Skip to main content

Jurassic Park: What Did the Genomes of Dinosaurs Look Like?

Abstract

Recent palaeontological evidence is clear that birds are extant dinosaurs. Evolving along the lineage Diapsida—Archelosauria—Archosauria—Avemetatarsalia—Dinosauria—Ornithoscelida—Theropoda—Maniraptora—Avialae, birds are the latest example of dinosaurs emerging from catastrophic extinction events as speciose and diverse. Indeed, rather than being wiped out by the Cretaceous-Paleogene meteor strike, they are the survivors of at least three extinction events. Dinosaurs capture the public imagination through art, literature, television and film, most recently through the Jurassic Park/World franchise. Claims in the scientific literature of isolating dinosaur DNA (from amber-preserved insects or elsewhere) have largely been debunked. Nonetheless, the overall structure of dinosaur genomes along the above lineage can be determined by inference from chromosome-level genome assemblies. Our work focused first on determining the likely karyotype of the avian ancestor (probably a small, bipedal, feathered, terrestrial Jurassic dinosaur) finding great similarity to the chicken. We then progressed to determining the likely karyotype of the diapsid ancestor and the changes that have occurred to form extant animals. A combination of bioinformatics and molecular cytogenetics indicates considerable interchromosomal rearrangement from a “lizard-like” karyotype of 2n = 36−46 to one similar to that of certain turtles from 275 to 255 million years ago (mya). Remarkable karyotypic similarities between some turtles and chicken suggest identity by descent, in other words that, aside from ~7 fissions, there were few interchromosomal changes from the archelosaur (bird-turtle) ancestor to the Avemetatarsalia (dinosaurs and pterosaurs), through the theropods to modern birds. Indeed, a similar rate of change beyond 255 mya would have meant that the avian-like karyotype was in place about 240 mya when the first dinosaurs and pterosaurs emerged. We mapped 49 intrachromosomal changes in the intervening period, finding significant gene ontology enrichment in homologous synteny block and evolutionary breakpoint regions. The avian-like karyotype with its many chromosomes provides the substrate for variation (the driver of natural selection) through increased random segregation and recombination. It thus may impact on the ability of dinosaurs to survive and thrive, despite multiple extinction events.

Keywords

  • Dinosaur
  • Theropod
  • Chromosome
  • Karyotype
  • Molecular cytogenetics
  • Comparative genomics
  • Genome evolution

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-16477-5_11
  • Chapter length: 18 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-16477-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3

References

  • Alföldi J et al (2011) The genome of the green anole lizard and a comparative analysis with birds and mammals. Nature 477(7366):587–591

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Allard MW, Young D, Huyen Y (1995) Detecting dinosaur DNA. Science (New York, NY) 268(5214):1192. author reply 1194

    CAS  CrossRef  Google Scholar 

  • Badenhorst D et al (2015) Physical mapping and refinement of the painted turtle genome (Chrysemys picta) inform amniote genome evolution and challenge turtle-bird chromosomal conservation. Genome Biol Evol 7(7):2038–2050

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Baron MG, Norman DB, Barrett PM (2017) A new hypothesis of dinosaur relationships and early dinosaur evolution. Nature 543(7646):501–506

    CAS  PubMed  CrossRef  Google Scholar 

  • Barrowclough GF et al (2016) How many kinds of birds are there and why does it matter? PLoS One 11(11):e0166307

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Beçak W et al (1964) Close karyological kinship between the reptilian suborder serpentes and the class aves. Chromosoma 15(5):606–617

    PubMed  CrossRef  Google Scholar 

  • Benton MJ, Twitchett RJ (2003) How to kill (almost) all life: the end-Permian extinction event. Trends Ecol Evol 18(7):358–365

    CrossRef  Google Scholar 

  • Benton MJ et al (2013) Exceptional vertebrate biotas from the Triassic of China, and the expansion of marine ecosystems after the Permo-Triassic mass extinction. Earth Sci Rev 125:199–243

    CrossRef  Google Scholar 

  • Benton MJ, Forth J, Langer MC (2014) Models for the rise of the dinosaurs. Curr Biol 24(2):R87–R95

    CAS  PubMed  CrossRef  Google Scholar 

  • Benton MJ et al (2015) Constraints on the timescale of animal evolutionary history. Palaeontol Electron 18(1):1–106

    Google Scholar 

  • Berv JS, Field DJ (2018) Genomic signature of an Avian Lilliput effect across the K-Pg extinction. Syst Biol 67(1):1–13

    PubMed  CrossRef  Google Scholar 

  • Brusatte SL et al (2008) The first 50Myr of dinosaur evolution: macroevolutionary pattern and morphological disparity. Biol Lett 4(6):733–736

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Burt DW (2002) Origin and evolution of avian microchromosomes. Cytogenet Genome Res 96(1–4):97–112

    CAS  PubMed  CrossRef  Google Scholar 

  • Cano RJ, Poinar H, Poinar GO (1992) Isolation and partial characterisation of DNA from the bee Proplebeia dominicana (Apidae: Hymenoptera) in 25-40 million year old amber. Med Sci Res 20(7):249–251

    CAS  Google Scholar 

  • Capilla L et al (2016) Mammalian comparative genomics reveals genetic and epigenetic features associated with genome reshuffling in Rodentia. Genome Biol Evol 8(12):3703–3717

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chiappe LM, Dyke GJ (2002) The mesozoic radiation of birds. Annu Rev Ecol Syst 33(1):91–124

    CrossRef  Google Scholar 

  • Chiari Y et al (2012) Phylogenomic analyses support the position of turtles as the sister group of birds and crocodiles (Archosauria). BMC Biol 10(1):65

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Christidis L (1990) Animal cytogenetics 4: Chordata 3B: Aves. Gebrüder Borntraeger, Berlin

    Google Scholar 

  • Clarke JA et al (2005) Definitive fossil evidence for the extant avian radiation in the Cretaceous. Nature 433(7023):305–308

    CAS  PubMed  CrossRef  Google Scholar 

  • Cracraft J et al (2015) Response to comment on “Whole-genome analyses resolve early branches in the tree of life of modern birds”. Science (New York, NY) 349(6255):1460

    CAS  CrossRef  Google Scholar 

  • Crawford NG et al (2012) More than 1000 ultraconserved elements provide evidence that turtles are the sister group of archosaurs. Biol Lett 8(5):783–786

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Cui J et al (2014) Low frequency of paleoviral infiltration across the avian phylogeny. Genome Biol 15(12):539

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Damas J et al (2017) Upgrading short-read animal genome assemblies to chromosome level using comparative genomics and a universal probe set. Genome Res 27(5):875–884

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • DeSalle R et al (1992) DNA sequences from a fossil termite in Oligo-Miocene amber and their phylogenetic implications. Science 257(5078):1933–1936

    CAS  PubMed  CrossRef  Google Scholar 

  • Ezcurra MD, Scheyer TM, Butler RJ (2014) The origin and early evolution of Sauria: reassessing the permian Saurian fossil record and the timing of the crocodile-lizard divergence. PLoS One 9(2):e89165

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Farmer CG, Sanders K (2010) Unidirectional airflow in the lungs of alligators. Science (New York, NY) 327(5963):338–340

    CAS  CrossRef  Google Scholar 

  • Farré M et al (2016) Novel insights into chromosome evolution in birds, archosaurs, and reptiles. Genome Biol Evol 8(8):2442–2451

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Gao B et al (2017) Low diversity, activity, and density of transposable elements in five avian genomes. Funct Integr Genom 17(4):427–439

    CAS  CrossRef  Google Scholar 

  • Gibbons A (1994) Possible dino DNA find is greeted with skepticism. Science (New York, NY) 266(5188):1159

    CAS  CrossRef  Google Scholar 

  • Gregory TR (2005) Genome size evolution in animals. In: The evolution of the genome. Elsevier, pp 3–87

    Google Scholar 

  • Hedges SB et al (1995) Detecting dinosaur DNA. Science 268:1191–1194

    CAS  PubMed  CrossRef  Google Scholar 

  • Hedges SB et al (2015) Tree of life reveals clock-like speciation and diversification. Mol Biol Evol 32(4):835–845

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Hillier LW et al (2004) Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 432(7018):695–716

    CAS  CrossRef  Google Scholar 

  • Hughes AL, Hughes MK (1995) Small genomes for better flyers. Nature 377(6548):391–391

    CAS  PubMed  CrossRef  Google Scholar 

  • Jarvis ED et al (2014) Whole-genome analyses resolve early branches in the tree of life of modern birds. Science (New York, NY) 346(6215):1320–1331

    CAS  CrossRef  Google Scholar 

  • Kapusta A, Suh A, Feschotte C (2017) Dynamics of genome size evolution in birds and mammals. Proc Natl Acad Sci U S A 114(8):E1460–E1469

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Kasai F et al (2012) Extensive homology of chicken macrochromosomes in the karyotypes of Trachemys scripta elegans and Crocodylus niloticus revealed by chromosome painting despite long divergence times. Cytogenet Genome Res 136(4):303–307

    CAS  CrossRef  PubMed  Google Scholar 

  • Kawakami T et al (2014) A high-density linkage map enables a second-generation collared flycatcher genome assembly and reveals the patterns of avian recombination rate variation and chromosomal evolution. Mol Ecol 23(16):4035–4058

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Larkin DM et al (2003) A cattle–human comparative map built with cattle BAC-ends and human genome sequence. Genome Res 13(8):1966–1972

    PubMed  PubMed Central  Google Scholar 

  • Larkin DM et al (2009) Breakpoint regions and homologous synteny blocks in chromosomes have different evolutionary histories. Genome Res 19(5):770–777

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Longrich NR, Tokaryk T, Field DJ (2011) Mass extinction of birds at the Cretaceous-Paleogene (K-Pg) boundary. Proc Natl Acad Sci U S A 108(37):15253–15257

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Lyson TR et al (2010) Transitional fossils and the origin of turtles. Biol Lett 6(6):830–833

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Martinez RN et al (2011) A basal dinosaur from the dawn of the dinosaur era in southwestern Pangaea. Science (New York, NY) 331(6014):206–210

    CAS  CrossRef  Google Scholar 

  • Mason AS et al (2016) A new look at the LTR retrotransposon content of the chicken genome. BMC Genomics 17(1):688

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Matsuda Y et al (2005) Highly conserved linkage homology between birds and turtles: bird and turtle chromosomes are precise counterparts of each other. Chromosom Res 13(6):601–615

    CAS  CrossRef  Google Scholar 

  • Mayr G et al (2007) The tenth skeletal specimen of Archaeopteryx. Zool J Linn Soc 149(1):97–116

    CrossRef  Google Scholar 

  • Meyer H v (1861) Archaeopteryx lithographica (Vogel-Feder) und Pterodactylus von Solnhofen. Neues Jahrbuch für Mineralogie, Geognosie, Geologie und Petrefakten-Kunde 6:678–679

    Google Scholar 

  • Mikkelsen TS et al (2007) Genome of the marsupial Monodelphis domestica reveals innovation in non-coding sequences. Nature 447(7141):167–177

    CAS  PubMed  CrossRef  Google Scholar 

  • Murko C et al (2010) Expression of class I histone deacetylases during chick and mouse development. Int J Dev Biol 54(10):1527–1537

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Nadeau JH, Taylor BA (1984) Lengths of chromosomal segments conserved since divergence of man and mouse. Proc Natl Acad Sci 81(3):814–818

    CAS  PubMed  CrossRef  PubMed Central  Google Scholar 

  • Nanda I et al (2007) Chromosome repatterning in three representative parrots (Psittaciformes) inferred from comparative chromosome painting. Cytogenet Genome Res 117(1–4):43–53

    CAS  CrossRef  PubMed  Google Scholar 

  • Nesbitt SJ et al (2013) The oldest dinosaur? A middle Triassic dinosauriform from Tanzania. Biol Lett 9(1):20120949

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Nicholson DB et al (2015) Climate-mediated diversification of turtles in the Cretaceous. Nat Commun 6:7848

    CAS  PubMed  CrossRef  Google Scholar 

  • O’Connor PM, Claessens LPAM (2005) Basic avian pulmonary design and flow-through ventilation in non-avian Theropod dinosaurs. Nature 436(7048):253–256

    PubMed  CrossRef  CAS  Google Scholar 

  • O’Connor RE et al (2018) Reconstruction of the diapsid ancestral genome permits chromosome evolution tracing in avian and non-avian dinosaurs. Nat Commun 9(1):1883

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Organ CL, Shedlock AM (2009) Palaeogenomics of pterosaurs and the evolution of small genome size in flying vertebrates. Biol Lett 5(1):47–50

    PubMed  CrossRef  Google Scholar 

  • Organ CL et al (2007) Origin of avian genome size and structure in non-avian dinosaurs. Nature 446(7132):180–184

    CAS  CrossRef  PubMed  Google Scholar 

  • Organ CL, Moreno RG, Edwards SV (2008) Three tiers of genome evolution in reptiles. Integr Comp Biol 48(4):494–504

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Penney D et al (2013) Absence of ancient DNA in sub-fossil insect inclusions preserved in ‘Anthropocene’ Colombian copal. PLoS One 8(9):e73150

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Pevzner P, Tesler G (2003) Human and mouse genomic sequences reveal extensive breakpoint reuse in mammalian evolution. Proc Natl Acad Sci U S A 100(13):7672–7677

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Rao M et al (2012) A duck RH panel and its potential for assisting NGS genome assembly. BMC Genomics 13(1):513

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Rauhut OWM et al (2012) A new rhynchocephalian from the late jurassic of Germany with a dentition that is unique amongst tetrapods. PLoS One 7(10):e46839

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Romanov MN et al (2014) Reconstruction of gross avian genome structure, organization and evolution suggests that the chicken lineage most closely resembles the dinosaur avian ancestor. BMC Genomics 15(1):1060

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Sankoff D (2009) The where and wherefore of evolutionary breakpoints. J Biol 8(7):66

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Schulte P et al (2010) The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene boundary. Science (New York, NY) 327(5970):1214–1218

    CAS  CrossRef  Google Scholar 

  • Shaffer HB et al (2013) The western painted turtle genome, a model for the evolution of extreme physiological adaptations in a slowly evolving lineage. Genome Biol 14(3):R28

    PubMed  CrossRef  CAS  Google Scholar 

  • Shedlock AM, Edwards SV (2009) Amniotes. In: The timetree of life. OUP, Oxford, pp 375–379

    Google Scholar 

  • Skinner BM, Griffin DK (2011) Intrachromosomal rearrangements in avian genome evolution: evidence for regions prone to breakpoints. Heredity 108(1):37–41

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Smeds L et al (2016) High-resolution mapping of crossover and non-crossover recombination events by whole-genome re-sequencing of an avian pedigree. PLoS Genet 12(5):e1006044

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Srikulnath K, Thapana W, Muangmai N (2015) Role of chromosome changes in Crocodylus evolution and diversity. Genom Inform 13(4):102

    CrossRef  Google Scholar 

  • St John JA et al (2012) Sequencing three crocodilian genomes to illuminate the evolution of archosaurs and amniotes. Genome Biol 13(1):415

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Uno Y et al (2012) Inference of the protokaryotypes of amniotes and tetrapods and the evolutionary processes of microchromosomes from comparative gene mapping. PLoS One 7(12):e53027

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Varricchio DJ et al (2008) Avian paternal care had dinosaur origin. Science (New York, NY) 322(5909):1826–1828

    CAS  CrossRef  Google Scholar 

  • Wang H (1996) Re-analysis of DNA sequence data from a dinosaur egg fossil unearthed in Xixia of Henan Province. Yi Chuan Xue Bao [Acta genetica Sinica] 23(3):183–189

    CAS  Google Scholar 

  • Wang HL, Yan ZY, Jin DY (1997) Reanalysis of published DNA sequence amplified from cretaceous dinosaur egg fossil. Mol Biol Evol 14(5):589–591

    CAS  PubMed  CrossRef  Google Scholar 

  • Wang Y-C et al (2017) Identification, chromosomal arrangements and expression analyses of the evolutionarily conserved prmt1 gene in chicken in comparison with its vertebrate paralogue prmt8. PLoS One 12(9):e0185042

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Warren WC et al (2010) The genome of a songbird. Nature 464(7289):757–762

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Warren WC et al (2017) A new chicken genome assembly provides insight into avian genome structure. G3 (Bethesda, Md) 7(1):109–117

    CAS  CrossRef  Google Scholar 

  • Witmer LM (2002) The debate on avian ancestry. In: Chiappe LM, Witmer LM (eds) Mesozoic birds. University of California Press, Berkeley

    Google Scholar 

  • Woodward SR, Weyand NJ, Bunnell M (1994) DNA sequence from Cretaceous period bone fragments. Science (New York, NY) 266(5188):1229–1232

    CAS  CrossRef  Google Scholar 

  • Zhang G et al (2014) Comparative genomics reveals insights into avian genome evolution and adaptation. Science 346(6215):1311–1320

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Zhou Z (2004) The origin and early evolution of birds: discoveries, disputes, and perspectives from fossil evidence. Naturwissenschaften 91(10):455–471

    CAS  PubMed  CrossRef  Google Scholar 

  • Zischler H et al (1995) Detecting dinosaur DNA. Science 268(5214):1192–1193

    CAS  PubMed  CrossRef  Google Scholar 

Download references

Acknowledgements

We are grateful to a number of our colleagues and co-authors who made this work possible: Marta Farre-Belmonte, Joana Damas and Michael Romanov for providing bioinformatic analysis for our various studies, Nicole Valenzuela for excellent turtle metaphases, Malcolm Ferguson-Smith for samples and sagely insight, Paul Barrett for much needed palaeontological input as well as Rebecca Jennings and Lucas Kiazim for FISH analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darren K. Griffin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Griffin, D.K., Larkin, D.M., O’Connor, R.E. (2019). Jurassic Park: What Did the Genomes of Dinosaurs Look Like?. In: Kraus, R. (eds) Avian Genomics in Ecology and Evolution. Springer, Cham. https://doi.org/10.1007/978-3-030-16477-5_11

Download citation