Skip to main content

Applicability Domain: Towards a More Formal Framework to Express the Applicability of a Model and the Confidence in Individual Predictions

  • Chapter
  • First Online:

Part of the book series: Challenges and Advances in Computational Chemistry and Physics ((COCH,volume 30))

Abstract

A common understanding of the concept of applicability domain (AD) is that it defines the scope in which a model can make a reliable prediction; in other words, it is the domain within which we can trust a prediction. However, in reality, the concept of confidence in a prediction is more complex and multi-faceted; the applicability of a model is only one aspect amongst others. In this chapter, we will look at these different perspectives and how existing AD methods contribute to them. We will also try to formalise a holistic approach in the context of decision-making.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

3D:

Three Dimension

AD:

Applicability Domain

DD:

Decision Domain

kNN:

K-Nearest Neighbours

QSAR:

Quantitative Structure Activity Relationship

OECD:

Organization of Economic Co-operation and Development

PCA:

Principal Component Analysis

References

  1. OECD (2007) Guidance document on the validation of (quantitative) structure-activity relationship [(Q)SAR] models. In: OECD series on testing and assessment, No. 69. OECD Publishing, Paris. https://doi.org/10.1787/9789264085442-en. Accessed 10 Sept 2018

  2. Mathea M et al (2016) Chemoinformatic classification methods and their applicability domain. Mol Inf 35(5):160–180

    Article  CAS  Google Scholar 

  3. Eriksson L et al (2003) Methods for reliability and uncertainty assessment and for applicability evaluations of classification- and regression-based QSARs. Environ Health Perspect 111(10):1361–1375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Carrió P et al (2014) Applicability domain analysis (ADAN): a robust method for assessing the reliability of drug property predictions. J Chem Inf Model 54(5):1500–1511

    Article  PubMed  Google Scholar 

  5. Netzeva TI et al (2005) Current status of methods for defining the applicability domain of (quantitative) structure—activity relationships. Altern Lab Anim 32(2):155–173

    Google Scholar 

  6. Dragos H et al (2009) Predicting the predictability: a unified approach to the applicability domain problem of QSAR models. J Chem Inf Model 49(7):1762–1776

    Article  CAS  PubMed  Google Scholar 

  7. Sahigara F et al (2012) Comparison of different approaches to define the applicability domain of QSAR models. Molecules 17(5):4791–4810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ochi S et al (2017) Structure modification toward applicability domain of a QSAR/QSPR model considering activity/property. Mol Inf 36(12):1700076

    Article  Google Scholar 

  9. Sheridan RP (2012) Three useful dimensions for domain applicability in QSAR models using random forest. J Chem Inf Model 52(3):814–823

    Article  CAS  PubMed  Google Scholar 

  10. Sahigara F et al (2013) Defining a novel k-nearest neighbours approach to assess the applicability domain of a QSAR model for reliable predictions. J Cheminform 5(1):27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sheridan RP et al (2004) Similarity to molecules in the training set is a good discriminator for prediction accuracy in QSAR. J Chem Inf Comput Sci 44(6):1912–1928

    Article  CAS  PubMed  Google Scholar 

  12. Toplak M et al (2014) Assessment of machine learning reliability methods for quantifying the applicability domain of QSAR regression models. J Chem Inf Model 54(2):431–441

    Article  CAS  PubMed  Google Scholar 

  13. Sheridan RP (2015) The relative importance of domain applicability metrics for estimating prediction errors in QSAR varies with training set diversity. J Chem Inf Model 55(6):1098–1107

    Article  CAS  PubMed  Google Scholar 

  14. Roy K et al (2015) On a simple approach for determining applicability domain of QSAR models. Chemom Intell Lab Syst 145:22–29

    Article  CAS  Google Scholar 

  15. Gadaleta D (2016) Applicability domain for QSAR models: where theory meets reality. Intern J Quant Struct Prop Relat 1(1):45–63

    Google Scholar 

  16. Hanser T (2016) Applicability domain: towards a more formal definition. SAR QSAR Environ Res 27(11):893–909

    Article  CAS  PubMed  Google Scholar 

  17. Wikipedia https://en.wikipedia.org/wiki/Curse_of_dimensionality. Accessed 10 Sept 2018

  18. Nikolova-Jeliazkova N, Jaworska J (2005) An approach to determining applicability domains for QSAR group contribution models: an analysis of SRC KOWWIN. Altern Lab Anim 33(5):461–470

    CAS  PubMed  Google Scholar 

  19. Rogers D, Hahn M (2010) Extended-connectivity fingerprints. J Chem Inf Model 50(5):742–754

    Article  CAS  PubMed  Google Scholar 

  20. MACCS structural keys (2011) Accelrys, San Diego, CA

    Google Scholar 

  21. Carhart RE et al (1985) Atom pairs as molecular features in structure-activity studies: definition and applications. J Chem Inf Comput Sci 25(2):64–73

    Article  CAS  Google Scholar 

  22. Gobbi A, Poppinger D (1998) Genetic optimization of combinatorial libraries. Biotech Bioeng 61(1):47–54

    Article  CAS  Google Scholar 

  23. Nilakantan R et al (1987) Topological torsion: a new molecular descriptor for SAR applications. Comparison with other descriptors. J Chem Inf Comput Sci 27(2):82–85

    Article  CAS  Google Scholar 

  24. Dimitrov S et al (2005) A stepwise approach for defining the applicability domain of SAR and QSAR models. J Chem Inf Model 45(4):839–849

    Article  CAS  PubMed  Google Scholar 

  25. Willett P et al (1998) Chemical similarity searching. J Chem Inf Comput Sci 38(6):983–996

    Article  CAS  Google Scholar 

  26. Aniceto N et al (2016) A novel applicability domain technique for mapping predictive reliability across the chemical space of a QSAR: reliability-density neighbourhood. J Cheminformatics 8:69

    Article  Google Scholar 

  27. Mussa HY et al (2015) The Parzen Window method: in terms of two vectors and one matrix. Pattern Recogn Lett 63:30–35

    Article  Google Scholar 

  28. Philip N et al (2013) Assessing confidence in predictions made by knowledge-based systems. Toxicol Res 4(2):70–79

    Google Scholar 

  29. Norinder U et al (2016) Conformal prediction to define applicability domain—a case study on predicting ER and AR binding. SAR QSAR Environ Res 27(4):303–316

    Article  CAS  PubMed  Google Scholar 

  30. Forreryd A et al (2018) Predicting skin sensitizers with confidence—Using conformal prediction to determine applicability domain of GARD. Toxicol In Vitro 48:179–187

    Article  CAS  PubMed  Google Scholar 

  31. Wikipedia. https://en.wikipedia.org/wiki/TARDIS

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Hanser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hanser, T., Barber, C., Guesné, S., Marchaland, J.F., Werner, S. (2019). Applicability Domain: Towards a More Formal Framework to Express the Applicability of a Model and the Confidence in Individual Predictions. In: Hong, H. (eds) Advances in Computational Toxicology. Challenges and Advances in Computational Chemistry and Physics, vol 30. Springer, Cham. https://doi.org/10.1007/978-3-030-16443-0_11

Download citation

Publish with us

Policies and ethics