Skip to main content

Smart Systems to Improve the Mobility of People with Visual Impairment Through IoM and IoMT

  • Chapter
  • First Online:
Technological Trends in Improved Mobility of the Visually Impaired

Abstract

This chapter presents several aspects regarding smart system to help people with low visual acuity, possibilities of integration into wearable systems or in common transport systems around the world, and integration with IoM (Internet of Mobility) and IoMT (Internet of Mobile Things). Also, in this work a few case studies are presented, which describe the use of assistive technology with interfaces based on vision, audio and tactile senses and smart systems integrated into wearable devices that can guide the people with visual impairment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahlmark, D. I. (2016). Haptic Navigation Aids for the Visually Impaired (Doctoral dissertation, Luleå tekniska Universitet, 2016).

    Google Scholar 

  • Al-Fahoum, A. S., Al-Hmoud, H. B., & Al-Fraihat, A. A. (2013). A smart infrared microcontroller-based blind guidance system. Active and Passive Electronic Components, 2013, 726480.

    Article  Google Scholar 

  • Bainter, P. S. (2018). Visual field test: Learn how the procedure is performed. Retrieved September 10, 2018, from https://www.medicinenet.com/visual_field_test/article.htm

  • Barbabella, F., Melchiorre, M. G., Quattrini, S., Papa, R., & Lamura, G. (2017). How can eHealth improve care for people with multimorbidity in Europe? Copenhagen: World Health Organization, Regional Office for Europe.

    Google Scholar 

  • Berger, A., Vokalova, A., Maly, F., & Poulova, P. (2017). Google glass used as assistive technology its utilization for blind and visually impaired people. In International Conference on Mobile Web and Information Systems (pp. 70–82). Cham: Springer.

    Google Scholar 

  • Bouck, E. (2015). Assistive technology. Los Angeles, CA: Sage.

    Google Scholar 

  • Currie, Z., Bhan, A., & Pepper, I. (2000). Reliability of Snellen charts for testing visual acuity for driving: Prospective study and postal questionnaire. BMJ, 321(7267), 990–992.

    Article  Google Scholar 

  • Dandona, L., & Dandona, R. (2006). Revision of visual impairment definitions in the International Statistical Classification of Diseases. BMC Medicine, 4, 7.

    Article  Google Scholar 

  • Elgendy, M., & Lanyi, C. S. (2018). Review on smart solutions for people with visual impairment. In International Conference on Computers Helping People with Special Needs (pp. 81–84). Cham: Springer.

    Chapter  Google Scholar 

  • EVA. (n.d.). Extended visual assistant. Budapest: EVA. Retrieved October 11, 2018, from http://www.eva.vision/

  • Frulio, F., Sheikhi, E., Rossazza, L., Perfetto, G., Calvachi, A., Picco, G., & Comai, S. (2017). IOM–Internet of Mobility: A wearable device for outdoor data collection. In International Conference on Smart Objects and Technologies for Social Good (pp. 88–95). Cham: Springer.

    Chapter  Google Scholar 

  • Gleeson, M., Sherrington, C., Lo, S., & Keay, L. (2015). Can the Alexander Technique improve balance and mobility in older adults with visual impairments? A randomized controlled trial. Clinical Rehabilitation, 29(3), 244–260.

    Article  Google Scholar 

  • Gómez, N. L. C., Sánchez, Á. Q., López, E. K. G., & Rocha, M. A. M. (2017). SBK: Smart braille keyboard for learning braille literacy in blind or visually impaired people. In Proceedings of the 8th Latin American Conference on Human-Computer Interaction (p. 26). New York, NY: ACM.

    Google Scholar 

  • Grussenmeyer, W., & Folmer, E. (2017). Accessible touchscreen technology for people with visual impairments: A survey. ACM Transactions on Accessible Computing (TACCESS), 9(2), 6.

    Google Scholar 

  • Hartong, D. T., Jorritsma, F. F., Neve, J. J., Melis-Dankers, B. J., & Kooijman, A. C. (2004). Improved mobility and independence of night-blind people using night-vision goggles. Investigative Ophthalmology & Visual Science, 45(6), 1725–1731.

    Article  Google Scholar 

  • Hersh, M., & Johnson, M. A. (2010). Assistive technology for visually impaired and blind people. Berlin: Springer Science & Business Media.

    Google Scholar 

  • Hietanen, S. (2014). Mobility as a service. The new transport model. ITS & Transport Management Supplement. Eurotransport, 12(2), 2–4.

    Google Scholar 

  • Home - Aira. (2018). Retrieved October 11, 2018, from https://aira.io/

  • Home - Horus. (2018). Retrieved October 11, 2018, from http://horus.tech

  • Huang, F. C., Wetzstein, G., Barsky, B., & Raskar, R. (2016). U.S. Patent No. 14/823,906. Washington, DC: U.S. Patent and Trademark Office.

    Google Scholar 

  • iMerciv Inc. (2018). The all new BuzzClip. Toronto, ON: iMerciv Inc. Retrieved October 10, 2018, from https://imerciv.com/

    Google Scholar 

  • Kammoun, S., Jouffrais, C., Guerreiro, T., Nicolau, H., & Jorge, J. (2012). Guiding blind people with haptic feedback. Frontiers in Accessibility for Pervasive Computing (Pervasive 2012), 3.

    Google Scholar 

  • Kerkar, P. (2018). Visual impairment: Types, causes, symptoms, treatment, diagnosis. Palm Harbor, FL: PainAssist Inc. Retrieved September 01, 2018, from https://www.epainassist.com/eye-pain/visual-impairment

    Google Scholar 

  • Kiuru, T., Metso, M., Utriainen, M., Metsävainio, K., Jauhonen, H. M., Rajala, R., … Sylberg, J. (2018). Assistive device for orientation and mobility of the visually impaired based on millimeter wave radar technology—Clinical investigation results. Cogent Engineering, 5, 1450322.

    Article  Google Scholar 

  • Kumar, P. M., Gandhi, U., Varatharajan, R., Manogaran, G., Jidhesh, R., & Vadivel, T. (2017). Intelligent face recognition and navigation system using neural learning for smart security in Internet of Things. Cluster Computing, 1–12.

    Google Scholar 

  • Lamkin, P. (2015). Microsoft’s headset for the visually impaired gets voice controls. London: Wareable Ltd.. Retrieved October 10, 2018, from https://www.wareable.com/wearable-tech/microsoft-bone-conduction-headset-for-the-blind-448

    Google Scholar 

  • MedlinePlus. (2018). Vision impairment and blindness. Bethesda, MD: MedlinePlus. Retrieved October 10, 2018, from https://www.who.int/en/news-room/fact-sheets/detail/blindness-and-visual-impairment

    Google Scholar 

  • Mihalcea, G., Suciu, G., & Vasilescu, C. (2018). Real-time autonomous system of navigation using a stereoscopic camera. In 2018 International Conference on Communications (COMM) (pp. 497–500). Washington, DC: IEEE.

    Chapter  Google Scholar 

  • Munger, R. J., Hilkes, R. G., Perron, M., & Sohi, N. (2017). U.S. Patent No. 9,618,748. Washington, DC: U.S. Patent and Trademark Office.

    Google Scholar 

  • Nahrstedt, K. (2014). Internet of mobile things: Challenges and opportunities. In PACT (pp. 1–2). New York, NY: ACM.

    Google Scholar 

  • National Eye Institute. (2018). Facts about retinitis pigmentosa. Bethesda, MD: National Eye Institute. Retrieved September 04, 2018, from https://nei.nih.gov/health/pigmentosa/pigmentosa_facts

    Google Scholar 

  • Ounapuu, E. (2016). VisioPal - Smart solution to the visually impaired and blind, Tallinn University of Technology, Faculty of Information Technology.

    Google Scholar 

  • Owsley, C., Ball, K., McGwin, G., Jr., Sloane, M. E., Roenker, D. L., White, M. F., & Overley, E. T. (1998). Visual processing impairment and risk of motor vehicle crash among older adults. JAMA, 279(14), 1083–1088.

    Article  Google Scholar 

  • Ramadhan, A. J. (2018). Wearable smart system for visually impaired people. Sensors, 18(3), 843.

    Article  Google Scholar 

  • Research to Prevent Blindness. (2018). Uveitis/infectious diseases. New York, NY: Research to Prevent Blindness. Retrieved September 04, 2018, from https://www.rpbusa.org/rpb/resources-and-advocacy/resources/rpb-vision-resources/infectious-diseases/

    Google Scholar 

  • Rimmer, J. H., Riley, B., Wang, E., & Rauworth, A. (2005). Accessibility of health clubs for people with mobility disabilities and visual impairments. American Journal of Public Health, 95(11), 2022–2028.

    Article  Google Scholar 

  • SARA CE. (n.d.). Retrieved September 6, 2018, from http://www.envisiontechnology.org/html/visually_impaired.html#SARA

  • Schwiegerling, J. (2004). Field guide to visual and ophthalmic optics. Bellingham WA: SPIE.

    Book  Google Scholar 

  • Seeing AI. (n.d.). Retrieved October 11, 2018, from https://www.microsoft.com/en-us/seeing-ai

  • Shahrestani, S. (2017). Internet of things and smart environments: Assistive technologies for disability, dementia, and aging. New York, NY: Springer.

    Book  Google Scholar 

  • Sunu, Inc. (n.d.). It’s your world. Explore it with the Sunu Band. Somerville, MA: Sunu, Inc. Retrieved October 10, 2018, from https://www.sunu.io/en/index.html

  • Tanna, P., Strauss, R. W., Fujinami, K., & Michaelides, M. (2017). Stargardt disease: Clinical features, molecular genetics, animal models and therapeutic options. British Journal of Ophthalmology, 101(1), 25–30.

    Article  Google Scholar 

  • To, H., & Régo, N. (2017). eSight 3: A day will come when all legally blind individuals can get esight at no cost. Cool Blind Tech. Retrieved October 12, 2018, from https://coolblindtech.com/esight-3-a-day-will-come-when-all-legally-blind-individuals-can-get-esight-at-no-cost/

  • Tucker, E. (2017). Maptic is a wearable navigation system for the visually impaired. London: Dezeen. Retrieved October 10, 2018, from https://www.dezeen.com/2017/08/02/maptic-wearable-guidance-system-visually-impaired-design-products-wearable-technology-graduates

    Google Scholar 

  • van Rheede, J. J., Wilson, I. R., Qian, R. I., Downes, S. M., Kennard, C., & Hicks, S. L. (2015). Improving mobility performance in low vision with a distance-based representation of the visual scene. Investigative Ophthalmology & Visual Science, 56(8), 4802–4809.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aileni, R.M., Suciu, G., Suciu, V., Pasca, S., Ciurea, J. (2020). Smart Systems to Improve the Mobility of People with Visual Impairment Through IoM and IoMT. In: Paiva, S. (eds) Technological Trends in Improved Mobility of the Visually Impaired. EAI/Springer Innovations in Communication and Computing. Springer, Cham. https://doi.org/10.1007/978-3-030-16450-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16450-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16449-2

  • Online ISBN: 978-3-030-16450-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics