Jurassic Park: What Did the Genomes of Dinosaurs Look Like?



Recent palaeontological evidence is clear that birds are extant dinosaurs. Evolving along the lineage Diapsida—Archelosauria—Archosauria—Avemetatarsalia—Dinosauria—Ornithoscelida—Theropoda—Maniraptora—Avialae, birds are the latest example of dinosaurs emerging from catastrophic extinction events as speciose and diverse. Indeed, rather than being wiped out by the Cretaceous-Paleogene meteor strike, they are the survivors of at least three extinction events. Dinosaurs capture the public imagination through art, literature, television and film, most recently through the Jurassic Park/World franchise. Claims in the scientific literature of isolating dinosaur DNA (from amber-preserved insects or elsewhere) have largely been debunked. Nonetheless, the overall structure of dinosaur genomes along the above lineage can be determined by inference from chromosome-level genome assemblies. Our work focused first on determining the likely karyotype of the avian ancestor (probably a small, bipedal, feathered, terrestrial Jurassic dinosaur) finding great similarity to the chicken. We then progressed to determining the likely karyotype of the diapsid ancestor and the changes that have occurred to form extant animals. A combination of bioinformatics and molecular cytogenetics indicates considerable interchromosomal rearrangement from a “lizard-like” karyotype of 2n = 36−46 to one similar to that of certain turtles from 275 to 255 million years ago (mya). Remarkable karyotypic similarities between some turtles and chicken suggest identity by descent, in other words that, aside from ~7 fissions, there were few interchromosomal changes from the archelosaur (bird-turtle) ancestor to the Avemetatarsalia (dinosaurs and pterosaurs), through the theropods to modern birds. Indeed, a similar rate of change beyond 255 mya would have meant that the avian-like karyotype was in place about 240 mya when the first dinosaurs and pterosaurs emerged. We mapped 49 intrachromosomal changes in the intervening period, finding significant gene ontology enrichment in homologous synteny block and evolutionary breakpoint regions. The avian-like karyotype with its many chromosomes provides the substrate for variation (the driver of natural selection) through increased random segregation and recombination. It thus may impact on the ability of dinosaurs to survive and thrive, despite multiple extinction events.


Dinosaur Theropod Chromosome Karyotype Molecular cytogenetics Comparative genomics Genome evolution 



We are grateful to a number of our colleagues and co-authors who made this work possible: Marta Farre-Belmonte, Joana Damas and Michael Romanov for providing bioinformatic analysis for our various studies, Nicole Valenzuela for excellent turtle metaphases, Malcolm Ferguson-Smith for samples and sagely insight, Paul Barrett for much needed palaeontological input as well as Rebecca Jennings and Lucas Kiazim for FISH analysis.


  1. Alföldi J et al (2011) The genome of the green anole lizard and a comparative analysis with birds and mammals. Nature 477(7366):587–591PubMedPubMedCentralCrossRefGoogle Scholar
  2. Allard MW, Young D, Huyen Y (1995) Detecting dinosaur DNA. Science (New York, NY) 268(5214):1192. author reply 1194CrossRefGoogle Scholar
  3. Badenhorst D et al (2015) Physical mapping and refinement of the painted turtle genome (Chrysemys picta) inform amniote genome evolution and challenge turtle-bird chromosomal conservation. Genome Biol Evol 7(7):2038–2050PubMedPubMedCentralCrossRefGoogle Scholar
  4. Baron MG, Norman DB, Barrett PM (2017) A new hypothesis of dinosaur relationships and early dinosaur evolution. Nature 543(7646):501–506PubMedCrossRefPubMedCentralGoogle Scholar
  5. Barrowclough GF et al (2016) How many kinds of birds are there and why does it matter? PLoS One 11(11):e0166307PubMedPubMedCentralCrossRefGoogle Scholar
  6. Beçak W et al (1964) Close karyological kinship between the reptilian suborder serpentes and the class aves. Chromosoma 15(5):606–617PubMedCrossRefPubMedCentralGoogle Scholar
  7. Benton MJ, Twitchett RJ (2003) How to kill (almost) all life: the end-Permian extinction event. Trends Ecol Evol 18(7):358–365CrossRefGoogle Scholar
  8. Benton MJ et al (2013) Exceptional vertebrate biotas from the Triassic of China, and the expansion of marine ecosystems after the Permo-Triassic mass extinction. Earth Sci Rev 125:199–243CrossRefGoogle Scholar
  9. Benton MJ, Forth J, Langer MC (2014) Models for the rise of the dinosaurs. Curr Biol 24(2):R87–R95PubMedCrossRefPubMedCentralGoogle Scholar
  10. Benton MJ et al (2015) Constraints on the timescale of animal evolutionary history. Palaeontol Electron 18(1):1–106Google Scholar
  11. Berv JS, Field DJ (2018) Genomic signature of an Avian Lilliput effect across the K-Pg extinction. Syst Biol 67(1):1–13PubMedCrossRefPubMedCentralGoogle Scholar
  12. Brusatte SL et al (2008) The first 50Myr of dinosaur evolution: macroevolutionary pattern and morphological disparity. Biol Lett 4(6):733–736PubMedPubMedCentralCrossRefGoogle Scholar
  13. Burt DW (2002) Origin and evolution of avian microchromosomes. Cytogenet Genome Res 96(1–4):97–112PubMedCrossRefPubMedCentralGoogle Scholar
  14. Cano RJ, Poinar H, Poinar GO (1992) Isolation and partial characterisation of DNA from the bee Proplebeia dominicana (Apidae: Hymenoptera) in 25-40 million year old amber. Med Sci Res 20(7):249–251Google Scholar
  15. Capilla L et al (2016) Mammalian comparative genomics reveals genetic and epigenetic features associated with genome reshuffling in Rodentia. Genome Biol Evol 8(12):3703–3717PubMedPubMedCentralGoogle Scholar
  16. Chiappe LM, Dyke GJ (2002) The mesozoic radiation of birds. Annu Rev Ecol Syst 33(1):91–124CrossRefGoogle Scholar
  17. Chiari Y et al (2012) Phylogenomic analyses support the position of turtles as the sister group of birds and crocodiles (Archosauria). BMC Biol 10(1):65PubMedPubMedCentralCrossRefGoogle Scholar
  18. Christidis L (1990) Animal cytogenetics 4: Chordata 3B: Aves. Gebrüder Borntraeger, BerlinGoogle Scholar
  19. Clarke JA et al (2005) Definitive fossil evidence for the extant avian radiation in the Cretaceous. Nature 433(7023):305–308PubMedCrossRefPubMedCentralGoogle Scholar
  20. Cracraft J et al (2015) Response to comment on “Whole-genome analyses resolve early branches in the tree of life of modern birds”. Science (New York, NY) 349(6255):1460CrossRefGoogle Scholar
  21. Crawford NG et al (2012) More than 1000 ultraconserved elements provide evidence that turtles are the sister group of archosaurs. Biol Lett 8(5):783–786PubMedPubMedCentralCrossRefGoogle Scholar
  22. Cui J et al (2014) Low frequency of paleoviral infiltration across the avian phylogeny. Genome Biol 15(12):539PubMedPubMedCentralCrossRefGoogle Scholar
  23. Damas J et al (2017) Upgrading short-read animal genome assemblies to chromosome level using comparative genomics and a universal probe set. Genome Res 27(5):875–884PubMedPubMedCentralCrossRefGoogle Scholar
  24. DeSalle R et al (1992) DNA sequences from a fossil termite in Oligo-Miocene amber and their phylogenetic implications. Science 257(5078):1933–1936PubMedCrossRefPubMedCentralGoogle Scholar
  25. Ezcurra MD, Scheyer TM, Butler RJ (2014) The origin and early evolution of Sauria: reassessing the permian Saurian fossil record and the timing of the crocodile-lizard divergence. PLoS One 9(2):e89165PubMedPubMedCentralCrossRefGoogle Scholar
  26. Farmer CG, Sanders K (2010) Unidirectional airflow in the lungs of alligators. Science (New York, NY) 327(5963):338–340CrossRefGoogle Scholar
  27. Farré M et al (2016) Novel insights into chromosome evolution in birds, archosaurs, and reptiles. Genome Biol Evol 8(8):2442–2451PubMedPubMedCentralCrossRefGoogle Scholar
  28. Gao B et al (2017) Low diversity, activity, and density of transposable elements in five avian genomes. Funct Integr Genom 17(4):427–439CrossRefGoogle Scholar
  29. Gibbons A (1994) Possible dino DNA find is greeted with skepticism. Science (New York, NY) 266(5188):1159CrossRefGoogle Scholar
  30. Gregory TR (2005) Genome size evolution in animals. In: The evolution of the genome. Elsevier, pp 3–87Google Scholar
  31. Hedges SB et al (1995) Detecting dinosaur DNA. Science 268:1191–1194PubMedCrossRefPubMedCentralGoogle Scholar
  32. Hedges SB et al (2015) Tree of life reveals clock-like speciation and diversification. Mol Biol Evol 32(4):835–845PubMedPubMedCentralCrossRefGoogle Scholar
  33. Hillier LW et al (2004) Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 432(7018):695–716CrossRefGoogle Scholar
  34. Hughes AL, Hughes MK (1995) Small genomes for better flyers. Nature 377(6548):391–391PubMedCrossRefPubMedCentralGoogle Scholar
  35. Jarvis ED et al (2014) Whole-genome analyses resolve early branches in the tree of life of modern birds. Science (New York, NY) 346(6215):1320–1331CrossRefGoogle Scholar
  36. Kapusta A, Suh A, Feschotte C (2017) Dynamics of genome size evolution in birds and mammals. Proc Natl Acad Sci U S A 114(8):E1460–E1469PubMedPubMedCentralCrossRefGoogle Scholar
  37. Kasai F et al (2012) Extensive homology of chicken macrochromosomes in the karyotypes of Trachemys scripta elegans and Crocodylus niloticus revealed by chromosome painting despite long divergence times. Cytogenet Genome Res 136(4):303–307CrossRefGoogle Scholar
  38. Kawakami T et al (2014) A high-density linkage map enables a second-generation collared flycatcher genome assembly and reveals the patterns of avian recombination rate variation and chromosomal evolution. Mol Ecol 23(16):4035–4058PubMedPubMedCentralCrossRefGoogle Scholar
  39. Larkin DM et al (2003) A cattle–human comparative map built with cattle BAC-ends and human genome sequence. Genome Res 13(8):1966–1972PubMedPubMedCentralGoogle Scholar
  40. Larkin DM et al (2009) Breakpoint regions and homologous synteny blocks in chromosomes have different evolutionary histories. Genome Res 19(5):770–777PubMedPubMedCentralCrossRefGoogle Scholar
  41. Longrich NR, Tokaryk T, Field DJ (2011) Mass extinction of birds at the Cretaceous-Paleogene (K-Pg) boundary. Proc Natl Acad Sci U S A 108(37):15253–15257PubMedPubMedCentralCrossRefGoogle Scholar
  42. Lyson TR et al (2010) Transitional fossils and the origin of turtles. Biol Lett 6(6):830–833PubMedPubMedCentralCrossRefGoogle Scholar
  43. Martinez RN et al (2011) A basal dinosaur from the dawn of the dinosaur era in southwestern Pangaea. Science (New York, NY) 331(6014):206–210CrossRefGoogle Scholar
  44. Mason AS et al (2016) A new look at the LTR retrotransposon content of the chicken genome. BMC Genomics 17(1):688PubMedPubMedCentralCrossRefGoogle Scholar
  45. Matsuda Y et al (2005) Highly conserved linkage homology between birds and turtles: bird and turtle chromosomes are precise counterparts of each other. Chromosom Res 13(6):601–615CrossRefGoogle Scholar
  46. Mayr G et al (2007) The tenth skeletal specimen of Archaeopteryx. Zool J Linn Soc 149(1):97–116CrossRefGoogle Scholar
  47. Meyer H v (1861) Archaeopteryx lithographica (Vogel-Feder) und Pterodactylus von Solnhofen. Neues Jahrbuch für Mineralogie, Geognosie, Geologie und Petrefakten-Kunde 6:678–679Google Scholar
  48. Mikkelsen TS et al (2007) Genome of the marsupial Monodelphis domestica reveals innovation in non-coding sequences. Nature 447(7141):167–177PubMedCrossRefPubMedCentralGoogle Scholar
  49. Murko C et al (2010) Expression of class I histone deacetylases during chick and mouse development. Int J Dev Biol 54(10):1527–1537PubMedPubMedCentralCrossRefGoogle Scholar
  50. Nadeau JH, Taylor BA (1984) Lengths of chromosomal segments conserved since divergence of man and mouse. Proc Natl Acad Sci 81(3):814–818PubMedCrossRefPubMedCentralGoogle Scholar
  51. Nanda I et al (2007) Chromosome repatterning in three representative parrots (Psittaciformes) inferred from comparative chromosome painting. Cytogenet Genome Res 117(1–4):43–53CrossRefGoogle Scholar
  52. Nesbitt SJ et al (2013) The oldest dinosaur? A middle Triassic dinosauriform from Tanzania. Biol Lett 9(1):20120949PubMedPubMedCentralCrossRefGoogle Scholar
  53. Nicholson DB et al (2015) Climate-mediated diversification of turtles in the Cretaceous. Nat Commun 6:7848PubMedPubMedCentralCrossRefGoogle Scholar
  54. O’Connor PM, Claessens LPAM (2005) Basic avian pulmonary design and flow-through ventilation in non-avian Theropod dinosaurs. Nature 436(7048):253–256PubMedCrossRefPubMedCentralGoogle Scholar
  55. O’Connor RE et al (2018) Reconstruction of the diapsid ancestral genome permits chromosome evolution tracing in avian and non-avian dinosaurs. Nat Commun 9(1):1883PubMedPubMedCentralCrossRefGoogle Scholar
  56. Organ CL, Shedlock AM (2009) Palaeogenomics of pterosaurs and the evolution of small genome size in flying vertebrates. Biol Lett 5(1):47–50PubMedCrossRefPubMedCentralGoogle Scholar
  57. Organ CL et al (2007) Origin of avian genome size and structure in non-avian dinosaurs. Nature 446(7132):180–184CrossRefPubMedPubMedCentralGoogle Scholar
  58. Organ CL, Moreno RG, Edwards SV (2008) Three tiers of genome evolution in reptiles. Integr Comp Biol 48(4):494–504PubMedPubMedCentralCrossRefGoogle Scholar
  59. Penney D et al (2013) Absence of ancient DNA in sub-fossil insect inclusions preserved in ‘Anthropocene’ Colombian copal. PLoS One 8(9):e73150PubMedPubMedCentralCrossRefGoogle Scholar
  60. Pevzner P, Tesler G (2003) Human and mouse genomic sequences reveal extensive breakpoint reuse in mammalian evolution. Proc Natl Acad Sci U S A 100(13):7672–7677PubMedPubMedCentralCrossRefGoogle Scholar
  61. Rao M et al (2012) A duck RH panel and its potential for assisting NGS genome assembly. BMC Genomics 13(1):513PubMedPubMedCentralCrossRefGoogle Scholar
  62. Rauhut OWM et al (2012) A new rhynchocephalian from the late jurassic of Germany with a dentition that is unique amongst tetrapods. PLoS One 7(10):e46839PubMedPubMedCentralCrossRefGoogle Scholar
  63. Romanov MN et al (2014) Reconstruction of gross avian genome structure, organization and evolution suggests that the chicken lineage most closely resembles the dinosaur avian ancestor. BMC Genomics 15(1):1060PubMedPubMedCentralCrossRefGoogle Scholar
  64. Sankoff D (2009) The where and wherefore of evolutionary breakpoints. J Biol 8(7):66PubMedPubMedCentralCrossRefGoogle Scholar
  65. Schulte P et al (2010) The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene boundary. Science (New York, NY) 327(5970):1214–1218CrossRefGoogle Scholar
  66. Shaffer HB et al (2013) The western painted turtle genome, a model for the evolution of extreme physiological adaptations in a slowly evolving lineage. Genome Biol 14(3):R28PubMedCrossRefPubMedCentralGoogle Scholar
  67. Shedlock AM, Edwards SV (2009) Amniotes. In: The timetree of life. OUP, Oxford, pp 375–379Google Scholar
  68. Skinner BM, Griffin DK (2011) Intrachromosomal rearrangements in avian genome evolution: evidence for regions prone to breakpoints. Heredity 108(1):37–41PubMedPubMedCentralCrossRefGoogle Scholar
  69. Smeds L et al (2016) High-resolution mapping of crossover and non-crossover recombination events by whole-genome re-sequencing of an avian pedigree. PLoS Genet 12(5):e1006044PubMedPubMedCentralCrossRefGoogle Scholar
  70. Srikulnath K, Thapana W, Muangmai N (2015) Role of chromosome changes in Crocodylus evolution and diversity. Genom Inform 13(4):102CrossRefGoogle Scholar
  71. St John JA et al (2012) Sequencing three crocodilian genomes to illuminate the evolution of archosaurs and amniotes. Genome Biol 13(1):415PubMedPubMedCentralCrossRefGoogle Scholar
  72. Uno Y et al (2012) Inference of the protokaryotypes of amniotes and tetrapods and the evolutionary processes of microchromosomes from comparative gene mapping. PLoS One 7(12):e53027PubMedPubMedCentralCrossRefGoogle Scholar
  73. Varricchio DJ et al (2008) Avian paternal care had dinosaur origin. Science (New York, NY) 322(5909):1826–1828CrossRefGoogle Scholar
  74. Wang H (1996) Re-analysis of DNA sequence data from a dinosaur egg fossil unearthed in Xixia of Henan Province. Yi Chuan Xue Bao [Acta genetica Sinica] 23(3):183–189Google Scholar
  75. Wang HL, Yan ZY, Jin DY (1997) Reanalysis of published DNA sequence amplified from cretaceous dinosaur egg fossil. Mol Biol Evol 14(5):589–591PubMedCrossRefPubMedCentralGoogle Scholar
  76. Wang Y-C et al (2017) Identification, chromosomal arrangements and expression analyses of the evolutionarily conserved prmt1 gene in chicken in comparison with its vertebrate paralogue prmt8. PLoS One 12(9):e0185042PubMedPubMedCentralCrossRefGoogle Scholar
  77. Warren WC et al (2010) The genome of a songbird. Nature 464(7289):757–762PubMedPubMedCentralCrossRefGoogle Scholar
  78. Warren WC et al (2017) A new chicken genome assembly provides insight into avian genome structure. G3 (Bethesda, Md) 7(1):109–117CrossRefGoogle Scholar
  79. Witmer LM (2002) The debate on avian ancestry. In: Chiappe LM, Witmer LM (eds) Mesozoic birds. University of California Press, BerkeleyGoogle Scholar
  80. Woodward SR, Weyand NJ, Bunnell M (1994) DNA sequence from Cretaceous period bone fragments. Science (New York, NY) 266(5188):1229–1232CrossRefGoogle Scholar
  81. Zhang G et al (2014) Comparative genomics reveals insights into avian genome evolution and adaptation. Science 346(6215):1311–1320PubMedPubMedCentralCrossRefGoogle Scholar
  82. Zhou Z (2004) The origin and early evolution of birds: discoveries, disputes, and perspectives from fossil evidence. Naturwissenschaften 91(10):455–471PubMedCrossRefPubMedCentralGoogle Scholar
  83. Zischler H et al (1995) Detecting dinosaur DNA. Science 268(5214):1192–1193PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of BiosciencesUniversity of KentCanterburyUK
  2. 2.Department of Comparative Biomedical Sciences, Royal Veterinary CollegeUniversity of LondonLondonUK

Personalised recommendations