Skip to main content

Construction for a Nominative Signature Scheme from Lattice with Enhanced Security

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11445))

Abstract

The existing secure nominative signature schemes are all based on bilinear pairings and are secure only on classical machines. In this paper, we present the first lattice based nominative signature scheme. The security of our scheme relies on the hardness of short integer solution (SIS) and learning with error (LWE) problems for which no polynomial time quantum algorithms exist till now. Consequently, our scheme is the first nominative signature scheme that withstand quantum attacks. Furthermore, we propose stronger security models for unforgeability and invisibility and prove our construction achieve these enhanced security. Besides, our scheme exhibits impersonation and non-repudiation following standard security model. We emphasis that the security analysis against all the security attributes for our scheme are in standard model except the security against malicious nominator which uses random oracle.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ajtai, M.: Generating hard instances of lattice problems. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, pp. 99–108. ACM (1996)

    Google Scholar 

  2. Alwen, J., Peikert, C.: Generating shorter bases for hard random lattices. Theory Comput. Syst. 48(3), 535–553 (2011)

    Article  MathSciNet  Google Scholar 

  3. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7_12

    Chapter  Google Scholar 

  4. Huang, Q., Liu, D.Y., Wong, D.S.: An efficient one-move nominative signature scheme. Int. J. Appl. Cryptogr. 1(2), 133–143 (2008)

    Article  MathSciNet  Google Scholar 

  5. Huang, Z., Wang, Y.: Convertible nominative signatures. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004. LNCS, vol. 3108, pp. 348–357. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27800-9_30

    Chapter  Google Scholar 

  6. Kim, S.J., Park, S.J., Won, D.H.: Nominative signatures. In: ICEIC: International Conference on Electronics, Informations and Communications, pp. 68–71 (1995)

    Google Scholar 

  7. Libert, B., Ling, S., Mouhartem, F., Nguyen, K., Wang, H.: Signature schemes with efficient protocols and dynamic group signatures from lattice assumptions. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 373–403. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6_13

    Chapter  Google Scholar 

  8. Ling, S., Nguyen, K., Stehlé, D., Wang, H.: Improved zero-knowledge proofs of knowledge for the ISIS problem, and applications. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 107–124. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36362-7_8

    Chapter  Google Scholar 

  9. Liu, D.Y.W., Chang, S., Wong, D.S., Mu, Y.: Nominative signature from ring signature. In: Miyaji, A., Kikuchi, H., Rannenberg, K. (eds.) IWSEC 2007. LNCS, vol. 4752, pp. 396–411. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75651-4_27

    Chapter  Google Scholar 

  10. Liu, D.Y.W., et al.: Formal definition and construction of nominative signature. In: Qing, S., Imai, H., Wang, G. (eds.) ICICS 2007. LNCS, vol. 4861, pp. 57–68. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-77048-0_5

    Chapter  Google Scholar 

  11. Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_43

    Chapter  Google Scholar 

  12. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_41

    Chapter  Google Scholar 

  13. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. J. ACM (JACM) 56(6), 34 (2009)

    Article  MathSciNet  Google Scholar 

  14. Schuldt, J.C.N., Hanaoka, G.: Non-transferable user certification secure against authority information leaks and impersonation attacks. In: Lopez, J., Tsudik, G. (eds.) ACNS 2011. LNCS, vol. 6715, pp. 413–430. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21554-4_24

    Chapter  Google Scholar 

  15. Susilo, W., Mu, Y.: On the security of nominative signatures. In: Boyd, C., González Nieto, J.M. (eds.) ACISP 2005. LNCS, vol. 3574, pp. 329–335. Springer, Heidelberg (2005). https://doi.org/10.1007/11506157_28

    Chapter  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meenakshi Kansal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kansal, M., Dutta, R., Mukhopadhyay, S. (2019). Construction for a Nominative Signature Scheme from Lattice with Enhanced Security. In: Carlet, C., Guilley, S., Nitaj, A., Souidi, E. (eds) Codes, Cryptology and Information Security. C2SI 2019. Lecture Notes in Computer Science(), vol 11445. Springer, Cham. https://doi.org/10.1007/978-3-030-16458-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16458-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16457-7

  • Online ISBN: 978-3-030-16458-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics