Skip to main content

Background, Tasks, Modeling Methods, and Challenges for Computational Toxicology

  • Chapter
  • First Online:
Advances in Computational Toxicology

Part of the book series: Challenges and Advances in Computational Chemistry and Physics ((COCH,volume 30))

Abstract

Sound chemicals management requires scientific risk assessment schemes capable of predicting physical–chemical properties, environmental behavior, and toxicological effects of vast number of chemicals. However, the current experimental system cannot meet the need for risk assessment of the large and ever-increasing number of chemicals. Meanwhile, current experimental approaches are not sufficient for toxicology to thrive in the era of information. Thus, an auxiliary yet critical field for complementing the experimental sector of chemicals risk assessment has emerged: computational toxicology . Computational toxicology is an interdisciplinary field based especially on environmental chemistry, computational chemistry, chemo-bioinformatics, and systems biology, etc., and it aims at facilitating efficient simulation and prediction of environmental exposure, hazard, and risk of chemicals through various in silico models. Computational toxicology has profoundly changed the way people view and interpret basic concepts of toxicology. Meanwhile, this field is continuously borrowing ideas from exterior fields, which greatly promotes innovative development of toxicology. In this chapter, backgrounds and tasks of computational toxicology are firstly introduced. Then, a variety of in silico models linking key information of chemicals involved in the continuum of source to adverse outcome , such as source emission, concentrations in environmental compartments, exposure concentrations at biological target sites, and adverse efficacy or thresholds are described and discussed. Finally, challenges in computational toxicology such as parameterization for the proposed models, representation of complexity of living systems, and modeling of interlinked chemicals as mixtures are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3R:

Replacement, reduction, and refinement

ABMs:

Agent/individual-based models

AM1:

Austin model 1

AMBER:

Assisted Model Building with Energy Refinement

AO:

Adverse outcome

AOP:

Adverse outcome pathway

CAS:

Chemical abstract service

CC:

Coupled-cluster

CGenFF:

CHARMM General Force Field

CHARMM:

Chemistry at HARvard Molecular Mechanics

CI:

Configuration interaction

CSBP:

Computational systems biology pathway

DFT:

Density functional theory

DNA:

Deoxyribonucleic acid

EPA:

Environmental Protection Agency

ESD:

Emission scenario documents

EU:

European Union

FF:

Force field

GAFF:

General AMBER Force Field

HF:

Hartree–Fock

HTS:

High-throughput screening

IVIVE:

In vitro–in vivo extrapolation

KE:

Key event

MD:

Molecular dynamics

MIE:

Molecular initiating event

MM:

Molecular mechanics

MNDO:

Modified neglect of diatomic overlap

MP:

Many-body perturbation

Nrf2:

Nuclear factor erythroid 2-related factor 2

OECD:

Organization of Economic Cooperation and Development

OSIRIS:

Optimized Strategies for Risk Assessment of Industrial Chemicals through Integration of Non-test and Test Information

PBDE:

Polybrominated diphenyl ester

PBTK:

Physiologically based toxicokinetics

QM:

Quantum mechanics

QSAR:

Quantitative structure–activity relationship

REACH:

Registration, evaluation, authorization and restriction of chemicals

RNA:

Ribonucleic acid

SE:

Semi-empirical

SEURAT:

Safety Evaluation Ultimately Replacing Animal Testing

SMILES:

Simplified molecular-input line-entry system

SOC:

Semi-volatile organic compound

US:

United States

References

  1. UNEP (2013) Global chemicals outlook—towards sound management of chemicals. United Nations Environment Programme, Nairobi

    Google Scholar 

  2. Rappaport SM, Smith MT (2010) Environment and disease risks. Science 330(6003):460–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Schwarzman MR, Wilson MP (2009) New science for chemicals policy. Science 326(5956):1065–1066

    Article  CAS  PubMed  Google Scholar 

  4. EU (2006) Regulation (EC) No. 1907/2006 of the European Parliament and of the Council of 18 December 2006, concerning the Registration, Evaluation, Authorization, and Restriction of Chemicals (REACH). Official Journal of the EU, EU, Brussels

    Google Scholar 

  5. Hartung T (2009) Toxicology for the twenty-first century. Nature 460(7252):208–212

    Article  CAS  PubMed  Google Scholar 

  6. Judson R, Richard A, Dix DJ, Houck K, Martin M, Kavlock R, Dellarco V, Henry T, Holderman T, Sayre P, Tan S, Carpenter T, Smith E (2009) The toxicity data landscape for environmental chemicals. Environ Health Perspect 117(5):685–695

    Article  CAS  PubMed  Google Scholar 

  7. Collins FS, Gray GM, Bucher JR (2008) Toxicology—transforming environmental health protection. Science 319(5865):906–907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. NRC (2007) Toxicity testing in the 21st century: a vision and a strategy. National Research Council, Washington, DC

    Google Scholar 

  9. Inglese J, Auld DS, Jadhav A, Johnson RL, Simeonov A, Yasgar A, Zheng W, Austin CP (2006) Quantitative high-throughput screening: a titration-based approach that efficiently identifies biological activities in large chemical libraries. Proc Natl Acad Sci U S A 103(31):11473–11478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Inglese J, Johnson RL, Simeonov A, Xia M, Zheng W, Austin CP, Auld DS (2007) High-throughput screening assays for the identification of chemical probes. Nat Chem Biol 3(8):466–479

    Article  CAS  PubMed  Google Scholar 

  11. Dix DJ, Houck KA, Martin MT, Richard AM, Setzer RW, Kavlock RJ (2007) The ToxCast program for prioritizing toxicity testing of environmental chemicals. Toxicol Sci 95(1):5–12

    Article  CAS  PubMed  Google Scholar 

  12. Attene-Ramos MS, Miller N, Huang R, Michael S, Itkin M, Kavlock RJ, Austin CP, Shinn P, Simeonov A, Tice RR, Xia M (2013) The Tox21 robotic platform for the assessment of environmental chemicals—from vision to reality. Drug Discov Today 18(15–16):716–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhu H, Zhang J, Kim MT, Boison A, Sedykh A, Moran K (2014) Big data in chemical toxicity research: the use of high-throughput screening assays to identify potential toxicants. Chem Res Toxicol 27(10):1643–1651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tice RR, Austin CP, Kavlock RJ, Bucher JR (2013) Improving the human hazard characterization of chemicals: a Tox21 update. Environ Health Perspect 121(7):756–765

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Judson R, Kavlock R, Martin M, Reif D, Houck K, Knudsen T, Richard A, Tice RR, Whelan M, Xia M, Huang R, Austin C, Daston G, Hartung T, Fowle JR III, Wooge W, Tong W, Dix D (2013) Perspectives on validation of high-throughput assays supporting 21st century toxicity testing. Altex 30(1):51–66

    Article  PubMed  PubMed Central  Google Scholar 

  16. Thomas RS, Black MB, Li L, Healy E, Chu T-M, Bao W, Andersen ME, Wolfinger RD (2012) A comprehensive statistical analysis of predicting in vivo hazard using high-throughput in vitro screening. Toxicol Sci 128(2):398–417

    Article  CAS  PubMed  Google Scholar 

  17. Yoon M, Campbell JL, Andersen ME, Clewell HJ (2012) Quantitative in vitro to in vivo extrapolation of cell-based toxicity assay results. Crit Rev Toxicol 42(8):633–652

    Article  CAS  PubMed  Google Scholar 

  18. Yoon M, Efremenko A, Blaauboer BJ, Clewell HJ (2014) Evaluation of simple in vitro to in vivo extrapolation approaches for environmental compounds. Toxicol Vitro 28(2):164–170

    Article  CAS  Google Scholar 

  19. Ankley GT, Bennett RS, Erickson RJ, Hoff DJ, Hornung MW, Johnson RD, Mount DR, Nichols JW, Russom CL, Schmieder PK, Serrrano JA, Tietge JE, Villeneuve DL (2010) Adverse outcome pathways: a conceptual framework to support ecotoxicology research and risk assessment. Environ Toxicol Chem 29(3):730–741

    Article  CAS  PubMed  Google Scholar 

  20. Wang ZY, Chen JW, Qiao XL, Li XH, Xie HB, Cai XY (2016) Computational toxicology: oriented for chemicals risk assessment. Scientia Sinica Chimica 46(2):222–240 (in Chinese with English abstract)

    Article  CAS  Google Scholar 

  21. Kavlock R, Dix D (2010) Computational toxicology as implemented by the US EPA: providing high throughput decision support tools for screening and assessment chemical exposure, hazard and risk. J Toxicol Environ Health-Pt b-Crit Rev 13(2–4):197–217

    Article  CAS  Google Scholar 

  22. Vermeire T, Aldenberg T, Buist H, Escher S, Mangelsdorf I, Paune E, Rorije E, Kroese D (2013) OSIRIS, a quest for proof of principle for integrated testing strategies of chemicals for four human health endpoints. Regul Toxicol Pharmacol 67(2):136–145

    Article  CAS  PubMed  Google Scholar 

  23. Daston G, Knight DJ, Schwarz M, Gocht T, Thomas RS, Mahony C, Whelan M (2015) SEURAT: Safety Evaluation Ultimately Replacing Animal Testing—recommendations for future research in the field of predictive toxicology. Arch Toxicol 89(1):15–23

    Article  CAS  PubMed  Google Scholar 

  24. Van Leeuwen CJ, Vermeire TG (2007) Risk assessment of chemicals: an introduction, 2nd edn. Springer, Dordrecht

    Book  Google Scholar 

  25. Cherkasov A, Muratov EN, Fourches D, Varnek A, Baskin II, Cronin M, Dearden J, Gramatica P, Martin YC, Todeschini R, Consonni V, Kuz’min VE, Cramer R, Benigni R, Yang C, Rathman J, Terfloth L, Gasteiger J, Richard A, Tropsha A (2014) QSAR modeling: where have you been? Where are you going to? J Med Chem 57(12):4977–5010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Judson RS, Martin MT, Egeghy P, Gangwal S, Reif DM, Kothiya P, Wolf M, Cathey T, Transue T, Smith D, Vail J, Frame A, Mosher S, Hubal EAC, Richard AM (2012) Aggregating data for computational toxicology applications: The US Environmental Protection Agency (EPA) aggregated computational toxicology resource (ACToR) system. Int J Mol Sci 13(2):1805–1831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang Y, Bolton E, Dracheva S, Karapetyan K, Shoemaker BA, Suzek TO, Wang J, Xiao J, Zhang J, Bryant SH (2010) An overview of the PubChem BioAssay resource. Nucleic Acids Res 38:D255–D266

    Article  CAS  PubMed  Google Scholar 

  28. Hinchliffe A (2008) Molecular modelling for beginners, 2nd edn. Wiley, UK

    Google Scholar 

  29. Lewars EG (2011) Computational chemistry: introduction to the theory and applications of molecular and quantum mechanics. Springer, Netherlands

    Book  Google Scholar 

  30. Mackay D (1979) Finding fugacity feasible. Environ Sci Technol 13(10):1218–1223

    Article  CAS  Google Scholar 

  31. Mackay D (2001) Multimedia environmental models: the fugacity approach, 2nd edn. CRC Press, Boca Raton

    Book  Google Scholar 

  32. Ao J, Chen J, Tian F, Cai X (2009) Application of a level IV fugacity model to simulate the long-term fate of hexachlorocyclohexane isomers in the lower reach of Yellow River basin, China. Chemosphere 74(3):370–376

    Article  CAS  PubMed  Google Scholar 

  33. Arnot JA, Mackay D, Webster E, Southwood JM (2006) Screening level risk assessment model for chemical fate and effects in the environment. Environ Sci Technol 40(7):2316–2323

    Article  CAS  PubMed  Google Scholar 

  34. Coulibaly L, Labib ME, Hazen R (2004) A GIS-based multimedia watershed model: development and application. Chemosphere 55(7):1067–1080

    Article  CAS  PubMed  Google Scholar 

  35. Song HM, Xu LY (2011) A method of urban ecological risk assessment: combining the multimedia fugacity model and GIS. Stoch Environ Res Risk Assess 25(5):713–719

    Article  Google Scholar 

  36. Escher BI, Hermens JLM (2004) Internal exposure: linking bioavailability to effects. Environ Sci Technol 38(23):455A–462A

    Article  CAS  PubMed  Google Scholar 

  37. Bessems JG, Loizou G, Krishnan K, Clewell HJ III, Bernasconi C, Bois F, Coecke S, Collnot E-M, Diembeck W, Farcal LR, Geraets L, Gundert-Remy U, Kramer N, Kuesters G, Leite SB, Pelkonen OR, Schroeder K, Testai E, Wilk-Zasadna I, Zaldivar-Comenges J-M (2014) PBTK modelling platforms and parameter estimation tools to enable animal-free risk assessment Recommendations from a joint EPAA—EURL ECVAM ADME workshop. Regul Toxicol Pharmacol 68(1):119–139

    Article  CAS  PubMed  Google Scholar 

  38. Blaauboer BJ (2010) Biokinetic modeling and in vitro-in vivo extrapolations. J Toxicol Environ Health-Pt b-Crit Rev 13(2–4):242–252

    Article  CAS  Google Scholar 

  39. Tan Y-M, Liao KH, Clewell HJ (2007) Reverse dosimetry: interpreting trihalomethanes biomonitoring data using physiologically based pharmacokinetic modeling. J Expo Sci Environ Epidemiol 17(7):591–603

    Article  CAS  PubMed  Google Scholar 

  40. Cui YX, Balshaw DM, Kwok RK, Thompson CL, Collman GW, Birnbaum LS (2016) The exposome: embracing the complexity for discovery in environmental health. Environ Health Perspect 124(8):A137–A140

    Article  PubMed  PubMed Central  Google Scholar 

  41. Egeghy PP, Sheldon LS, Isaacs KK, Ozkaynak H, Goldsmith M-R, Wambaugh JF, Judson RS, Buckley TJ (2016) Computational exposure science: an emerging discipline to support 21st-century risk assessment. Environ Health Perspect 124(6):697–702

    Article  CAS  PubMed  Google Scholar 

  42. Waters MD, Fostel JM (2004) Toxicogenomics and systems toxicology: aims and prospects. Nat Rev Genet 5(12):936–948

    Article  CAS  PubMed  Google Scholar 

  43. Keiser MJ, Setola V, Irwin JJ, Laggner C, Abbas AI, Hufeisen SJ, Jensen NH, Kuijer MB, Matos RC, Tran TB, Whaley R, Glennon RA, Hert J, Thomas KLH, Edwards DD, Shoichet BK, Roth BL (2009) Predicting new molecular targets for known drugs. Nature 462(7270):175–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Li J, Wu Z, Cheng F, Li W, Liu G, Tang Y (2014) Computational prediction of microRNA networks incorporating environmental toxicity and disease etiology. Sci Rep 4:5576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hong H, Zhang W, Shen J, Su Z, Ning B, Han T, Perkins R, Shi L, Tong W (2013) Critical role of bioinformatics in translating huge amounts of next-generation sequencing data into personalized medicine. Sci China-Life Sci 56(2):110–118

    Article  CAS  PubMed  Google Scholar 

  46. Zhang X, Xia P, Wang P, Yang J, Baird DJ (2018) Omics advances in ecotoxicology. Environ Sci Technol 52(7):3842–3851

    Article  CAS  PubMed  Google Scholar 

  47. Zhang Q, Bhattacharya S, Andersen ME, Conolly RB (2010) Computational systems biology and dose-response modeling in relation to new directions in toxicity testing. J Toxicol Environ Health-Pt b-Crit Rev 13(2–4):253–276

    Article  CAS  Google Scholar 

  48. Zhang Q, Bhattacharya S, Conolly RB, Clewell HJ, Kaminski NE, Andersen ME (2014) Molecular signaling network motifs provide a mechanistic basis for cellular threshold responses. Environ Health Perspect 122(12):1261–1270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhang Q, Pi J, Woods CG, Andersen ME (2010) A systems biology perspective on Nrf2-mediated antioxidant response. Toxicol Appl Pharmacol 244(1):84–97

    Article  CAS  PubMed  Google Scholar 

  50. Birbaumer M, Schweitzer F (2011) Agent-based modeling of intracellular transport. Eur Phys J B 82(3–4):245–255

    Article  CAS  Google Scholar 

  51. Dalmasso G, Zapata PAM, Brady NR, Hamacher-Brady A (2017) Agent-based modeling of mitochondria links sub-cellular dynamics to cellular homeostasis and heterogeneity. PLoS ONE 12(1):e0168198

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Bonabeau E (2002) Agent-based modeling: methods and techniques for simulating human systems. Proc Natl Acad Sci U S A 99:7280–7287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Grimm V, Revilla E, Berger U, Jeltsch F, Mooij WM, Railsback SF, Thulke HH, Weiner J, Wiegand T, DeAngelis DL (2005) Pattern-oriented modeling of agent-based complex systems: lessons from ecology. Science 310(5750):987–991

    Article  PubMed  CAS  Google Scholar 

  54. Kleinstreuer N, Dix D, Rountree M, Baker N, Sipes N, Reif D, Spencer R, Knudsen T (2013) A computational model predicting disruption of blood vessel development. PLoS Comput Biol 9(4):e1002996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Swat MH, Thomas GL, Belmonte JM, Shirinifard A, Hmeljak D, Glazier JA (2012) Multi-scale modeling of tissues using CompuCell 3D. In: Asthagiri AR, Arkin AP (eds) Computational methods in cell biology, vol 110. Academic Press, Waltham, pp 325–366

    Chapter  Google Scholar 

  56. Wambaugh J, Shah I (2010) Simulating microdosimetry in a virtual hepatic lobule. PLoS Comput Biol 6(4):e1000756

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Shah I, Wambaugh J (2010) Virtual tissues in toxicology. J Toxicol Environ Health-Pt b-Crit Rev 13(2–4):314–328

    Article  CAS  Google Scholar 

  58. Allen TEH, Goodman JM, Gutsell S, Russell PJ (2014) Defining molecular initiating events in the adverse outcome pathway framework for risk assessment. Chem Res Toxicol 27(12):2100–2112

    Article  CAS  PubMed  Google Scholar 

  59. Bobrowicz FW, Goddard WA III (1977) The self-consistent field equations for generalized valence bond and open-shell hartree-fock wave functions. Plenum, New York

    Book  Google Scholar 

  60. Pople JA, Headgordon M, Raghavachari K (1987) Quadratic configuration-interaction—a general technique for determining electron correlation energies. J Chem Phys 87(10):5968–5975

    Article  CAS  Google Scholar 

  61. Bartlett RJ (1981) Many-body perturbation-theory and coupled cluster theory for electron correlation in molecules. Annu Rev Phys Chem 32:359–401

    Article  CAS  Google Scholar 

  62. Dewar MJS, Thiel W (1977) Ground-states of molecules. 38. MNDO method—approximations and parameters. J Am Chem Soc 99(15):4899–4907

    Google Scholar 

  63. Dewar MJS, Zoebisch EG, Healy EF, Stewart JJP (1985) The development and use of quantum-mechanical molecular-models. 76. AM1—a new general-purpose quantum-mechanical molecular-model. J Am Chem Soc 107(13):3902–3909

    Article  CAS  Google Scholar 

  64. Zhang HQ, Xie HB, Chen JW, Zhang SS (2015) Prediction of hydrolysis pathways and kinetics for antibiotics under environmental pH conditions: a quantum chemical study on cephradine. Environ Sci Technol 49(3):1552–1558

    Article  CAS  PubMed  Google Scholar 

  65. Shaik S, Kumar D, de Visser SP, Altun A, Thiel W (2005) Theoretical perspective on the structure and mechanism of cytochrome P450 enzymes. Chem Rev 105(6):2279–2328

    Article  CAS  PubMed  Google Scholar 

  66. Huang J, Rauscher S, Nawrocki G, Ran T, Feig M, de Groot BL, Grubmueller H, MacKerell AD Jr (2017) CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat Methods 14(1):71–73

    Article  CAS  PubMed  Google Scholar 

  67. Salomon-Ferrer R, Case DA, Walker RC (2013) An overview of the AMBER biomolecular simulation package. WIREs Comput Mol Sci 3(2):198–210

    Article  CAS  Google Scholar 

  68. Vanommeslaeghe K, Hatcher E, Acharya C, Kundu S, Zhong S, Shim J, Darian E, Guvench O, Lopes P, Vorobyov I, MacKerell AD Jr (2010) CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J Comput Chem 31(4):671–690

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Wang JM, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25(9):1157–1174

    Article  CAS  PubMed  Google Scholar 

  70. Senn HM, Thiel W (2009) QM/MM methods for biomolecular systems. Angew Chem Int Ed 48(7):1198–1229

    Article  CAS  Google Scholar 

  71. Hammett LP (1936) The effect of structure upon the reactions of organic compounds. Benzene derivatives. J Am Chem Soc 59(1):96–103

    Article  Google Scholar 

  72. Hansch C, Maloney PP, Fujita T (1962) Correlation of biological activity of phenoxyacetic acids with Hammett substituent constants and partition coefficients. Nature 194(4824):178

    Article  CAS  Google Scholar 

  73. Cronin MTD, Schultz TW (2003) Pitfalls in QSAR. J Mol Struct-Theochem 622(1–2):39–51

    Article  CAS  Google Scholar 

  74. Ekins S (2014) Progress in computational toxicology. J Pharmacol Toxicol Methods 69(2):115–140

    Article  CAS  PubMed  Google Scholar 

  75. Todeschini R, Consonni V (2009) Molecular descriptors for chemoinformatics, vol I & II. Wiley, Weinheim

    Google Scholar 

  76. Flach P (2012) Machine learning: the art and science of algorithms that make sense of data. Cambridge University Press, Cambridge

    Book  Google Scholar 

  77. Yang X, Xie H, Chen J, Li X (2013) Anionic phenolic compounds bind stronger with transthyretin than their neutral forms: nonnegligible mechanisms in virtual screening of endocrine disrupting chemicals. Chem Res Toxicol 26(9):1340–1347

    Article  CAS  PubMed  Google Scholar 

  78. Olsen L, Rydberg P, Rod TH, Ryde U (2006) Prediction of activation energies for hydrogen abstraction by cytochrome P450. J Med Chem 49(22):6489–6499

    Article  CAS  PubMed  Google Scholar 

  79. Rydberg P, Ryde U, Olsen L (2008) Prediction of activation energies for aromatic oxidation by cytochrome P450. J Phys Chem A 112(50):13058–13065

    Article  CAS  PubMed  Google Scholar 

  80. Rydberg P, Ryde U, Olsen L (2008) Sulfoxide, sulfur, and nitrogen oxidation and dealkylation by cytochrome P450. J Chem Theory Comput 4(8):1369–1377

    Article  CAS  PubMed  Google Scholar 

  81. Rydberg P, Gloriam DE, Zaretzki J, Breneman C, Olsen L (2010) SMARTCyp: a 2D method for prediction of cytochrome P450-mediated drug metabolism. ACS Med Chem Lett 1(3):96–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Li C, Chen J, Xie H-B, Zhao Y, Xia D, Xu T, Li X, Qiao X (2017) Effects of atmospheric water on •OH-initiated oxidation of organophosphate flame retardants: a DFT investigation on TCPP. Environ Sci Technol 51(9):5043–5051

    Article  CAS  PubMed  Google Scholar 

  83. Li C, Xie HB, Chen JW, Yang XH, Zhang YF, Qiao XL (2014) Predicting gaseous reaction rates of short chain chlorinated paraffins with •OH: overcoming the difficulty in experimental determination. Environ Sci Technol 48(23):13808–13816

    Article  CAS  PubMed  Google Scholar 

  84. Fu Z, He N, Zhou P, Liu J, Xie H-B, Yu Q, Ma F, Fu Z, Wang Z, Chen J (2017) Adsorption of nitrobenzene on the surface of ice: a grand canonical monte carlo simulation study. J Phys Chem C 121(29):15746–15755

    Article  CAS  Google Scholar 

  85. Van Straalen N (2003) Ecotoxicology becomes stress ecology. Environ Sci Technol 37(17):324A–330A

    Article  PubMed  Google Scholar 

  86. Celander MC, Goldstone JV, Denslow ND, Iguchi T, Kille P, Meyerhoff RD, Smith BA, Hutchinson TH, Wheeler JR (2011) Species extrapolation for the 21st century. Environ Toxicol Chem 30(1):52–63

    Article  CAS  PubMed  Google Scholar 

  87. Brinkmann M, Schlechtriem C, Reininghaus M, Eichbaum K, Buchinger S, Reifferscheid G, Hollert H, Preuss TG (2016) Cross-species extrapolation of uptake and disposition of neutral organic chemicals in fish using a multispecies physiologically-based toxicokinetic model framework. Environ Sci Technol 50(4):1914–1923

    Article  CAS  PubMed  Google Scholar 

  88. Bordoli L, Kiefer F, Arnold K, Benkert P, Battey J, Schwede T (2009) Protein structure homology modeling using SWISS-MODEL workspace. Nat Protoc 4(1):1–13

    Article  CAS  PubMed  Google Scholar 

  89. Doering JA, Wiseman S, Giesy JP, Hecker M (2018) A cross-species quantitative adverse outcome pathway for activation of the aryl hydrocarbon receptor leading to early life stage mortality in birds and fishes. Environ Sci Technol 52(13):7524–7533

    Article  CAS  PubMed  Google Scholar 

  90. Fu Z, Wang Y, Chen J, Wang Z, Wang X (2016) How PBDEs are transformed into dihydroxylated and dioxin metabolites catalyzed by the active center of cytochrome P450s: a DFT study. Environ Sci Technol 50(15):8155–8163

    Article  CAS  PubMed  Google Scholar 

  91. Wang X, Wang Y, Chen J, Ma Y, Zhou J, Fu Z (2012) Computational toxicological investigation on the mechanism and pathways of xenobiotics metabolized by cytochrome P450: a case of BDE-47. Environ Sci Technol 46(9):5126–5133

    Article  CAS  PubMed  Google Scholar 

  92. Li F, Xie Q, Li X, Li N, Chi P, Chen J, Wang Z, Hao C (2010) Hormone activity of hydroxylated polybrominated diphenyl ethers on human thyroid receptor-β: in vitro and in silico investigations. Environ Health Perspect 118(5):602–606

    Article  CAS  PubMed  Google Scholar 

  93. Ge L, Chen J, Lin J, Cai X (2009) Light-source-dependent effects of main water constituents on photodegradation of phenicol antibiotics: mechanism and kinetics. Environ Sci Technol 43(9):3101–3107

    Article  CAS  PubMed  Google Scholar 

  94. Ge L, Chen J, Wei X, Zhang S, Qiao X, Cai X, Xie Q (2010) Aquatic photochemistry of fluoroquinolone antibiotics: kinetics, pathways, and multivariate effects of main water constituents. Environ Sci Technol 44(7):2400–2405

    Article  CAS  PubMed  Google Scholar 

  95. Altenburger R, Walter H, Grote M (2004) What contributes to the combined effect of a complex mixture? Environ Sci Technol 38(23):6353–6362

    Article  CAS  PubMed  Google Scholar 

  96. Spurgeon DJ, Jones OAH, Dorne J-LCM, Svendsen C, Swain S, Stuerzenbaum SR (2010) Systems toxicology approaches for understanding the joint effects of environmental chemical mixtures. Sci Total Environ 408(18):3725–3734

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingwen Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, Z., Chen, J. (2019). Background, Tasks, Modeling Methods, and Challenges for Computational Toxicology. In: Hong, H. (eds) Advances in Computational Toxicology. Challenges and Advances in Computational Chemistry and Physics, vol 30. Springer, Cham. https://doi.org/10.1007/978-3-030-16443-0_2

Download citation

Publish with us

Policies and ethics