Detection of Surface Texture with an Artificial Tactile Sensor

  • Moritz ScharffEmail author
  • Jorge H. Alencastre
  • Carsten Behn
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 71)


Animals, e.g., rodents can detect multiple information with their vibrissae. Among other things, the vibrissae can be used to detect information about a surface texture by a tactile stimuli. Inspired by the natural example of mystacial vibrissae, an artificial tactile sensor is designed. To identify the relation between measured signal and surface texture, a simulation respecting a quasi-static sensor displacement is performed. The sensor is modeled as an one-side clamped Euler-Bernoulli whose surface contact is described within the limits of Coulomb’s law of friction. Gathering the support reactions, the friction coefficient between beam and surface can be determined. The theoretical model is verified by an experiment.



This work was technically supported by a test rig from the Grant ZI 540-16/2 of Deutsche Forschungsgemeinschaft.


  1. 1.
    Arabzadeh, E., Zorzin, E., et al.: Neuronal encoding of texture in the whisker sensory pathway. PLoS Biol. 3, e17 (2005)CrossRefGoogle Scholar
  2. 2.
    Boubenec, Y., Claverie, L.N., et al.: An amplitude modulation/demodulation scheme for whisker-based texture perception. J. Neurosci. 34(33), 10832–10843 (2014)CrossRefGoogle Scholar
  3. 3.
    Brecht, M., Preilowski, B., et al.: Functional architecture of the mystacial vibrissae. Behav. Brain Res. 84(1–2), 81–97 (1997)CrossRefGoogle Scholar
  4. 4.
    Carvell, G.E., Simons, D.J.: Biometric analyses of vibrissal tactile discrimination in the rat. J. Neurosci. 10(8), 2638–2648 (1990)CrossRefGoogle Scholar
  5. 5.
    Dörfl, J.: The musculature of the mystacial vibrissae of the white mouse. J. Anat. 135(1), 147–154 (1982)Google Scholar
  6. 6.
    Quist, B.W., Hartmann, M.J.Z., et al.: Modeling forces and moments at the base of a rat vibrissa during noncontact whisking and whisking against an object. J. Neurosci. 34(30), 9828–9844 (2014)CrossRefGoogle Scholar
  7. 7.
    Rice, F.L., Mance, A., et al.: A comparative light microscopic analysis of the sensory innervation of the mystacial pad. I. Innervation of vibrissal follicle-sinus complexes. J. Comp. Neurol. 252(2), 154–174 (1986)Google Scholar
  8. 8.
    Scharff, M., Behn, C., et al.: Towards the development of tactile sensors for surface texture detection. In: Martin, A., Gonçalves, G., et al. (eds.) Proceedings of the 5th International Conference on Intelligent Systems and Applications (INTELLI). Barcelona, Spain, 18–22 Feb (2016) (ThinkMind)Google Scholar
  9. 9.
    Scharff, M., Alencastre, J.H., et al.: Investigations on the mechanical relevance of prominent vibrissa features for surface texture detection. In: Scharff, P., Weber, C., et al. (eds.) Engineering for a Changing World: 59th IWK, Ilmenau Scientific Colloquium, Technische Universität Ilmenau, Germany, 11–15 Sept (2017) (ilmendia)Google Scholar
  10. 10.
    Scharff, M., Darnieder, M., et al.: Towards the development of tactile sensors for determination of static friction coefficient to surfaces. In: Zentner, L., Corves, B., et al. (eds.) Microactuators and Micromechanisms. Mechanisms and Machine Science, vol 45. Springer, Cham (2017)Google Scholar
  11. 11.
    Scharff, M., Darnieder, M., et al.: Theoretical investigations on the behavior of artificial sensors for surface texture detection. Springer Proceedings in Mathematics & Statistics (to be published)Google Scholar
  12. 12.
    Steigenberger, J., Behn, C., et al.: Mathematical model of vibrissae for surface texture detection. Preprint No. M 15/03. Institute of Mathematics, Technische Universität Ilmenau, Germany (2015)Google Scholar
  13. 13.
    Voges, D., Carl, K., et al.: Structural characterization of the whisker system of the rat. IEEE Sens. J. 12(2), 332–339 (2012)CrossRefGoogle Scholar
  14. 14.
    Volkova, T., Zeidis, I., et al.: Analysis of the vibrissa parametric resonance causing a signal amplification during whisking behaviour. J. Bion. Eng. 13(2), 312–323 (2016)CrossRefGoogle Scholar
  15. 15.
    Will, C., Behn, C., et al.: Object contour scanning using elastically supported technical vibrissae. ZAMM J. Appl. Math. Mech./Zeitschrift für Angewandte Mathematik und Mechanik (2017). Scholar
  16. 16.
    Wolfe, J., Hill, D.N., et al.: Texture coding in the rat whisker system: slip-stick versus differential resonance. PLoS Biol. 6(8), e215 (2008)CrossRefGoogle Scholar
  17. 17.
    Zucker, E., Welker, W.I.: Coding of somatic sensory input by vibrissae neurons in the rat’s trigeminal ganglion. Brain Res. 12(1), 138–156 (1969)CrossRefGoogle Scholar
  18. 18.
    Zuo, Y., Perkon, I.: Whisking and whisker kinematics during a texture classification task. Philos. Trans. R. Soc. B Biol. Sci. 366(1581), 3058–3069 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Moritz Scharff
    • 1
    Email author
  • Jorge H. Alencastre
    • 2
  • Carsten Behn
    • 1
  1. 1.Department of Mechanical EngineeringTechnische Universität IlmenauIlmenauGermany
  2. 2.Department of EngineeringPontificial Catholic University of PeruLimaPeru

Personalised recommendations