org/10.1186/s12864-016-2653-y CrossRefGoogle Scholar
  49. Deryusheva S, Krasikova A, Kulikova T, Gaginskaya E (2007) Tandem 41-bp repeats in chicken and Japanese quail genomes: FISH mapping and transcription analysis on lampbrush chromosomes. Chromosoma 116:519–530.  https://doi.org/10.1007/s00412-007-0117-5 CrossRefPubMedGoogle Scholar
  50. Devos KM, Brown JKM, Bennetzen JL (2002) Genome size reduction through illegitimate recombination counteracts genome expansion in Arabidopsis. Genome Res 12(7):1075–1079.  https://doi.org/10.1101/gr.132102 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Diaz MO, Barsacchi-Pilone G, Mahon KA, Gall JG (1981) Transcripts from both strands of a satellite DNA occur on lampbrush chromosome loops of the newt notophthalmus. Cell 24:649–659.  https://doi.org/10.1016/0092-8674(81)90091-X CrossRefPubMedGoogle Scholar
  52. Ding Z, Mangino M, Aviv A et al (2014) Estimating telomere length from whole genome sequence data. Nucleic Acids Res 42:7–10.  https://doi.org/10.1093/nar/gku181 CrossRefGoogle Scholar
  53. Doležel J, Bartoš J, Voglmayr H, Greilhuber J (2003) Nuclear DNA content and genome size of trout and human. Cytometry A 51A(2):127–128.  https://doi.org/10.1002/cyto.a.10013 CrossRefGoogle Scholar
  54. Dorshorst B, Molin A-M, Rubin C-J et al (2011) A complex genomic rearrangement involving the endothelin 3 locus causes dermal hyperpigmentation in the chicken. PLoS Genet 7:e1002412–e1002412.  https://doi.org/10.1371/journal.pgen.1002412 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Dorshorst B, Harun-Or-Rashid M, Bagherpoor AJ, Rubin C-J, Ashwell C, Gourichon D, Tixier-Boichard M, Hallböök F, Andersson L (2015) A genomic duplication is associated with ectopic eomesodermin expression in the embryonic chicken comb and two duplex-comb phenotypes. PLoS Genet 11(3):e1004947.  https://doi.org/10.1371/journal.pgen.1004947 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Dudchenko O, Batra SS, Omer AD et al (2017) De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science 356:92–95.  https://doi.org/10.1126/science.aal3327 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Dutoit L, Vijay N, Mugal CF, Bossu CM, Burri R, Wolf J, Ellegren H (2017) Covariation in levels of nucleotide diversity in homologous regions of the avian genome long after completion of lineage sorting. Proc R Soc B 284(1849):20162756.  https://doi.org/10.1098/rspb.2016.2756 CrossRefPubMedGoogle Scholar
  58. Eid J, Fehr A, Gray J et al (2009) Real-time DNA sequencing from single polymerase molecules. Science 323:133–138.  https://doi.org/10.1126/science.1162986 CrossRefGoogle Scholar
  59. Ellegren H (2004) Microsatellites: simple sequences with complex evolution. Nat Rev Genet 5:435–445.  https://doi.org/10.1038/nrg1348 CrossRefPubMedGoogle Scholar
  60. Ellegren H (2010) Evolutionary stasis: the stable chromosomes of birds. Trends Ecol Evol 25(5):283–291.  https://doi.org/10.1016/j.tree.2009.12.004 CrossRefGoogle Scholar
  61. Ellegren H, Galtier N (2016) Determinants of genetic diversity. Nat Rev Genet 17:422–433.  https://doi.org/10.1038/nrg.2016.58 CrossRefPubMedGoogle Scholar
  62. Ellegren H, Smeds L, Burri R, Olason PI, Backström N, Kawakami T, Künstner A, Mäkinen H, Nadachowska-Brzyska K, Qvarnström A, Uebbing S, Wolf JBW (2012) The genomic landscape of species divergence in Ficedula flycatchers. Nature 491(7426):756–760CrossRefGoogle Scholar
  63. Enard D, Petrov DA (2017) RNA viruses drove adaptive introgressions between Neanderthals and modern humans. bioRxiv.  https://doi.org/10.1101/120477
  64. Enard D, Cai L, Gwennap C, Petrov DA (2016) Viruses are a dominant driver of protein adaptation in mammals. eLife 5:e12469.  https://doi.org/10.7554/eLife.12469 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Erwin AA, Galdos MA, Wickersheim ML, Harrison CC, Marr KD, Colicchio JM, Blumenstiel JP (2015) piRNAs are associated with diverse transgenerational effects on gene and transposon expression in a hybrid dysgenic syndrome of D. virilis. PLoS Genet 11(8):e1005332CrossRefGoogle Scholar
  66. Farré M, Narayan J, Slavov GT, Damas J, Auvil L, Li C, Jarvis ED, Burt DW, Griffin DK, Larkin DM (2016) Novel insights into chromosome evolution in birds, archosaurs, and reptiles. Genome Biol Evol 8(8):2442–2451.  https://doi.org/10.1093/gbe/evw166 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Feschotte C, Gilbert C (2012) Endogenous viruses: insights into viral evolution and impact on host biology. Nat Rev Genet 13:283–296.  https://doi.org/10.1038/nrg3199 CrossRefPubMedGoogle Scholar
  68. Feschotte C, Pritham EJ (2005) Non-mammalian c-integrases are encoded by giant transposable elements. Trends Genet 21(10):551–552CrossRefGoogle Scholar
  69. Feschotte C, Pritham EJ (2007) DNA transposons and the evolution of eukaryotic genomes. Annu Rev Genet 41(1):331–368.  https://doi.org/10.1146/annurev.genet.40.110405.090448 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Fridolfsson AK, Cheng H, Copeland NG, Jenkins NA, Liu HC, Raudsepp T, Woodage T, Chowdhary B, Halverson J, Ellegren H (1998) Evolution of the avian sex chromosomes from an ancestral pair of autosomes. Proc Natl Acad Sci USA 95(14):8147–8152CrossRefGoogle Scholar
  71. George CM, Alani E (2012) Multiple cellular mechanisms prevent chromosomal rearrangements involving repetitive DNA. Crit Rev Biochem Mol Biol 47(3):297–313.  https://doi.org/10.3109/10409238.2012.675644 CrossRefPubMedPubMedCentralGoogle Scholar
  72. Gilbert C, Feschotte C (2010) Genomic fossils calibrate the long-term evolution of hepadnaviruses. PLoS Biol 8:e1000495CrossRefGoogle Scholar
  73. Goday C, Pigozzi MI (2010) Heterochromatin and histone modifications in the germline-restricted chromosome of the zebra finch undergoing elimination during spermatogenesis. Chromosoma 119(3):325–336.  https://doi.org/10.1007/s00412-010-0260-2 CrossRefPubMedGoogle Scholar
  74. Gogolevsky KP, Vassetzky NS, Kramerov DA (2008) Bov-B-mobilized SINEs in vertebrate genomes. Gene 407(1–2):75–85.  https://doi.org/10.1016/j.gene.2007.09.021 CrossRefPubMedGoogle Scholar
  75. Goodier JL (2016) Restricting retrotransposons: a review. Mob DNA 7(1):16.  https://doi.org/10.1186/s13100-016-0070-z CrossRefPubMedPubMedCentralGoogle Scholar
  76. Goodwin S, McPherson JD, McCombie WR (2016) Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet 17(6):333–351.  https://doi.org/10.1038/nrg.2016.49 CrossRefGoogle Scholar
  77. Grandi FC, Rosser JM, Newkirk SJ, Yin J, Jiang X, Xing Z, Whitmore L, Bashir S, Ivics Z, Izsvák Z, Ye P, Yu YE, An W (2015) Retrotransposition creates sloping shores: a graded influence of hypomethylated CpG islands on flanking CpG sites. Genome Res 25:1135–1146.  https://doi.org/10.1101/gr.185132.114 CrossRefPubMedPubMedCentralGoogle Scholar
  78. Graur D, Li W-H (2000) Fundamentals of molecular evolution, 2nd edn. Sinauer Associates, Sunderland, MAGoogle Scholar
  79. Graw J (2015) Genetik. Springer, BerlinCrossRefGoogle Scholar
  80. Green RE, Braun EL, Armstrong J, Earl D, Nguyen N, Hickey G, Vandewege MW, St John JA, Capella-Gutiérrez S, Castoe TA, Kern C, Fujita MK, Opazo JC, Jurka J, Kojima KK, Caballero J, Hubley RM, Smit AF, Platt RN II, Lavoie CA, Ramakodi MP, Finger JW Jr, Suh A et al (2014) Three crocodilian genomes reveal ancestral patterns of evolution among archosaurs. Science 346(6215):1335.  https://doi.org/10.1126/science1254449 CrossRefGoogle Scholar
  81. Greenwold MJ, Sawyer RH (2010) Genomic organization and molecular phylogenies of the beta (beta) keratin multigene family in the chicken (Gallus gallus) and zebra finch (Taeniopygia guttata): implications for feather evolution. BMC Evol Biol 10:148–148.  https://doi.org/10.1186/1471-2148-10-148 CrossRefPubMedPubMedCentralGoogle Scholar
  82. Gregory TR (2017) Animal genome size database. http://www.genomesize.com
  83. Grewal SIS, Jia S (2007) Heterochromatin revisited. Nat Rev Genet 8:35–46.  https://doi.org/10.1038/nrg2008 CrossRefPubMedGoogle Scholar
  84. Griffin DK et al (2019) Jurassic Spark: what did the genomes of dinosaurs look like? In: Kraus RHS (ed) Avian genomics in ecology and evolution. Springer, ChamGoogle Scholar
  85. Guizard S, Piégu B, Arensburger P et al (2016) Deep landscape update of dispersed and tandem repeats in the genome model of the red jungle fowl, Gallus gallus, using a series of de novo investigating tools. BMC Genomics 17:659–659.  https://doi.org/10.1186/s12864-016-3015-5 CrossRefPubMedPubMedCentralGoogle Scholar
  86. Gymrek M (2017) A genomic view of short tandem repeats. Curr Opin Genet Dev 44:9–16.  https://doi.org/10.1016/j.gde.2017.01.012 CrossRefPubMedGoogle Scholar
  87. Haddrath O, Baker AJ (2012) Multiple nuclear genes and retroposons support vicariance and dispersal of the palaeognaths, and an Early Cretaceous origin of modern birds. Proc R Soc B 279(1747):4617–4625CrossRefGoogle Scholar
  88. Han K-L, Braun EL, Kimball RT, Reddy S, Bowie RCK, Braun MJ, Chojnowski JL, Hackett SJ, Harshman J, Huddleston CJ, Marks BD, Miglia KJ, Moore WS, Sheldon FH, Steadman DW, Witt CC, Yuri T (2011) Are transposable element insertions homoplasy free? An examination using the avian tree of life. Syst Biol 60(3):375–386.  https://doi.org/10.1093/sysbio/syq100 CrossRefPubMedGoogle Scholar
  89. Hanotte O, Burke T, Armour JAL, Jeffreys AJ (1991) Hypervariable minisatellite DNA sequences in the Indian peafowl Pavo cristatus. Genomics 9:587–597.  https://doi.org/10.1016/0888-7543(91)90351-E CrossRefPubMedGoogle Scholar
  90. Hanotte O, Bruford MW, Burke T (1992) Multilocus DNA fingerprints in gallinaceous birds: general approach and problems. Heredity 68:481–494.  https://doi.org/10.1038/hdy.1992.71 CrossRefPubMedGoogle Scholar
  91. Hansson B, Bensch S, Hasselquist D et al (2000) Increase of genetic variation over time in a recently founded population of great reed warblers (Acrocephalus arundinaceus) revealed by microsatellites and DNA fingerprinting. Mol Ecol 9:1529–1538.  https://doi.org/10.1046/j.1365-294X.2000.01028.x CrossRefPubMedGoogle Scholar
  92. Hayward A, Cornwallis CK, Jern P (2015) Pan-vertebrate comparative genomics unmasks retrovirus macroevolution. Proc Natl Acad Sci USA 112(2):464–469.  https://doi.org/10.1073/pnas.1414980112 CrossRefPubMedGoogle Scholar
  93. Henikoff S, Ahmad K, Malik HS (2001) The centromere paradox: stable inheritance with rapidly evolving DNA. Science 293:1098–1102.  https://doi.org/10.1126/science.1062939 CrossRefPubMedGoogle Scholar
  94. Hess E, Edwards SV (2002) The evolution of the major histocompatibility complex in birds. Bioscience 52:423–431.  https://doi.org/10.1641/0006-3568(2002)052 CrossRefGoogle Scholar
  95. Hillier LW, Miller W, Birney E, Warren W, Hardison RC, Ponting CP, Bork P, Burt DW, Groenen MA, Delany ME, Dodgson JB, Chinwalla AT, Cliften PF, Clifton SW, Delehaunty KD, Fronick C, Fulton RS, Graves TA, Kremitzki C, Layman D, Magrini V, McPherson JD, Miner TL, Minx P, Nash WE, Nhan MN, Nelson JO, Oddy LG, Pohl CS, Randall-Maher J, Smith SM, Wallis JW, Yang SP, Romanov MN, Rondelli CM, Paton B, Smith J, Morrice D, Daniels L, Tempest HG, Robertson L, Masabanda JS, Griffin DK, Vignal A, Fillon V, Jacobbson L, Kerje S, Andersson L, Crooijmans RP, Aerts J, van der Poel JJ, Ellegren H, Caldwell RB, Hubbard SJ, Grafham DV, Kierzek AM, McLaren SR, Overton IM, Arakawa H, Beattie KJ, Bezzubov Y, Boardman PE, Bonfield JK, Croning MD, Davies RM, Francis MD, Humphray SJ, Scott CE, Taylor RG, Tickle C, Brown WR, Rogers J, Buerstedde JM, Wilson SA, Stubbs L, Ovcharenko I, Gordon L, Lucas S, Miller MM, Inoko H, Shiina T, Kaufman J, Salomonsen J, Skjoedt K, Wong GK, Wang J, Liu B, Yu J, Yang H, Nefedov M, Koriabine M, Dejong PJ, Goodstadt L, Webber C, Dickens NJ, Letunic I, Suyama M, Torrents D, von Mering C, Zdobnov EM, Makova K, Nekrutenko A, Elnitski L, Eswara P, King DC, Yang S, Tyekucheva S, Radakrishnan A, Harris RS, Chiaromonte F, Taylor J, He J, Rijnkels M, Griffiths-Jones S, Ureta-Vidal A, Hoffman MM, Severin J, Searle SM, Law AS, Speed D, Waddington D, Cheng Z, Tuzun E, Eichler E, Bao Z, Flicek P, Shteynberg DD, Brent MR, Bye JM, Huckle EJ, Chatterji S, Dewey C, Pachter L, Kouranov A, Mourelatos Z, Hatzigeorgiou AG, Paterson AH, Ivarie R, Brandstrom M, Axelsson E, Backstrom N, Berlin S, Webster MT, Pourquie O, Reymond A, Ucla C, Antonarakis SE, Long M, Emerson JJ, Betran E, Dupanloup I, Kaessmann H, Hinrichs AS, Bejerano G, Furey TS, Harte RA, Raney B, Siepel A, Kent WJ, Haussler D, Eyras E, Castelo R, Abril JF, Castellano S, Camara F, Parra G, Guigo R, Bourque G, Tesler G, Pevzner PA, Smit A, Fulton LA, Mardis ER, Wilson RK (2004) Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 432(7018):695–716.  https://doi.org/10.1038/nature03154 CrossRefGoogle Scholar
  96. Hirakawa M, Nishihara H, Kanehisa M, Okada N (2009) Characterization and evolutionary landscape of AmnSINE1 in Amniota genomes. Gene 441(1–2):100–110.  https://doi.org/10.1016/j.gene.2008.12.009 CrossRefPubMedGoogle Scholar
  97. Hooper DM, Price TD (2015) Rates of karyotypic evolution in Estrildid finches differ between island and continental clades. Evolution 69(4):890–903.  https://doi.org/10.1111/evo.12633 CrossRefGoogle Scholar
  98. Huddleston J, Eichler EE (2016) An incomplete understanding of human genetic variation. Genetics 202(4):1251–1254.  https://doi.org/10.1534/genetics.115.180539 CrossRefPubMedPubMedCentralGoogle Scholar
  99. Hughes JF, Skaletsky H, Pyntikova T, Graves TA, van Daalen SKM, Minx PJ, Fulton RS, McGrath SD, Locke DP, Friedman C, Trask BJ, Mardis ER, Warren WC, Repping S, Rozen S, Wilson RK, Page DC (2010) Chimpanzee and human Y chromosomes are remarkably divergent in structure and gene content. Nature 463(7280):536–539.  https://doi.org/10.1038/nature08700 CrossRefPubMedPubMedCentralGoogle Scholar
  100. Huynh LY, Maney DL, Thomas JW (2011) Chromosome-wide linkage disequilibrium caused by an inversion polymorphism in the white-throated sparrow (Zonotrichia albicollis). Heredity 106:537–546.  https://doi.org/10.1038/hdy.2010.85 CrossRefPubMedGoogle Scholar
  101. Ichiyanagi K, Okada N (2008) Mobility pathways for vertebrate L1, L2, CR1, and RTE clade retrotransposons. Mol Biol Evol 25(6):1148–1157.  https://doi.org/10.1093/molbev/msn061 CrossRefPubMedGoogle Scholar
  102. Itoh Y, Mizuno S (2002) Molecular and cytological characterization of SspI-family repetitive sequence on the chicken W chromosome. Chromosom Res 10(6):499–511.  https://doi.org/10.1023/a:1020944414750 CrossRefGoogle Scholar
  103. Itoh Y, Kampf K, Pigozzi MI, Arnold AP (2009) Molecular cloning and characterization of the germline-restricted chromosome sequence in the zebra finch. Chromosoma 118(4):527–536.  https://doi.org/10.1007/s00412-009-0216-6 CrossRefPubMedPubMedCentralGoogle Scholar
  104. Jain M et al (2018) Linear assembly of a human centromere on the Y chromosome. Nat Biotechnol 36:321–323.  https://doi.org/10.1038/nbt.4109 CrossRefPubMedPubMedCentralGoogle Scholar
  105. Jan C, Fumagalli L (2016) Polymorphic DNA microsatellite markers for forensic individual identification and parentage analyses of seven threatened species of parrots (family Psittacidae). PeerJ 4:e2416–e2416.  https://doi.org/10.7717/peerj.2416 CrossRefPubMedPubMedCentralGoogle Scholar
  106. Janes DE, Organ CL, Fujita MK, Shedlock AM, Edwards SV (2010) Genome evolution in Reptilia, the sister group of mammals. Annu Rev Genomics Hum Genet 11(1):239–264.  https://doi.org/10.1146/annurev-genom-082509-141646 CrossRefPubMedGoogle Scholar
  107. Jarvis ED, Mirarab S, Aberer AJ, Li B, Houde P, Li C, Ho SYW, Faircloth BC, Nabholz B, Howard JT, Suh A, Weber CC, da Fonseca RR, Li J, Zhang F, Li H, Zhou L, Narula N, Liu L, Ganapathy G, Boussau B, Bayzid MS, Zavidovych V, Subramanian S, Gabaldón T, Capella-Gutiérrez S, Huerta-Cepas J, Rekepalli B, Munch K, Schierup M, Lindow B, Warren WC, Ray D, Green RE, Bruford MW, Zhan X, Dixon A, Li S, Li N, Huang Y, Derryberry EP, Bertelsen MF, Sheldon FH, Brumfield RT, Mello CV, Lovell PV, Wirthlin M, Schneider MPC, Prosdocimi F, Samaniego JA, Velazquez AMV, Alfaro-Núñez A, Campos PF, Petersen B, Sicheritz-Ponten T, Pas A, Bailey T, Scofield P, Bunce M, Lambert DM, Zhou Q, Perelman P, Driskell AC, Shapiro B, Xiong Z, Zeng Y, Liu S, Li Z, Liu B, Wu K, Xiao J, Yinqi X, Zheng Q, Zhang Y, Yang H, Wang J, Smeds L, Rheindt FE, Braun M, Fjeldsa J, Orlando L, Barker FK, Jønsson KA, Johnson W, Koepfli K-P, O’Brien S, Haussler D, Ryder OA, Rahbek C, Willerslev E, Graves GR, Glenn TC, McCormack J, Burt D, Ellegren H, Alström P, Edwards SV, Stamatakis A, Mindell DP, Cracraft J, Braun EL, Warnow T, Jun W, Gilbert MTP, Zhang G (2014) Whole genome analyses resolve the early branches in the tree of life of modern birds. Science 346(6215):1320–1331.  https://doi.org/10.1126/science.1253451 CrossRefPubMedPubMedCentralGoogle Scholar
  108. Johnson JM, Edwards S, Shoemaker D, Schadt EE (2005) Dark matter in the genome: evidence of widespread transcription detected by microarray tiling experiments. Trends Genet 21(2):93–102.  https://doi.org/10.1016/j.tig.2004.12.009 CrossRefPubMedGoogle Scholar
  109. Kaiser VB, van Tuinen M, Ellegren H (2007) Insertion events of CR1 retrotransposable elements elucidate the phylogenetic branching order in galliform birds. Mol Biol Evol 24(1):338–347.  https://doi.org/10.1093/molbev/msl164 CrossRefPubMedGoogle Scholar
  110. Kapitonov VV, Jurka J (2006) Self-synthesizing DNA transposons in eukaryotes. Proc Natl Acad Sci USA 103(12):4540–4545.  https://doi.org/10.1073/pnas.0600833103 CrossRefPubMedGoogle Scholar
  111. Kapitonov VV, Jurka J (2007) Helitrons on a roll: eukaryotic rolling-circle transposons. Trends Genet 23(10):521–529.  https://doi.org/10.1016/j.tig.2007.08.004 CrossRefPubMedGoogle Scholar
  112. Kapitonov VV, Jurka J (2008) A universal classification of eukaryotic transposable elements implemented in Repbase. Nat Rev Genet 9(5):411–412CrossRefGoogle Scholar
  113. Kapusta A, Suh A (2017) Evolution of bird genomes—a transposon’s-eye view. Ann N Y Acad Sci 1389:164–185.  https://doi.org/10.1111/nyas.13295 CrossRefGoogle Scholar
  114. Kapusta A, Suh A, Feschotte C (2017) Dynamics of genome size evolution in birds and mammals. Proc Natl Acad Sci USA 114(8):E1460–E1469.  https://doi.org/10.1073/pnas.1616702114 CrossRefPubMedGoogle Scholar
  115. Katzourakis A, Gifford RJ (2010) Endogenous viral elements in animal genomes. PLoS Genet 6:e1001191CrossRefGoogle Scholar
  116. Kawakami T, Smeds L, Backström N, Husby A, Qvarnström A, Mugal CF, Olason P, Ellegren H (2014) A high-density linkage map enables a second-generation collared flycatcher genome assembly and reveals the patterns of avian recombination rate variation and chromosomal evolution. Mol Ecol 23(16):4035–4058.  https://doi.org/10.1111/mec.12810 CrossRefPubMedPubMedCentralGoogle Scholar
  117. Kawakami T, Mugal CF, Suh A et al (2017) Whole-genome patterns of linkage disequilibrium across flycatcher populations clarify the causes and consequences of fine-scale recombination rate variation in birds. Mol Ecol 26(16):4158–4172.  https://doi.org/10.1111/mec.14197 CrossRefPubMedGoogle Scholar
  118. Kazazian HH Jr (2004) Mobile elements: drivers of genome evolution. Science 303(5664):1626–1632.  https://doi.org/10.1126/science.1089670 CrossRefPubMedGoogle Scholar
  119. Kelleher ES, Azevedo RBR, Zheng Y (2017) The evolution of small RNA-mediated silencing of an invading transposable element. bioRxiv.  https://doi.org/10.1101/136580
  120. Kidwell M (2005) Transposable elements. In: Gregory TR (ed) The evolution of the genome. Academic, San Diego, CA, pp 165–221CrossRefGoogle Scholar
  121. Kidwell MG, Kidwell JF, Sved JA (1977) Hybrid dysgenesis in Drosophila melanogaster: a syndrome of aberrant traits including mutation, sterility and male recombination. Genetics 86(4):813–833PubMedPubMedCentralGoogle Scholar
  122. Kinsella CM et al (2018) Programmed DNA elimination of germline development genes in songbirds. bioRxiv.  https://doi.org/10.1101/444364
  123. Knief U, Schielzeth H, Ellegren H et al (2015) A prezygotic transmission distorter acting equally in female and male zebra finches Taeniopygia guttata. Mol Ecol 24:3846–3859.  https://doi.org/10.1111/mec.13281 CrossRefPubMedGoogle Scholar
  124. Knief U, Hemmrich-Stanisak G, Wittig M, Franke A, Griffith SC, Kempenaers B, Forstmeier W (2016) Fitness consequences of polymorphic inversions in the zebra finch genome. Genome Biol 17(1):1–22.  https://doi.org/10.1186/s13059-016-1056-3 CrossRefGoogle Scholar
  125. Knisbacher BA, Levanon EY (2015) DNA editing of LTR retrotransposons reveals the impact of APOBECs on vertebrate genomes. Mol Biol Evol 33(2):554–567.  https://doi.org/10.1093/molbev/msv239 CrossRefPubMedPubMedCentralGoogle Scholar
  126. Kodama H, Saitoh H, Tone M et al (1987) Nucleotide sequences and unusual electrophoretic behavior of the W chromosome-specific repeating DNA units of the domestic fowl, Gallus gallus domesticus. Chromosoma 96:18–25.  https://doi.org/10.1007/BF00285878 CrossRefPubMedGoogle Scholar
  127. Kojima KK (2018) LINEs contribute to the origins of middle bodies of SINEs besides 3′ tails. Genome Biol Evol 10:370–379.  https://doi.org/10.1093/gbe/evy008 CrossRefPubMedPubMedCentralGoogle Scholar
  128. Kojima KK, Fujiwara H (2005) Long-term inheritance of the 28S rDNA-specific retrotransposon R2. Mol Biol Evol 22(11):2157–2165.  https://doi.org/10.1093/molbev/msi210 CrossRefPubMedGoogle Scholar
  129. Kojima KK, Seto Y, Fujiwara H (2016) The wide distribution and change of target specificity of R2 non-LTR retrotransposons in animals. PLoS One 11(9):e0163496.  https://doi.org/10.1371/journal.pone.0163496 CrossRefPubMedPubMedCentralGoogle Scholar
  130. Konkel MK, Batzer MA (2010) A mobile threat to genome stability: the impact of non-LTR retrotransposons upon the human genome. Semin Cancer Biol 20(4):211–221.  https://doi.org/10.1016/j.semcancer.2010.03.001 CrossRefPubMedPubMedCentralGoogle Scholar
  131. Kordiš D, Gubenšek F (1998) Unusual horizontal transfer of a long interspersed nuclear element between distant vertebrate classes. Proc Natl Acad Sci USA 95(18):10704–10709CrossRefGoogle Scholar
  132. Korlach J, Gedman G, King S, Chin J, Howard J, Cantin L, Jarvis ED (2017) De Novo PacBio long-read and phased avian genome assemblies correct and add to reference genes generated with intermediate and short reads. GigaSci 6:1–16.  https://doi.org/10.1093/gigascience/gix085 CrossRefGoogle Scholar
  133. Kovalskaya E, Buzdin A, Gogvadze E, Vinogradova T, Sverdlov E (2006) Functional human endogenous retroviral LTR transcription start sites are located between the R and U5 regions. Virology 346(2):373–378.  https://doi.org/10.1016/j.virol.2005.11.007 CrossRefPubMedGoogle Scholar
  134. Kraus RHS, Wink M (2015) Avian genomics: fledging into the wild! J Ornithol 156:851–865.  https://doi.org/10.1007/s10336-015-1253-y CrossRefGoogle Scholar
  135. Kraus RHS, vonHoldt B, Cocchiararo B et al (2015) A single-nucleotide polymorphism-based approach for rapid and cost-effective genetic wolf monitoring in Europe based on noninvasively collected samples. Mol Ecol Resour 15:295–305.  https://doi.org/10.1111/1755-0998.12307 CrossRefPubMedGoogle Scholar
  136. Kriegs JO, Matzke A, Churakov G, Kuritzin A, Mayr G, Brosius J, Schmitz J (2007) Waves of genomic hitchhikers shed light on the evolution of gamebirds (Aves: Galliformes). BMC Evol Biol 7:190CrossRefGoogle Scholar
  137. Küpper C, Burke T, Székely T, Dawson DA (2008) Enhanced cross-species utility of conserved microsatellite markers in shorebirds. BMC Genomics 9:502–502.  https://doi.org/10.1186/1471-2164-9-502 CrossRefPubMedPubMedCentralGoogle Scholar
  138. Küpper C, Stocks M, Risse JE, dos Remedios N, Farrell LL, McRae SB, Morgan TC, Karlionova N, Pinchuk P, Verkuil YI, Kitaysky AS, Wingfield JC, Piersma T, Zeng K, Slate J, Blaxter M, Lank DB, Burke T (2016) A supergene determines highly divergent male reproductive morphs in the ruff. Nat Genet 48(1):79–83.  https://doi.org/10.1038/ng.3443 CrossRefPubMedGoogle Scholar
  139. Kuramoto T, Nishihara H, Watanabe M, Okada N (2015) Determining the position of storks on the phylogenetic tree of waterbirds by retroposon insertion analysis. Genome Biol Evol 7(12):3180–3189.  https://doi.org/10.1093/gbe/evv213 CrossRefPubMedPubMedCentralGoogle Scholar
  140. Lam ET, Hastie A, Lin C et al (2012) Genome mapping on nanochannel arrays for structural variation analysis and sequence assembly. Nat Biotechnol 30:771–776.  https://doi.org/10.1038/nbt.2303 CrossRefPubMedGoogle Scholar
  141. Lamichhaney S, Fan G, Widemo F, Gunnarsson U, Thalmann DS, Hoeppner MP, Kerje S, Gustafson U, Shi C, Zhang H, Chen W, Liang X, Huang L, Wang J, Liang E, Wu Q, Lee SM-Y, Xu X, Hoglund J, Liu X, Andersson L (2016) Structural genomic changes underlie alternative reproductive strategies in the ruff (Philomachus pugnax). Nat Genet 48(1):84–88.  https://doi.org/10.1038/ng.3430 CrossRefPubMedGoogle Scholar
  142. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, Fitzhugh W, Funke R, Gage D, Harris K, Heaford A, Howland J, Kann L, Lehoczky J, Levine R, McEwan P, McKernan K, Meldrim J, Mesirov JP, Miranda C, Morris W, Naylor J, Raymond C, Rosetti M, Santos R, Sheridan A, Sougnez C, Stange-Thomann N, Stojanovic N, Subramanian A, Wyman D, Rogers J, Sulston J, Ainscough R, Beck S, Bentley D, Burton J, Clee C, Carter N, Coulson A, Deadman R, Deloukas P, Dunham A, Dunham I, Durbin R, French L, Grafham D, Gregory S, Hubbard T, Humphray S, Hunt A, Jones M, Lloyd C, McMurray A, Matthews L, Mercer S, Milne S, Mullikin JC, Mungall A, Plumb R, Ross M, Shownkeen R, Sims S, Waterston RH, Wilson RK, Hillier LW, McPherson JD, Marra MA, Mardis ER, Fulton LA, Chinwalla AT, Pepin KH, Gish WR, Chissoe SL, Wendl MC, Delehaunty KD, Miner TL, Delehaunty A, Kramer JB, Cook LL, Fulton RS, Johnson DL, Minx PJ, Clifton SW, Hawkins T, Branscomb E, Predki P, Richardson P, Wenning S, Slezak T, Doggett N, Cheng JF, Olsen A, Lucas S, Elkin C, Uberbacher E, Frazier M (2001) Initial sequencing and analysis of the human genome. Nature 409(6822):860–921CrossRefGoogle Scholar
  143. Larsen PA, Heilman AM, Yoder AD (2014) The utility of PacBio circular consensus sequencing for characterizing complex gene families in non-model organisms. BMC Genomics 15:720.  https://doi.org/10.1186/1471-2164-15-720 CrossRefPubMedPubMedCentralGoogle Scholar
  144. Lee YCG, Karpen GH (2017) Pervasive epigenetic effects of Drosophila euchromatic transposable elements impact their evolution. eLife 6:e25762.  https://doi.org/10.7554/eLife.25762 CrossRefPubMedPubMedCentralGoogle Scholar
  145. Lee YCG, Langley CH (2010) Transposable elements in natural populations of Drosophila melanogaster. Philos Trans R Soc B 365(1544):1219–1228.  https://doi.org/10.1098/rstb.2009.0318 CrossRefGoogle Scholar
  146. Lee J, Mun S, Kim DH, Cho C-S, Oh D-Y, Han K (2017) Chicken (Gallus gallus) endogenous retrovirus generates genomic variations in the chicken genome. Mob DNA 8(1):2.  https://doi.org/10.1186/s13100-016-0085-5 CrossRefPubMedPubMedCentralGoogle Scholar
  147. Levin HL, Moran JV (2011) Dynamic interactions between transposable elements and their hosts. Nat Rev Genet 12(9):615–627CrossRefGoogle Scholar
  148. Li Y-C, Korol AB, Fahima T et al (2002) Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review. Mol Ecol 11:2453–2465.  https://doi.org/10.1046/j.1365-294X.2002.01643.x CrossRefPubMedGoogle Scholar
  149. Lieberman-Aiden E, van Berkum NL, Williams L et al (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326:289–293.  https://doi.org/10.1126/science.1181369 CrossRefPubMedPubMedCentralGoogle Scholar
  150. Lindholm AK, Dyer KA, Firman RC et al (2016) The ecology and evolutionary dynamics of meiotic drive. Trends Ecol Evol 31:315–326.  https://doi.org/10.1016/j.tree.2016.02.001 CrossRefPubMedGoogle Scholar
  151. Liu W, Pan S, Yang H, Bai W, Shen Z, Liu J, Xie Y (2012a) The first full-length endogenous hepadnaviruses: identification and analysis. J Virol 86:9510–9513CrossRefGoogle Scholar
  152. Liu Z, He L, Yuan H, Yue B, Li J (2012b) CR1 retroposons provide a new insight into the phylogeny of Phasianidae species (Aves: Galliformes). Gene 502(2):125–132.  https://doi.org/10.1016/j.gene.2012.04.068 CrossRefPubMedGoogle Scholar
  153. Longmire JL, Lewis AK, Brown NC et al (1988) Isolation and molecular characterization of a highly polymorphic centromeric tandem repeat in the family Falconidae. Genomics 2:14–24CrossRefGoogle Scholar
  154. López-Flores I, Garrido-Ramos M (2012) The repetitive DNA content of eukaryotic genomes. Rep DNA 7:1–28CrossRefGoogle Scholar
  155. Lowe CB, Bejerano G, Haussler D (2007) Thousands of human mobile element fragments undergo strong purifying selection near developmental genes. Proc Natl Acad Sci USA 104(19):8005–8010.  https://doi.org/10.1073/pnas.0611223104 CrossRefPubMedGoogle Scholar
  156. Luan DD, Korman MH, Jakubczak JL, Eickbush TH (1993) Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non-LTR retrotransposition. Cell 72(4):595–605.  https://doi.org/10.1016/0092-8674(93)90078-5 CrossRefPubMedGoogle Scholar
  157. Lupski JR, Stankiewicz P (2005) Genomic disorders: molecular mechanisms for rearrangements and conveyed phenotypes. PLoS Genet 1:0627–0633.  https://doi.org/10.1371/journal.pgen.0010049 CrossRefGoogle Scholar
  158. Madsen CS, de Kloet DH, Brooks JE, de Kloet SR (1992) Highly repeated DNA sequences in birds: the structure and evolution of an abundant, tandemly repeated 190-bp DNA fragment in parrots. Genomics 14:462–469.  https://doi.org/10.1016/S0888-7543(05)80242-3 CrossRefPubMedGoogle Scholar
  159. Malik HS, Henikoff S (2001) Adaptive evolution of cid, a centromere-specific histone in Drosophila. Genetics 157:1293–1298PubMedPubMedCentralGoogle Scholar
  160. Mank JE (2012) Small but mighty: the evolutionary dynamics of W and Y sex chromosomes. Chromosom Res 20(1):21–33.  https://doi.org/10.1007/s10577-011-9251-2 CrossRefGoogle Scholar
  161. Mank JE, Ellegren H (2007) Parallel divergence and degradation of the avian W sex chromosome. Trends Ecol Evol 22(8):389–391CrossRefGoogle Scholar
  162. Manuelidis L (1977) A simplified method for preparation of mouse satellite DNA. Anal Biochem 78:561–568.  https://doi.org/10.1016/0003-2697(77)90118-X CrossRefPubMedGoogle Scholar
  163. Martin SL (2006) The ORF1 protein encoded by LINE-1: structure and function during L1 retrotransposition. J Biomed Biotechnol 2006:6.  https://doi.org/10.1155/jbb/2006/45621 CrossRefGoogle Scholar
  164. Matzke MA, Varga F, Berger H et al (1990) A 41-42 bp tandemly repeated sequence isolated from nuclear envelopes of chicken erythrocytes is located predominantly on microchromosomes. Chromosoma 99:131–137.  https://doi.org/10.1007/BF01735329 CrossRefPubMedGoogle Scholar
  165. Matzke AJM, Varga F, Gruendler P et al (1992) Characterization of a new repetitive sequence that is enriched on microchromosomes of turkey. Chromosoma 102:9–14.  https://doi.org/10.1007/BF00352284 CrossRefPubMedGoogle Scholar
  166. Matzke A, Churakov G, Berkes P, Arms EM, Kelsey D, Brosius J, Kriegs JO, Schmitz J (2012) Retroposon insertion patterns of neoavian birds: strong evidence for an extensive incomplete lineage sorting era. Mol Biol Evol 29(6):1497–1501.  https://doi.org/10.1093/molbev/msr319 CrossRefPubMedGoogle Scholar
  167. Mekhail K, Moazed D (2010) The nuclear envelope in genome organization, expression and stability. Nat Rev Mol Cell Biol 11(5):317–328.  https://doi.org/10.1038/nrm2894 CrossRefPubMedPubMedCentralGoogle Scholar
  168. Melters DP, Bradnam KR, Young HA et al (2013) Comparative analysis of tandem repeats from hundreds of species reveals unique insights into centromere evolution. Genome Biol 14:R10.  https://doi.org/10.1186/gb-2013-14-1-r10 CrossRefPubMedPubMedCentralGoogle Scholar
  169. Miga KH (2015) Completing the human genome: the progress and challenge of satellite DNA assembly. Chromosom Res 23(3):421–426.  https://doi.org/10.1007/s10577-015-9488-2 CrossRefGoogle Scholar
  170. Miller MM, Taylor RL (2016) Brief review of the chicken major histocompatibility complex: the genes, their distribution on chromosome 16, and their contributions to disease resistance. Poult Sci 95:375–392.  https://doi.org/10.3382/ps/pev379 CrossRefPubMedPubMedCentralGoogle Scholar
  171. Monaghan P (2010) Telomeres and life histories: the long and the short of it. Ann N Y Acad Sci 1206:130–142.  https://doi.org/10.1111/j.1749-6632.2010.05705.x CrossRefPubMedGoogle Scholar
  172. Mugal CF, Weber CC, Ellegren H (2015) GC-biased gene conversion links the recombination landscape and demography to genomic base composition: GC-biased gene conversion drives genomic base composition across a wide range of species. BioEssays 37:1317–1326.  https://doi.org/10.1002/bies.201500058 CrossRefPubMedGoogle Scholar
  173. Nam K, Ellegren H (2008) The chicken (Gallus gallus) Z chromosome contains at least three nonlinear evolutionary strata. Genetics 180(2):1131–1136CrossRefGoogle Scholar
  174. Nanda I, Schrama D, Feichtinger W et al (2002) Distribution of telomeric (TTAGGG)n sequences in avian chromosomes. Chromosoma 111:215–227.  https://doi.org/10.1007/s00412-002-0206-4 CrossRefPubMedGoogle Scholar
  175. Nersisyan L, Arakelyan A (2015) Computel: computation of mean telomere length from whole-genome next-generation sequencing data. PLoS One 10:1–14.  https://doi.org/10.1371/journal.pone.0125201 CrossRefGoogle Scholar
  176. Nishihara H, Smit AFA, Okada N (2006) Functional noncoding sequences derived from SINEs in the mammalian genome. Genome Res 16(7):864–874.  https://doi.org/10.1101/gr.5255506 CrossRefPubMedPubMedCentralGoogle Scholar
  177. Ohno S (1970) Evolution by gene duplication. Springer Science & Business Media, New YorkCrossRefGoogle Scholar
  178. Ohshima K, Hamada M, Terai Y, Okada N (1996) The 3′ ends of tRNA-derived short interspersed repetitive elements are derived from the 3′ ends of long interspersed repetitive elements. Mol Cell Biol 16(7):3756–3764CrossRefGoogle Scholar
  179. Organ CL, Edwards SV (2011) Major events in avian genome evolution. In: Dyke G, Kaiser G (eds) Living dinosaurs: the evolutionary history of modern birds. Wiley, Hoboken, NJ, pp 325–337CrossRefGoogle Scholar
  180. Organ CL, Moreno RG, Edwards SV (2008) Three tiers of genome evolution in reptiles. Integr Comp Biol 48(4):494–504.  https://doi.org/10.1093/icb/icn046 CrossRefPubMedPubMedCentralGoogle Scholar
  181. Peng JC, Karpen GH (2008) Epigenetic regulation of heterochromatic DNA stability. Curr Opin Genet Dev 18:204–211.  https://doi.org/10.1016/j.gde.2008.01.021 CrossRefPubMedPubMedCentralGoogle Scholar
  182. Peona V, Weissensteiner MH, Suh A (2018) How complete are “complete” genome assemblies? An avian perspective. Mol Ecol Resour 18:1188–1195.  https://doi.org/10.1111/1755-0998.12933 CrossRefPubMedGoogle Scholar
  183. Pigozzi MI, Solari AJ (1998) Germ cell restriction and regular transmission of an accessory chromosome that mimics a sex body in the zebra finch, Taeniopygia guttata. Chromosome Res 6(2):105–113.  https://doi.org/10.1023/a:1009234912307 CrossRefPubMedGoogle Scholar
  184. Pigozzi MI, Solari AJ (2005) The germ-line-restricted chromosome in the zebra finch: recombination in females and elimination in males. Chromosoma 114(6):403–409.  https://doi.org/10.1007/s00412-005-0025-5 CrossRefPubMedGoogle Scholar
  185. Plohl M, Meštrović N, Mravinac B (2012) Satellite DNA evolution. In: Garrido-Ramos MA (ed) Repetitive DNA. S. KARGER AG, Basel, pp 126–152CrossRefGoogle Scholar
  186. Plohl M, Meštrović N, Mravinac B (2014) Centromere identity from the DNA point of view. Chromosoma 123:313–325.  https://doi.org/10.1007/s00412-014-0462-0 CrossRefPubMedPubMedCentralGoogle Scholar
  187. Poelstra JW, Vijay N, Bossu CM et al (2014) The genomic landscape underlying phenotypic integrity in the face of gene flow in crows. Science 344:1410–1415CrossRefGoogle Scholar
  188. Primmer CR, Raudsepp T, Chowdhary BP et al (1997) Low frequency of microsatellites in the avian genome. Genome Res 7:471–482CrossRefGoogle Scholar
  189. Primmer CR, Painter JN, Koskinen MT et al (2005) Factors affecting avian cross-species microsatellite amplification. J Avian Biol 36:348–360.  https://doi.org/10.1111/j.0908-8857.2005.03465.x CrossRefGoogle Scholar
  190. Pritham EJ, Putliwala T, Feschotte C (2007) Mavericks, a novel class of giant transposable elements widespread in eukaryotes and related to DNA viruses. Gene 390(1–2):3–17.  https://doi.org/10.1016/j.gene.2006.08.008 CrossRefPubMedGoogle Scholar
  191. Prum RO, Berv JS, Dornburg A, Field DJ, Townsend JP, Lemmon EM, Lemmon AR (2015) A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature 526:569–573.  https://doi.org/10.1038/nature15697 CrossRefPubMedPubMedCentralGoogle Scholar
  192. Raffaele S, Kamoun S (2012) Genome evolution in filamentous plant pathogens: why bigger can be better. Nat Rev Microbiol 10(6):417–430CrossRefGoogle Scholar
  193. Randolph L (1928) Types of supernumerary chromosomes in maize. Anat Rec 41:102Google Scholar
  194. Ray DA, Xing J, Salem A-H, Batzer MA (2006) SINEs of a nearly perfect character. Syst Biol 55(6):928–935.  https://doi.org/10.1080/10635150600865419 CrossRefPubMedGoogle Scholar
  195. Rogers RL (2015) Chromosomal rearrangements as barriers to genetic homogenization between archaic and modern humans. Mol Biol Evol 32(12):3064–3078.  https://doi.org/10.1093/molbev/msv204 CrossRefPubMedPubMedCentralGoogle Scholar
  196. Rokas A, Holland PWH (2000) Rare genomic changes as a tool for phylogenetics. Trends Ecol Evol 15(11):454–459.  https://doi.org/10.1016/s0169-5347(00)01967-4 CrossRefPubMedGoogle Scholar
  197. Romanov M, Farre M, Lithgow P, Fowler K, Skinner B, O’Connor R, Fonseka G, Backstrom N, Matsuda Y, Nishida C, Houde P, Jarvis E, Ellegren H, Burt D, Larkin D, Griffin D (2014) Reconstruction of gross avian genome structure, organization and evolution suggests that the chicken lineage most closely resembles the dinosaur avian ancestor. BMC Genomics 15(1):1060CrossRefGoogle Scholar
  198. Romero-Soriano V, Modolo L, Lopez-Maestre H, Mugat B, Pessia E, Chambeyron S, Vieira C, Guerreiro MPG (2017) Transposable element misregulation is linked to the divergence between parental piRNA pathways in Drosophila hybrids. Genome Biol Evol 9(6):1450–1470.  https://doi.org/10.1093/gbe/evx091 CrossRefPubMedPubMedCentralGoogle Scholar
  199. Rossi MS, Reig OA, Zorzópulos J (1990) Evidence for rolling-circle replication in a major satellite DNA from the South American rodents of the genus Ctenomys. Mol Biol Evol 7(4):340–350.  https://doi.org/10.1093/oxfordjournals.molbev.a040606 CrossRefPubMedGoogle Scholar
  200. Rutkowska J, Lagisz M, Nakagawa S (2012) The long and the short of avian W chromosomes: no evidence for gradual W shortening. Biol Lett 8(4):636–638.  https://doi.org/10.1098/rsbl.2012.0083 CrossRefPubMedPubMedCentralGoogle Scholar
  201. Saitoh Y, Mizuno S (1992) Distribution of XhoI and EcoRI family repetitive DNA sequences into separate domains in the chicken W chromosome. Chromosoma 101(8):474–477.  https://doi.org/10.1007/bf00352469 CrossRefPubMedGoogle Scholar
  202. Saksouk N, Simboeck E, Déjardin J (2015) Constitutive heterochromatin formation and transcription in mammals. Epigenetics Chromatin 8:3.  https://doi.org/10.1186/1756-8935-8-3 CrossRefPubMedPubMedCentralGoogle Scholar
  203. Sandler L, Novitski E (1957) Meiotic drive as an evolutionary force. Am Nat 91:105–110.  https://doi.org/10.1086/281969 CrossRefGoogle Scholar
  204. Schlötterer C (2004) Opinion: the evolution of molecular markers – just a matter of fashion? Nat Rev Genet 5:63–69.  https://doi.org/10.1038/nrg1249 CrossRefPubMedGoogle Scholar
  205. Schlötterer C, Tautz D (1992) Slippage synthesis of simple sequence DNA. Nucleic Acids Res 20:211–215.  https://doi.org/10.1093/nar/20.2.211 CrossRefPubMedPubMedCentralGoogle Scholar
  206. Schmidt D, Schwalie PC, Wilson MD, Ballester B, Gonçalves Â, Kutter C, Brown GD, Marshall A, Flicek P, Odom DT (2012) Waves of retrotransposon expansion remodel genome organization and CTCF binding in multiple mammalian lineages. Cell 148(1–2):335–348.  https://doi.org/10.1016/j.cell.2011.11.058 CrossRefPubMedPubMedCentralGoogle Scholar
  207. Schoenmakers S, Wassenaar E, Laven JSE, Grootegoed JA, Baarends WM (2010) Meiotic silencing and fragmentation of the male germline restricted chromosome in zebra finch. Chromosoma 119(3):311–324.  https://doi.org/10.1007/s00412-010-0258-9 CrossRefPubMedPubMedCentralGoogle Scholar
  208. Sedlazeck FJ, Lee H, Darby CA, Schatz MC (2018) Piercing the dark matter: bioinformatics of long-range sequencing and mapping. Nat Rev Genet 19:329–346.  https://doi.org/10.1038/s41576-018-0003-4 CrossRefPubMedGoogle Scholar
  209. Shang WH, Hori T, Toyoda A et al (2010) Chickens possess centromeres with both extended tandem repeats and short non-tandem-repetitive sequences. Genome Res 20:1219–1228.  https://doi.org/10.1101/gr.106245.110 CrossRefPubMedPubMedCentralGoogle Scholar
  210. Shedlock AM, Takahashi K, Okada N (2004) SINEs of speciation: tracking lineages with retroposons. Trends Ecol Evol 19(10):545–553.  https://doi.org/10.1016/j.tree.2004.08.002 CrossRefPubMedGoogle Scholar
  211. Shedlock AM, Botka CW, Zhao S, Shetty J, Zhang T, Liu JS, Deschavanne PJ, Edwards SV (2007) Phylogenomics of nonavian reptiles and the structure of the ancestral amniote genome. Proc Natl Acad Sci USA 104(8):2767–2772.  https://doi.org/10.1073/pnas.0606204104 CrossRefPubMedGoogle Scholar
  212. Skaletsky H, Kuroda-Kawaguchi T, Minx PJ, Cordum HS, Hillier L, Brown LG, Repping S, Pyntikova T, Ali J, Bieri T, Chinwalla A, Delehaunty A, Delehaunty K, Du H, Fewell G, Fulton L, Fulton R, Graves T, Hou S-F, Latrielle P, Leonard S, Mardis E, Maupin R, McPherson J, Miner T, Nash W, Nguyen C, Ozersky P, Pepin K, Rock S, Rohlfing T, Scott K, Schultz B, Strong C, Tin-Wollam A, Yang S-P, Waterston RH, Wilson RK, Rozen S, Page DC (2003) The male-specific region of the human Y chromosome is a mosaic of discrete sequence classes. Nature 423(6942):825–837. http://www.nature.com/nature/journal/v423/n6942/suppinfo/nature01722_S1.html CrossRefGoogle Scholar
  213. Skinner BM, Griffin DK (2012) Intrachromosomal rearrangements in avian genome evolution: evidence for regions prone to breakpoints. Heredity 108(1):37–41. http://www.nature.com/hdy/journal/v108/n1/suppinfo/hdy201199s1.html CrossRefGoogle Scholar
  214. Skinner BM, Al Mutery A, Smith D et al (2014) Global patterns of apparent copy number variation in birds revealed by cross-species comparative genomic hybridization. Chromosom Res 22:59–70.  https://doi.org/10.1007/s10577-014-9405-0 CrossRefGoogle Scholar
  215. Slotkin RK, Martienssen R (2007) Transposable elements and the epigenetic regulation of the genome. Nat Rev Genet 8(4):272–285CrossRefGoogle Scholar
  216. Smeds L, Kawakami T, Burri R, Bolivar P, Husby A, Qvarnström A, Uebbing S, Ellegren H (2014) Genomic identification and characterization of the pseudoautosomal region in highly differentiated avian sex chromosomes. Nat Commun 5:5448.  https://doi.org/10.1038/ncomms6448 CrossRefPubMedPubMedCentralGoogle Scholar
  217. Smeds L, Warmuth V, Bolivar P, Uebbing S, Burri R, Suh A, Nater A, Bures S, Garamszegi LZ, Hogner S, Moreno J, Qvarnstrom A, Ruzic M, Saether S-A, Saetre G-P, Torok J, Ellegren H (2015) Evolutionary analysis of the female-specific avian W chromosome. Nat Commun 6:7330.  https://doi.org/10.1038/ncomms8330 CrossRefPubMedPubMedCentralGoogle Scholar
  218. Smit A, Hubley R, Green P (1996–2010) RepeatMasker Open-3.3.0. http://www.repeatmasker.org
  219. Smith JJ (2017) Large-scale programmed genome rearrangements in vertebrates. In: Li X-Q (ed) Somatic genome variation in animals, plants, and microorganisms. Wiley-Blackwell, Hoboken, NJ, pp 45–54CrossRefGoogle Scholar
  220. Soh YQS, Alföldi J, Pyntikova T, Brown Laura G, Graves T, Minx Patrick J, Fulton Robert S, Kremitzki C, Koutseva N, Mueller Jacob L, Rozen S, Hughes Jennifer F, Owens E, Womack James E, Murphy William J, Cao Q, de Jong P, Warren Wesley C, Wilson Richard K, Skaletsky H, Page David C (2014) Sequencing the mouse Y chromosome reveals convergent gene acquisition and amplification on both sex chromosomes. Cell 159(4):800–813.  https://doi.org/10.1016/j.cell.2014.09.052 CrossRefPubMedPubMedCentralGoogle Scholar
  221. Solinhac R, Leroux S, Galkina S et al (2010) Integrative mapping analysis of chicken microchromosome 16 organization. BMC Genomics 11:616–616.  https://doi.org/10.1186/1471-2164-11-616 CrossRefPubMedPubMedCentralGoogle Scholar
  222. Solovei I, Ogawa A, Naito M, Mizuno S, Macgregor H (1998) Specific chromomeres on the chicken W lampbrush chromosome contain specific repetitive DNA sequence families. Chromosom Res 6(4):323–327.  https://doi.org/10.1023/a:1009279025959 CrossRefGoogle Scholar
  223. Stapley J, Birkhead TR, Burke T, Slate J (2010) Pronounced inter- and intrachromosomal variation in linkage disequilibrium across the zebra finch genome. Genome Res 20(4):496–502.  https://doi.org/10.1101/gr.102095.109 CrossRefPubMedPubMedCentralGoogle Scholar
  224. Stapley J, Santure AW, Dennis SR (2015) Transposable elements as agents of rapid adaptation may explain the genetic paradox of invasive species. Mol Ecol 24(9):2241–2252.  https://doi.org/10.1111/mec.13089 CrossRefPubMedGoogle Scholar
  225. Stefos K, Arrighi F (1971) Heterochromatic nature of W chromosome in birds. Exp Cell Res 68:228–231.  https://doi.org/10.1016/0014-4827(71)90611-2 CrossRefPubMedGoogle Scholar
  226. Stiglec R, Ezaz T, Graves JAM (2007) A new look at the evolution of avian sex chromosomes. Cytogenet Genome Res 117(1–4):103–109CrossRefGoogle Scholar
  227. Suh A (2015) The specific requirements for CR1 retrotransposition explain the scarcity of retrogenes in birds. J Mol Evol 81:18–20.  https://doi.org/10.1007/s00239-015-9692-x CrossRefPubMedGoogle Scholar
  228. Suh A (2016) The phylogenomic forest of bird trees contains a hard polytomy at the root of Neoaves. Zool Scr 45(S1):50–62.  https://doi.org/10.1111/zsc.12213 CrossRefGoogle Scholar
  229. Suh A, Kriegs JO, Brosius J, Schmitz J (2011a) Retroposon insertions and the chronology of avian sex chromosome evolution. Mol Biol Evol 28:2993–2997.  https://doi.org/10.1093/molbev/msr147 CrossRefPubMedGoogle Scholar
  230. Suh A, Paus M, Kiefmann M, Churakov G, Franke FA, Brosius J, Kriegs JO, Schmitz J (2011b) Mesozoic retroposons reveal parrots as the closest living relatives of passerine birds. Nat Commun 2:443.  https://doi.org/10.1038/ncomms1448 CrossRefPubMedPubMedCentralGoogle Scholar
  231. Suh A, Kriegs JO, Donnellan S, Brosius J, Schmitz J (2012) A universal method for the study of CR1 retroposons in nonmodel bird genomes. Mol Biol Evol 29:2899–2903.  https://doi.org/10.1093/molbev/mss124 CrossRefPubMedGoogle Scholar
  232. Suh A, Brosius J, Schmitz J, Kriegs JO (2013) The genome of a Mesozoic paleovirus reveals the evolution of hepatitis B viruses. Nat Commun 4:1791.  https://doi.org/10.1038/ncomms2798 CrossRefPubMedGoogle Scholar
  233. Suh A, Weber CC, Kehlmaier C, Braun EL, Green RE, Fritz U, Ray DA, Ellegren H (2014) Early Mesozoic coexistence of amniotes and Hepadnaviridae. PLoS Genet 10(12):e1004559.  https://doi.org/10.1371/journal.pgen.1004559 CrossRefPubMedPubMedCentralGoogle Scholar
  234. Suh A, Churakov G, Ramakodi MP, Platt RN II, Jurka J, Kojima KK, Caballero J, Smit A, Vliet K, Hoffmann FG, Brosius J, Green RE, Braun EL, Ray DA, Schmitz J (2015a) Multiple lineages of ancient CR1 retroposons shaped the early genome evolution of amniotes. Genome Biol Evol 7(1):205–217.  https://doi.org/10.1093/gbe/evu256 CrossRefGoogle Scholar
  235. Suh A, Smeds L, Ellegren H (2015b) The dynamics of incomplete lineage sorting across the ancient adaptive radiation of neoavian birds. PLoS Biol 13(8):e1002224.  https://doi.org/10.1371/journal.pbio.1002224 CrossRefPubMedPubMedCentralGoogle Scholar
  236. Suh A, Witt CC, Menger J, Sadanandan KR, Podsiadlowski L, Gerth M, Weigert A, McGuire JA, Mudge J, Edwards SV, Rheindt FE (2016) Ancient horizontal transfers of retrotransposons between birds and ancestors of human pathogenic nematodes. Nat Commun 7:11396.  https://doi.org/10.1038/ncomms11396 CrossRefPubMedPubMedCentralGoogle Scholar
  237. Suh A, Bachg S, Donnellan S, Joseph L, Brosius J, Kriegs JO, Schmitz J (2017) De-novo emergence of SINE retroposons during the early evolution of passerine birds. Mob DNA 8:21.  https://doi.org/10.1186/s13100-017-0104-1 CrossRefPubMedPubMedCentralGoogle Scholar
  238. Suh A, Smeds L, Ellegren H (2018) Abundant recent activity of retrovirus-like retrotransposons within and among flycatcher species implies a rich source of structural variation in songbird genomes. Mol Ecol 27(1):99–111.  https://doi.org/10.1111/mec.14439 CrossRefPubMedGoogle Scholar
  239. Sun YH, Xie LH, Zhuo X, Chen Q, Ghoneim D, Zhang B, Jagne J, Yang C, Li XZ (2017) Domestic chickens activate a piRNA defense against avian leukosis virus. eLife 6:e24695.  https://doi.org/10.7554/eLife.24695 CrossRefPubMedPubMedCentralGoogle Scholar
  240. Suzuki Y, Korlach J, Turner SW, Tsukahara T, Taniguchi J, Yurino H, Qu W, Yoshimura J, Takahashi Y, Mitsui J, Tsuji S, Takeda H, Morishita S (2015) AgIn: measuring the landscape of CpG methylation of individual repetitive elements. Bioinformatics 32(19):2911–2919.  https://doi.org/10.1093/bioinformatics/btw360 CrossRefGoogle Scholar
  241. Talbert PB, Henikoff S (2010) Centromeres convert but don’t cross. PLoS Biol 8:e1000326.  https://doi.org/10.1371/journal.pbio.1000326 CrossRefPubMedPubMedCentralGoogle Scholar
  242. Thomas J, Schaack S, Pritham EJ (2010) Pervasive horizontal transfer of rolling-circle transposons among animals. Genome Biol Evol 2:656–664.  https://doi.org/10.1093/gbe/evq050 CrossRefPubMedPubMedCentralGoogle Scholar
  243. Thompson SL, Bakhoum SF, Compton DA (2010) Mechanisms of chromosomal instability. Curr Biol 20:R285–R295.  https://doi.org/10.1016/j.cub.2010.01.034 CrossRefPubMedPubMedCentralGoogle Scholar
  244. Torgasheva AA et al (2018) Germline-restricted chromosome (GRC) is widespread among songbirds. bioRxiv.  https://doi.org/10.1101/414276
  245. Treplin S, Tiedemann R (2007) Specific chicken repeat 1 (CR1) retrotransposon insertion suggests phylogenetic affinity of rockfowls (genus Picathartes) to crows and ravens (Corvidae). Mol Phylogenet Evol 43(1):328–337.  https://doi.org/10.1016/j.ympev.2006.10.020 CrossRefPubMedGoogle Scholar
  246. Trofimova I, Krasikova A (2016) Transcription of highly repetitive tandemly organized DNA in amphibians and birds: a historical overview and modern concepts. RNA Biol 13:1–12.  https://doi.org/10.1080/15476286.2016.1240142 CrossRefGoogle Scholar
  247. Tuttle EM, Bergland AO, Korody ML, Brewer MS, Newhouse DJ, Minx P, Stager M, Betuel A, Cheviron ZA, Warren WC, Gonser RA, Balakrishnan CN (2016) Divergence and functional degradation of a sex chromosome-like supergene. Curr Biol 26(3):344–350.  https://doi.org/10.1016/j.cub.2015.11.069 CrossRefPubMedPubMedCentralGoogle Scholar
  248. Valente GT, Conte MA, Fantinatti BE, Cabral-de-Mello DC, Carvalho RF, Vicari MR, Kocher TD, Martins C (2014) Origin and evolution of B chromosomes in the cichlid fish Astatotilapia latifasciata based on integrated genomic analyses. Mol Biol Evol 31(8):2061–2072CrossRefGoogle Scholar
  249. van’t Hof AE, Campagne P, Rigden DJ, Yung CJ, Lingley J, Quail MA, Hall N, Darby AC, Saccheri IJ (2016) The industrial melanism mutation in British peppered moths is a transposable element. Nature 534(7605):102–105.  https://doi.org/10.1038/nature17951 CrossRefPubMedGoogle Scholar
  250. Vandergon TL, Reitman M (1994) Evolution of chicken repeat 1 (CR1) elements: evidence for ancient subfamilies and multiple progenitors. Mol Biol Evol 11(6):886–898PubMedGoogle Scholar
  251. Varley JM, Macgregor HC, Nardi I et al (1980) Cytological evidence of transcription of highly repeated DNA sequences during the lampbrush stage in Triturus cristatus carnifex. Chromosoma 80:289–307.  https://doi.org/10.1007/BF00292686 CrossRefPubMedGoogle Scholar
  252. Vicoso B, Kaiser VB, Bachtrog D (2013) Sex-biased gene expression at homomorphic sex chromosomes in emus and its implication for sex chromosome evolution. Proc Natl Acad Sci USA 110(16):6453–6458.  https://doi.org/10.1073/pnas.1217027110 CrossRefPubMedGoogle Scholar
  253. Vignal A, Eory L (2019) Avian genomics in animal breeding and the end of the model organism. In: Kraus RHS (ed) Avian genomics in ecology and evolution. Springer, ChamGoogle Scholar
  254. Vijay N, Weissensteiner M, Burri R, Kawakami T, Ellegren H, Wolf JBW (2017) Genome-wide patterns of variation in genetic diversity are shared among populations, species and higher order taxa. Mol Ecol.  https://doi.org/10.1111/mec.14195 CrossRefGoogle Scholar
  255. Villanueva-Cañas JL, Rech GE, de Cara MAR, González J (2017) Beyond SNPs: how to detect selection on transposable element insertions. Methods Ecol Evol 8(6):728–737.  https://doi.org/10.1111/2041-210x.12781 CrossRefGoogle Scholar
  256. Walsh AM, Kortschak RD, Gardner MG, Bertozzi T, Adelson DL (2013) Widespread horizontal transfer of retrotransposons. Proc Natl Acad Sci USA 110(3):1012–1016.  https://doi.org/10.1073/pnas.1205856110 CrossRefPubMedGoogle Scholar
  257. Wang X, Byers S (2014) Copy number variation in chickens: a review and future prospects. Microarrays 3:24–38.  https://doi.org/10.3390/microarrays3010024 CrossRefPubMedPubMedCentralGoogle Scholar
  258. Wang J, Davis RE (2014) Programmed DNA elimination in multicellular organisms. Curr Opin Genet Dev 27:26–34.  https://doi.org/10.1016/j.gde.2014.03.012 CrossRefPubMedGoogle Scholar
  259. Wang X, Li J, Leung FC (2002) Partially inverted tandem repeat isolated from pericentric region of chicken chromosome 8. Chromosome Res 10(1):73–82CrossRefGoogle Scholar
  260. Wang Z, Qu L, Yao J, Yang X, Li G, Zhang Y, Li J, Wang X, Bai J, Xu G, Deng X, Yang N, Wu C (2013) An EAV-HP insertion in 5′ flanking region of SLCO1B3 causes blue eggshell in the chicken. PLoS Genet 9(1):e1003183.  https://doi.org/10.1371/journal.pgen.1003183 CrossRefPubMedPubMedCentralGoogle Scholar
  261. Wang J, Vicente-García C, Seruggia D, Moltó E, Fernandez-Miñán A, Neto A, Lee E, Gómez-Skarmeta JL, Montoliu L, Lunyak VV, Jordan IK (2015) MIR retrotransposon sequences provide insulators to the human genome. Proc Natl Acad Sci USA 112(32):E4428–E4437.  https://doi.org/10.1073/pnas.1507253112 CrossRefPubMedGoogle Scholar
  262. Warren WC, Clayton DF, Ellegren H, Arnold AP, Hillier LW, Künstner A, Searle S, White S, Vilella AJ, Fairley S, Heger A, Kong L, Ponting CP, Jarvis ED, Mello CV, Minx P, Lovell P, Velho TAF, Ferris M, Balakrishnan CN, Sinha S, Blatti C, London SE, Li Y, Lin Y-C, George J, Sweedler J, Southey B, Gunaratne P, Watson M, Nam K, Backstrom N, Smeds L, Nabholz B, Itoh Y, Whitney O, Pfenning AR, Howard J, Volker M, Skinner BM, Griffin DK, Ye L, McLaren WM, Flicek P, Quesada V, Velasco G, Lopez-Otin C, Puente XS, Olender T, Lancet D, Smit AFA, Hubley R, Konkel MK, Walker JA, Batzer MA, Gu W, Pollock DD, Chen L, Cheng Z, Eichler EE, Stapley J, Slate J, Ekblom R, Birkhead T, Burke T, Burt D, Scharff C, Adam I, Richard H, Sultan M, Soldatov A, Lehrach H, Edwards SV, Yang S-P, Li X, Graves T, Fulton L, Nelson J, Chinwalla A, Hou S, Mardis ER, Wilson RK (2010) The genome of a songbird. Nature 464(7289):757–762CrossRefGoogle Scholar
  263. Warren WC, Hillier LW, Tomlinson C, Minx P, Kremitzki M, Graves T, Markovic C, Bouk N, Pruitt KD, Thibaud-Nissen F, Schneider V, Mansour TA, Brown CT, Zimin A, Hawken R, Abrahamsen M, Pyrkosz AB, Morisson M, Fillon V, Vignal A, Chow W, Howe K, Fulton JE, Miller MM, Lovell P, Mello CV, Wirthlin M, Mason AS, Kuo R, Burt DW, Dodgson JB, Cheng HH (2017) A new chicken genome assembly provides insight into avian genome structure. G3 (Bethesda) 1(1):109–117.  https://doi.org/10.1534/g3.116.035923 CrossRefGoogle Scholar
  264. Watanabe M, Nikaido M, Tsuda TT, Inoko H, Mindell DP, Murata K, Okada N (2006) The rise and fall of the CR1 subfamily in the lineage leading to penguins. Gene 365:57–66.  https://doi.org/10.1016/j.gene.2005.09.042 CrossRefPubMedGoogle Scholar
  265. Weber CC, Boussau B, Romiguier J et al (2014) Evidence for GC-biased gene conversion as a driver of between-lineage differences in avian base composition. Genome Biol 15:549–549.  https://doi.org/10.1186/s13059-014-0549-1 CrossRefPubMedPubMedCentralGoogle Scholar
  266. Wei KH-C, Grenier JK, Barbash DA, Clark AG (2014) Correlated variation and population differentiation in satellite DNA abundance among lines of Drosophila melanogaster. Proc Natl Acad Sci USA 111(52):18793–18798.  https://doi.org/10.1073/pnas.1421951112 CrossRefPubMedGoogle Scholar
  267. Weisenfeld NI, Kumar V, Shah P, Church DM, Jaffe DB (2017) Direct determination of diploid genome sequences. Genome Res 27:757–767.  https://doi.org/10.1101/gr.214874.116 CrossRefPubMedPubMedCentralGoogle Scholar
  268. Weissensteiner MH, Pang AWC, Bunikis I, Höijer I, Vinnere-Petterson O, Suh A, Wolf JBW (2017) Combination of short-read, long-read and optical mapping assemblies reveals large-scale tandem repeat arrays with population genetic implications. Genome Res 27:697–708.  https://doi.org/10.1101/gr.215095.116 CrossRefPubMedPubMedCentralGoogle Scholar
  269. Wicker T, Robertson JS, Schulze SR, Feltus FA, Magrini V, Morrison JA, Mardis ER, Wilson RK, Peterson DG, Paterson AH, Ivarie R (2005) The repetitive landscape of the chicken genome. Genome Res 15(1):126–136.  https://doi.org/10.1101/gr.2438004 CrossRefPubMedPubMedCentralGoogle Scholar
  270. Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavell A, Leroy P, Morgante M, Panaud O, Paux E, SanMiguel P, Schulman AH (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8(12):973–982CrossRefGoogle Scholar
  271. Wragg D, Mwacharo JM, Alcalde JA, Wang C, Han J-L, Gongora J, Gourichon D, Tixier-Boichard M, Hanotte O (2013) Endogenous retrovirus EAV-HP linked to blue egg phenotype in Mapuche fowl. PLoS One 8(8):e71393.  https://doi.org/10.1371/journal.pone.0071393 CrossRefPubMedPubMedCentralGoogle Scholar
  272. Wright D, Boije H, Meadows JRS et al (2009) Copy number variation in intron 1 of SOX5 causes the Pea-comb phenotype in chickens. PLoS Genet 5:1–10.  https://doi.org/10.1371/journal.pgen.1000512 CrossRefGoogle Scholar
  273. Wright AE, Dean R, Zimmer F, Mank JE (2016) How to make a sex chromosome. Nat Commun 7:12087.  https://doi.org/10.1038/ncomms12087 CrossRefPubMedPubMedCentralGoogle Scholar
  274. Yandell M, Ence D (2012) A beginner’s guide to eukaryotic genome annotation. Nat Rev Genet 13(5):329–342CrossRefGoogle Scholar
  275. Yazdi HP, Ellegren H (2014) Old but not (so) degenerated—slow evolution of largely homomorphic sex chromosomes in ratites. Mol Biol Evol 31(6):1444–1453CrossRefGoogle Scholar
  276. Zhang G, Li C, Li Q, Li B, Larkin DM, Lee C, Storz JF, Antunes A, Greenwold MJ, Meredith RW, Ödeen A, Cui J, Zhou Q, Xu L, Pan H, Wang Z, Jin L, Zhang P, Hu H, Yang W, Hu J, Xiao J, Yang Z, Liu Y, Xie Q, Yu H, Lian J, Wen P, Zhang F, Li H, Zeng Y, Xiong Z, Liu S, Zhou L, Huang Z, An N, Wang J, Zheng Q, Xiong Y, Wang G, Wang B, Wang J, Fan Y, da Fonseca RR, Alfaro-Núñez A, Schubert M, Orlando L, Mourier T, Howard JT, Ganapathy G, Pfenning A, Whitney O, Rivas MV, Hara E, Smith J, Farré M, Narayan J, Slavov G, Romanov MN, Borges R, Machado JP, Khan I, Springer MS, Gatesy J, Hoffmann FG, Opazo JC, Håstad O, Sawyer RH, Kim H, Kim K-W, Kim HJ, Cho S, Li N, Huang Y, Bruford MW, Zhan X, Dixon A, Bertelsen MF, Derryberry E, Warren W, Wilson RK, Li S, Ray DA, Green RE, O’Brien SJ, Griffin D, Johnson WE, Haussler D, Ryder OA, Willerslev E, Graves GR, Alström P, Fjeldså J, Mindell DP, Edwards SV, Braun EL, Rahbek C, Burt DW, Houde P, Zhang Y, Yang H, Wang J, Consortium AG, Jarvis ED, MTP G, Wang J (2014) Comparative genomics reveals insights into avian genome evolution and adaptation. Science 346(6215):1311–1320.  https://doi.org/10.1126/science.1251385 CrossRefPubMedPubMedCentralGoogle Scholar
  277. Zhou Q, Zhang J, Bachtrog D, An N, Huang Q, Jarvis ED, Gilbert MTP, Zhang G (2014) Complex evolutionary trajectories of sex chromosomes across bird taxa. Science 346(6215):1246338.  https://doi.org/10.1126/science.1246338 CrossRefPubMedPubMedCentralGoogle Scholar
  278. Zlotina A, Galkina S, Krasikova A et al (2012) Centromere positions in chicken and Japanese quail chromosomes: de novo centromere formation versus pericentric inversions. Chromosom Res 20:1017–1032.  https://doi.org/10.1007/s10577-012-9319-7 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Evolutionary BiologyEvolutionary Biology Centre (EBC), Uppsala UniversityUppsalaSweden
  2. 2.Division of Evolutionary Biology, Faculty of BiologyLudwig-Maximilian University of MunichPlanegg-MartinsriedGermany

Personalised recommendations