Skip to main content

Plant-Mediated Synthesis, Applications, and Challenges of Magnetic Nanostructures

  • Chapter
  • First Online:
Book cover Magnetic Nanostructures

Abstract

The applications of magnetic nanostructures (MNSs) in various fields of human welfare have recently gained much attention due to their irreplaceable and unique advantages. Plant-mediated synthesized MNSs have provided a sustainable approach toward their cost-effective green synthesis with reduced harm. In the present chapter, syntheses of MNSs by using plant resources, challenges, and their potential applications are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed K, Tariq I, Siddiqui SU, Mudassir M (2016) Green synthesis of cobalt nanoparticles by using methanol extract of plant leaf as reducing agent. Pure Appl Biol 5(3):453–457

    CAS  Google Scholar 

  • Al-Ruqeishi MS, Mohiuddin T, Al-Saadi LK (2016) Green synthesis of iron oxide nanorods from deciduous Omani mango tree leaves for heavy oil viscosity treatment. Arab J Chem. https://doi.org/10.1016/j.arabjc.2016.04.003

  • Awwad AM, Salem NM (2012) A green and facile approach for synthesis of magnetite nanoparticles. J Nanosci Nanotechnol 2(6):208–213

    Article  CAS  Google Scholar 

  • Cai Y, Shen Y, Xie A, Li S, Wang X (2010) Green synthesis of soya bean sprouts-mediated superparamagnetic Fe3O4 nanoparticles. J Magn Magn Mater 322(19):2938–2943

    Article  CAS  Google Scholar 

  • Dussána KJ, Giraldo OH, Cardona CA (2007) Application of magnetic nanostructures in biotechnological processes: biodiesel production using lipase immobilized on magnetic carriers. Proc Eur Cong Chem Eng 2007:1–7

    Google Scholar 

  • Ebrahimi N, Rasoul-Amini S, Ebrahiminezhad A, Ghasemi Y, Gholami A, Seradj H (2016) Comparative study on characteristics and cytotoxicity of bifunctional magneticsilver nanostructures: synthesized using three different reducing agents. Acta Metall Sin-Engl 29(4):326–334

    Article  CAS  Google Scholar 

  • Ebrahiminezhad A, Davaran S, Rasoul-Amini S, Barar J, Moghadam M, Ghasemi Y (2012a) Synthesis, characterization and anti-listeria monocytogenes effect of amino acid coated magnetite nanoparticles. Curr Nanosci 8(6):868–874

    Article  CAS  Google Scholar 

  • Ebrahiminezhad A, Ghasemi Y, Rasoul-Amini S, Barar J, Davaran S (2012b) Impact of amino-acid coating on the synthesis and characteristics of iron-oxide nanoparticles (IONs). Bull Kor Chem Soc 33(12):3957–3962

    Article  CAS  Google Scholar 

  • Ebrahiminezhad A, Zare-Hoseinabadi A, Sarmah AK, Taghizadeh S, Ghasemi Y, Berenjian A (2018) Plant-mediated synthesis and applications of iron nanoparticles. Mol Biotechnol 60(2):154–168

    Article  CAS  PubMed  Google Scholar 

  • Frey NA, Peng S, Cheng K, Sun S (2009) Magnetic nanoparticles: synthesis, functionalization, and applications in bioimaging and magnetic energy storage. Chem Soc Rev 38:2532–2542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • González-Melendi P, Fernández-Pacheco R, Coronado MJ, Corredor E, Testillano PS, Risueño MC, Marquina C, Ibarra MR, Rubiales D, Pérez-de-Luque A (2008) Nanoparticles as smart treatment-delivery systems in plants: assessment of different techniques of microscopy for their visualization in plant tissues. Ann Bot 101(1):187–195

    Article  PubMed  Google Scholar 

  • Guo J, Wang R, Tjiu WW, Pan J, Liu T (2012) Synthesis of Fe nanoparticles@ graphene composites for environmental applications. J Hazard Mater 225:63–73

    Article  CAS  PubMed  Google Scholar 

  • Guo T, Lin M, Huang J, Zhou C, Tian W, Yu H, Jiang X, Ye J, Shi Y, Xiao Y, Bian X (2018) The recent advances of magnetic nanoparticles in Medicine. J Nanomater 2018:7805147

    Article  CAS  Google Scholar 

  • Hao R, Yu J, Ge Z, Zhao L, Sheng F, Xu L, Li G, Hou Y (2013) Developing Fe3O4 nanoparticles into an efficient multimodality imaging and therapeutic probe. Nanoscale 5:11954–11963

    Article  CAS  PubMed  Google Scholar 

  • Harshiny M, Iswarya CN, Matheswaran M (2015) Biogenic synthesis of iron nanoparticles using Amaranthus dubius leaf extract as a reducing agent. Powder Technol 286:744–749

    Article  CAS  Google Scholar 

  • He S, Feng Y, Ren H, Zhang Y, Gu N, Lin X (2011) The impact of iron oxide magnetic nanoparticles on the soil bacterial community. J Soils Sediments 11:1408–1417

    Article  CAS  Google Scholar 

  • Herlekar M, Barve S, Kumar R (2014) Plant-mediated green synthesis of iron nanoparticles. J Nanopart Res 2014:1–9. 140614

    Article  CAS  Google Scholar 

  • Hou Y, Gao S (2003) Monodisperse nickel nanoparticles prepared from a monosurfactant system and their magnetic properties. J Mater Chem 13:1510–1512

    Article  CAS  Google Scholar 

  • Hou Y, Yu J, Gao S (2003) Solvothermal reduction synthesis and characterization of superparamagnetic magnetite nanoparticles. J Mater Chem 13:1983–1987

    Article  CAS  Google Scholar 

  • Huang L, Weng X, Chen Z, Megharaj M, Naidu R (2014) Green synthesis of iron nanoparticles by various tea extracts: comparative study of the reactivity. Spectrochim Acta A Mol Biomol Spectrosc 15(130):295–301

    Article  CAS  Google Scholar 

  • Huber DL (2005) Synthesis, properties, and applications of iron nanoparticles. Small 1(5):482–501

    Article  CAS  PubMed  Google Scholar 

  • Ingale AG, Chaudhari AN (2013) Biogenic synthesis of nanoparticles and potential applications: an eco-friendly approach. J Nanomed Nanotechol 4:165

    Article  CAS  Google Scholar 

  • Jassal V, Shanker U, Gahlot S (2016) Green synthesis of some iron oxide nanoparticles and their interaction with 2-amino, 3-amino and 4-aminopyridines. Mater Today Proc 3(6):1874–1882

    Article  Google Scholar 

  • Jin Y, Liu F, Shan C, Tong M, Hou Y (2014) Efficient bacterial capture with amino acid modified magnetic nanoparticles. Water Res 50:124–134

    Article  CAS  PubMed  Google Scholar 

  • Johnson J, Kent T, Koda J, Peterson C, Rudge S, Tapolsky G (2002) The MTC technology: a platform technology for the site-specific delivery of pharmaceutical agents. Eur Cell Mater 3:12–15

    Google Scholar 

  • Ju Y, Zhang H, Yu J, Tong S, Tian N, Wang Z, Wang X, Su X, Chu X, Lin J, Ding Y, Li G, Sheng F, Hou Y (2017) Monodisperse Au−Fe2C Janus nanoparticles: an attractive multifunctional material for triple-modal imaging-guided tumor photothermal therapy. ACS Nano 11:9239–9248

    Article  CAS  PubMed  Google Scholar 

  • Kianpour S, Ebrahiminezhad A, Mohkam M, Tamaddon AM, Dehshahri A, Heidari R et al (2016) Physicochemical and biological characteristics of the nanostructured polysaccharide-iron hydrogel produced by microorganism Klebsiella oxytoca. J Basic Microbiol 57(2):132–140

    Article  CAS  PubMed  Google Scholar 

  • Kuang Y, Wang Q, Chen Z, Megharaj M, Naidu R (2013) Heterogeneous fenton-like oxidation of monochlorobenzene using green synthesis of iron nanoparticles. Curr Opin Colloid Interface Sci 15(410):67–73

    Article  CAS  Google Scholar 

  • Kumar A, Singhal A (2009) Synthesis of colloidal silver iron oxide nanoparticles—study of their optical and magnetic behavior. Nanotechnol 20(29):295606

    Article  CAS  Google Scholar 

  • Kumar B, Smita K, Cumbal L, Debut A (2014) Biogenic synthesis of iron oxide nanoparticles for 2-arylbenzimidazole fabrication. J Saudi Chem Soc 18(4):364–369

    Article  CAS  Google Scholar 

  • Kumar B, Smita K, Cumbal L, Debut A, Galeas S, Guerrero VH (2016) Phytosynthesis and photocatalytic activity of magnetite (Fe3O4) nanoparticles using the Andean blackberry leaf. Mater Chem Phys 179:310–315

    Article  CAS  Google Scholar 

  • Latha N, Gowri M (2014) Bio synthesis and characterization of Fe3O4 nanoparticles using Caricaya Papaya leaves extract. Synthesis 3:1551–1556

    Google Scholar 

  • Li XQ, Elliott DW, Zhang WX (2006) Zero-valent iron nanoparticles for abatement of environmental pollutants: materials and engineering aspects. Crit Rev Solid State Mater Sci 31(4):111–122

    Article  CAS  Google Scholar 

  • Liu F, Jin Y, Liao H, Cai L, Tong M, Hou Y (2013) Facile self-assembly synthesis of titanate/Fe3O4 nanocomposites for the efficient removal of Pb2+ from aqueous systems. J Mater Chem A 1:805–813

    Article  CAS  Google Scholar 

  • Liu F, Hou Y, Gao S (2014) Exchange-coupled nanocomposites: chemical synthesis, characterization and applications. Chem Soc Rev 43:8098–8113

    Article  CAS  PubMed  Google Scholar 

  • Lu AH, Salabas EL, Schüth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed Engl 46(8):1222–1244

    Article  CAS  PubMed  Google Scholar 

  • Mahdavi M, Namvar F, Ahmad MB, Mohamad R (2013) Green biosynthesis and characterization of magnetic iron oxide (Fe3O4) nanoparticles using seaweed (Sargassum muticum) aqueous extract. Molecules 18(5):5954–5964

    Article  PubMed  PubMed Central  Google Scholar 

  • Makarov VV, Love AJ, Sinitsyna OV, Makarova SS, Yaminsky IV, Taliansky ME, Kalinina NO (2014a) “Green” nanotechnologies: synthesis of metal nanoparticles using plants. Acta Nat 6(1):35–44

    CAS  Google Scholar 

  • Makarov VV, Makarova SS, Love AJ, Sinitsyna OV, Dudnik AO, Yaminsky IV et al (2014b) Biosynthesis of stable iron oxide nanoparticles in aqueous extracts of Hordeum vulgare and Rumex acetosa plants. Langmuir 30(20):5982–5988

    Article  CAS  PubMed  Google Scholar 

  • Martínez-Cabanas M, López-García M, Barriada JL, Herrero R, de Vicente MES (2016) Green synthesis of iron oxide nanoparticles. Development of magnetic hybrid materials for efficient As (V) removal. Chem Eng J 301:83–91

    Article  CAS  Google Scholar 

  • Mohamed MA, Abd–Elsalam KA (2018) Nanoantimicrobials for plant pathogens control: potential applications and mechanistic aspects. In: Abd-Elsalam K, Prasad R (eds) Nanobiotechnology applications in plant protection. Springer, AG, Cham, pp 87–109

    Chapter  Google Scholar 

  • Mornet S, Vasseur S, Grasset F, Veverka P, Goglio G, Demourgues A, Portier J, Pollert E, Duguet E (2006) Magnetic nanoparticle design for medical applications. Prog Solid State Chem 34(2–4):237–247

    Article  CAS  Google Scholar 

  • Muthukumar H, Matheswaran M (2015) Amaranthus spinosus leaf extract mediated FeO nanoparticles: physicochemical traits, photocatalytic and antioxidant activity. ACS Sustain Chem Eng 3(12):3149–3156

    Article  CAS  Google Scholar 

  • Naseem T, Farrukh MA (2015) Antibacterial activity of green synthesis of iron nanoparticles using Lawsonia inermis and Gardenia jasminoides leaves extract. J Chem 2015:1–7. 912342

    Article  CAS  Google Scholar 

  • Niraimathee V, Subha V, Ravindran RE, Renganathan S (2016) Green synthesis of iron oxide nanoparticles from Mimosa pudica root extract. Int J Environ Sustain Dev 15(3):227–240

    Article  Google Scholar 

  • Njagi EC, Huang H, Stafford L, Genuino H, Galindo HM, Collins JB, Hoag GE, Suib SL (2011) Biosynthesis of iron and silver nanoparticles at room temperature using aqueous sorghum bran extracts. Langmuir 27(1):264–271

    Article  CAS  PubMed  Google Scholar 

  • Pandey KB (2018) Mediterranean diet and its impact on cognitive functions in aging. In: Farooqui AA, Farooqui T (eds) Role of the Mediterranean diet in the brain and neurodegenerative diseases. Elsevier BV, London, pp 157–170

    Chapter  Google Scholar 

  • Pandey KB, Rizvi SI (2009) Plant polyphenols as dietary antioxidants in human health and disease. Oxidative Med Cell Longev 2(5):270–278

    Article  Google Scholar 

  • Pandey KB, Rizvi SI (2013) Resveratrol up-regulates the erythrocyte plasma membrane redox system and mitigates oxidation-induced alterations in erythrocytes during aging in humans. Rejuvenation Res 16(3):232–240

    Article  CAS  PubMed  Google Scholar 

  • Pandey KB, Rizvi SI (2014) Role of red grape polyphenols as antidiabetic agents. Integr Med Res 3(3):119–125

    Article  PubMed  PubMed Central  Google Scholar 

  • Pandey KB, Rizvi SI (2017) Plant polyphenols in healthcare and aging. In: Al-Gubory K, Laher I (eds) Nutritional antioxidant therapies: treatments and perspectives. Springer International Publishing AG, Cham, pp 267–282

    Chapter  Google Scholar 

  • Pandey KB, Tiwari BK (2018) Applications of fungal nanobiotechnology in drug development. In: Prasad R, Kumar V, Kumar M, Wang S (eds) Fungal nanobionics: principles and applications. Springer Nature, Singapore, pp 273–286

    Chapter  Google Scholar 

  • Pandian CJ, Palanivel R, Dhananasekaran S (2015) Green synthesis of nickel nanoparticles using Ocimum sanctum and their application in dye and pollutant adsorption. Chin J Chem Eng 23(8):1307–1315

    Article  CAS  Google Scholar 

  • Panigrahi S, Kundu S, Ghosh S, Nath S, Pal T (2004) General method of synthesis for metal nanoparticles. J Nanopart Res 6(4):411–414

    Article  CAS  Google Scholar 

  • Parera Pera N, Kouki A, Finne J, Pieters RJ (2010) Detection of pathogenic Streptococcus suis bacteria using magnetic glycoparticles. Org Biomol Chem 8(10):2425–2429

    Article  CAS  Google Scholar 

  • Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. Journal of Nanoparticles, Article ID 963961, https://doi.org/10.1155/2014/963961

  • Prasad AS (2016) Iron oxide nanoparticles synthesized by controlled bio-precipitation using leaf extract of Garlic Vine (Mansoa alliacea). Mater Sci Semicond Process 53:9–83

    Article  CAS  Google Scholar 

  • Prasad R, Jha A, Prasad K (2018) Exploring the Realms of Nature for Nanosynthesis. Springer International Publishing (ISBN 978-3-319-99570-0 (in press) https://www.springer.com/978-3-319-99570-0

  • Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713

    Article  CAS  Google Scholar 

  • Prasad C, Gangadhara S, Venkateswarlu P (2015) Bioinspired green synthesis of Fe3O4 magnetic nanoparticles using watermelon rinds and their catalytic activity. Appl Nanosci 6(6):797–802

    Article  CAS  Google Scholar 

  • Ramaswamy B, Kulkarni SD, Villar PS, Smith RS, Eberly C, Araneda RC, Depireux DA, Shapiro B (2015) Movement of magnetic nanoparticles in brain tissue: mechanisms and impact on normal neuronal function. Nanomedicine 11(7):1821–1829

    Article  CAS  PubMed  Google Scholar 

  • Ranmadugala D, Ebrahiminezhad A, Manley-Harris M, Ghasemi Y, Berenjian A (2018) Magnetic immobilization of bacteria using iron oxide nanoparticles. Biotechnol Lett 40(2):237–248

    Article  CAS  PubMed  Google Scholar 

  • Rui M, Ma C, Hao Y, Guo J, Rui Y, Tang X, Zhao Q, Fan X, Zhang Z, Hou T, Zhu S (2016) Iron oxide nanoparticles as a potential iron fertilizer for peanut (Arachis hypogaea). Front Plant Sci 7:815

    Article  PubMed  PubMed Central  Google Scholar 

  • Scarberry KE, Dickerson EB, McDonald JF, Zhang ZJ (2008) Magnetic nanoparticle-peptide conjugates for in vitro and in vivo targeting and extraction of cancer cells. J Am Chem Soc 130(31):10258–10262

    Article  CAS  PubMed  Google Scholar 

  • Skomski R, Coey JMD (1994) Exchange coupling and energy product in random two-phase aligned magnets. IEEE Trans Magn 30:607–609

    Article  CAS  Google Scholar 

  • Soliemanzadeh A, Fekri M, Bakhtiary S, Mehrizi MH (2016) Biosynthesis of iron nanoparticles and their application in removing phosphorus from aqueous solutions. Chem Ecol 32(3):286–300

    Article  CAS  Google Scholar 

  • Tadic M, Kralj S, Jagodic M, Hanzel D, Makovec D (2014) Magnetic properties of novel superparamagnetic iron oxide nanoclusters and their peculiarity under annealing treatment. Appl Surf Sci 322:255–264

    Article  CAS  Google Scholar 

  • Tahir M, Mahmood N, Zhang X, Mahmood T, Butt FK, Aslam I, Tanveer M, Idrees F, Khalid S, Shakir I, Yan Y, Zou J, Cao C, Hou Y (2015) Bifunctional catalysts of Co3O4@GCN tubular nanostructured (TNS) hybrids for oxygen and hydrogen evolution reactions. Nano Res 8:3725–3736

    Article  CAS  Google Scholar 

  • Tang W, Zhen Z, Yang C, Wang L, Cowger T, Chen H, Todd T, Hekmatyar K, Zhao Q, Hou Y, Xie J (2014) Fe5C2 nanoparticles with high MRI contrast enhancement for tumor imaging. Small 10:1245–1249

    Article  CAS  PubMed  Google Scholar 

  • Vasudeo K, Pramod K (2016) Biosynthesis of nickel nanoparticles using leaf extract of coriander. Biotechnol Ind J 12(11):1–6

    Google Scholar 

  • Wang T, Lin J, Chen Z, Megharaj M, Naidu R (2014) Green synthesized iron nanoparticles by green tea and eucalyptus leaves extracts used for removal of nitrate in aqueous solution. J Clean Prod 83:413–419

    Article  CAS  Google Scholar 

  • Wang Z, Fang C, Mallavarapu M (2015) Characterization of iron–polyphenol complex nanoparticles synthesized by Sage (Salvia officinalis) leaves. Environ Technol Innov 4:92–97

    Article  Google Scholar 

  • Wu J, Hou Y, Gao S (2011) Controlled synthesis and multifunctional properties of FePt-Au heterostructures. Nano Res 4:836–848

    Article  CAS  Google Scholar 

  • Wu J, Zhu J, Zhou M, Hou Y, Gao S (2012) FePt concave nanocubes with enhanced methanol oxidation activity. Cryst Eng Comm 14:7572–7575

    Article  CAS  Google Scholar 

  • Xu Z, Hou Y, Sun S (2007) Magnetic core/shell Fe3O4/Au and Fe3O4/Au/Ag nanoparticles with tunable plasmonic properties. J Am Chem Soc 129:8698–8699

    Article  CAS  PubMed  Google Scholar 

  • Yang C, Zhao H, Hou Y, Ma D (2012) Fe5C2 nanoparticles: a facile bromide-induced synthesis and as an active phase for Fischer-Tropsch synthesis. J Am Chem Soc 134:15814–15821

    Article  CAS  PubMed  Google Scholar 

  • Yang W, Zhao T, Huang X, Chu X, Tang T, Ju Y, Wang Q, Hou Y, Gao S (2017) Modulating the phases of iron carbide nanoparticles: from a perspective of interfering with the carbon penetration of Fe@Fe3O4 by selectively adsorbed halide ions. Chem Sci 8:473–481

    Article  CAS  PubMed  Google Scholar 

  • Yavuz CT, Mayo JT, Yu WW, Prakash A, Falkner JC, Yean S, Cong L, Shipley HJ, Kan A, Tomson M, Natelson D, Colvin VL (2006) Low-field magnetic separation of monodisperse Fe3O4 nanocrystals. Science 314:964–967

    Article  PubMed  Google Scholar 

  • Yu J, Hao R, Sheng F, Xu L, Li G, Hou Y (2012) Hollow manganese phosphate nanoparticles as smart multifunctional probes for cancer cell targeted magnetic resonance imaging and drug delivery. Nano Res 5:679–694

    Article  CAS  Google Scholar 

  • Yu J, Yang C, Li J, Ding Y, Zhang L, Yousaf MZ, Lin J, Pang R, Wei L, Xu L, Sheng F, Li C, Li G, Zhao L, Hou Y (2014) Multifunctional Fe5C2 nanoparticles: a targeted theranostic platform for magnetic resonance imaging and photoacoustic tomography-guided photothermal therapy. Adv Mater 26:4114–4120

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Ju Y, Zhao L, Chu X, Yang W, Tian Y, Sheng F, Lin J, Liu F, Dong Y, Hou Y (2016) Multistimuli-regulated photochemothermal cancer therapy remotely controlled via Fe5C2 nanoparticles. ACS Nano 10:159–169

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Wu J, Liao H, Hou Y, Gao S (2009) Octahedral Fe3O4 nanoparticles and their assembled structures. Chem Commun 29:4378–4380

    Article  CAS  Google Scholar 

  • Zhu K, Ju Y, Xu J, Yang Z, Gao S, Hou Y (2018) Magnetic nanomaterials: chemical design, synthesis, and potential applications. Acc Chem Res 51(2):404–413

    Article  CAS  PubMed  Google Scholar 

  • Zhuang Z, Huang L, Wang F, Chen Z (2015) Effects of cyclodextrin on the morphology and reactivity of iron-based nanoparticles using Eucalyptus leaf extract. Ind Crop Prod 69:308–313

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors are thankful to their institutes to promote the work.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dubey, P., Watal, G., Pandey, K.B. (2019). Plant-Mediated Synthesis, Applications, and Challenges of Magnetic Nanostructures. In: Abd-Elsalam, K., Mohamed, M., Prasad, R. (eds) Magnetic Nanostructures . Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-16439-3_3

Download citation

Publish with us

Policies and ethics