Skip to main content

Single-Cell Sequencing in Precision Medicine

Part of the Cancer Treatment and Research book series (CTAR,volume 178)

Abstract

The application of next-generation sequencing in cancer genomics allowed for a better understanding of the genetics and pathogenesis of cancer. Single-cell genomics is a relatively new field that has enhanced our current knowledge of the genetic diversity of cells involved in the complex biological systems of cancer. Single-cell genomics is a rapidly developing field, and current technologies can assay a single cell’s gene expression, DNA variation, epigenetic state, and nuclear structure. Statistical and computational methods are central to single-cell genomics and allows for extraction of meaningful information. The translational application of single-cell sequencing in precision cancer therapy has the potential to improve cancer diagnostics, prognostics, targeted therapy, early detection, and noninvasive monitoring. Furthermore, single-cell genomics will transform cancer research as even initial experiments have revolutionized our current understanding of gene regulation and disease.

Keywords

  • Single-cell sequencing
  • Tumor dissociation
  • Tumor microenvironment
  • Cancer subtyping

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-16391-4_9
  • Chapter length: 16 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-16391-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.99
Price excludes VAT (USA)
Hardcover Book
USD   149.99
Price excludes VAT (USA)
Fig. 9.1
Fig. 9.2
Fig. 9.3

References

  1. Trapnell C, Cacchiarelli D, Grimsby J et al (2014) The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol 32:381. https://doi.org/10.1038/nbt.2859

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  2. Navin NE (2015) The first five years of single-cell cancer genomics and beyond. Genome Res 25(10):1499–507. https://doi.org/10.1101/gr.191098.115. PubMed MID: 26430160

    CAS  CrossRef  Google Scholar 

  3. Tang F, Barbacioru C, Wang Y et al (2009) mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods 6:377. https://doi.org/10.1038/nmeth.1315

    CAS  CrossRef  PubMed  Google Scholar 

  4. Aceto N, Bardia A, Miyamoto DT et al (2014) Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell 158(5):1110–1122. https://doi.org/10.1016/j.cell.2014.07.01

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  5. Heitzer E, Auer M, Gasch C et al (2013) Complex tumor genomes inferred from single circulating tumor cells by array-CGH and next-generation sequencing. Cancer Res 73(10):2965 LP–2975. http://cancerres.aacrjournals.org/content/73/10/2965.abstract

    CAS  CrossRef  Google Scholar 

  6. Lohr JG, Adalsteinsson VA, Cibulskis K et al (2014) Whole-exome sequencing of circulating tumor cells provides a window into metastatic prostate cancer. Nat Biotechnol 32:479. https://doi.org/10.1038/nbt.2892

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  7. Ni X, Zhuo M, Su Z et al (2013) Reproducible copy number variation patterns among single circulating tumor cells of lung cancer patients. Proc Natl Acad Sci 110(52):21083 LP–21088. http://www.pnas.org/content/110/52/21083.abstract

    CAS  CrossRef  Google Scholar 

  8. Patel AP, Tirosh I, Trombetta JJ et al (2014) Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science (80-), 344(6190):1396–1401

    CAS  CrossRef  Google Scholar 

  9. Wang Y, Waters J, Leung ML et al (2014) Clonal evolution in breast cancer revealed by single nucleus genome sequencing. Nature 512:155. https://doi.org/10.1038/nature13600

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  10. Xu X, Hou Y, Yin X et al (2012) Single-cell exome sequencing reveals single-nucleotide mutation characteristics of a kidney tumor. Cell 148(5):886–895. https://doi.org/10.1016/j.cell.2012.02.025

    CAS  CrossRef  PubMed  Google Scholar 

  11. Zong C, Lu S, Chapman AR, Xie XS (2012) Genome-wide detection of single-nucleotide and copy-number variations of a single human cell. Science (80-), 338(6114):1622 LP–1626. http://science.sciencemag.org/content/338/6114/1622.abstract

    CAS  CrossRef  Google Scholar 

  12. Wills QF, Mead AJ (2015) Application of single-cell genomics in cancer: promise and challenges. Hum Mol Genet 15:24(R1):R74–84. https://doi.org/10.1093/hmg/ddv235. PubMed PMID: 26113645

    CAS  CrossRef  Google Scholar 

  13. Kan Z, Jaiswal BS, Stinson J et al (2010) Diverse somatic mutation patterns and pathway alterations in human cancers. Nature 466:869. https://doi.org/10.1038/nature09208

    CAS  CrossRef  PubMed  Google Scholar 

  14. Lee M-CW, Lopez-Diaz FJ, Khan SY et al (2014) Single-cell analyses of transcriptional heterogeneity during drug tolerance transition in cancer cells by RNA sequencing. Proc Natl Acad Sci 111(44):E4726–E4735. https://doi.org/10.1073/pnas.1404656111

    CAS  CrossRef  Google Scholar 

  15. Trapnell C (2015) Defining cell types and states with single-cell genomics. Genome Res 25(10):1491–1498. https://doi.org/10.1101/gr.190595.115

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  16. Leung ML, Wang Y, Waters J, Navin NE (2015) SNES: single nucleus exome sequencing. Genome Biol 16(1):55. https://doi.org/10.1186/s13059-015-0616-2

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  17. Van Loo P, Voet T (2014) Single cell analysis of cancer genomes. Curr Opin Genet Dev 24:82–91. https://doi.org/10.1016/j.gde.2013.12.004

    CAS  CrossRef  PubMed  Google Scholar 

  18. Hosokawa M, Nishikawa Y, Kogawa M, Takeyama H (2017) Massively parallel whole genome amplification for single-cell sequencing using droplet microfluidics. Sci Rep 7(1):1–12. https://doi.org/10.1038/s41598-017-05436-4

    CAS  CrossRef  Google Scholar 

  19. Islam S, Zeisel A, Joost S et al (2013) Quantitative single-cell RNA-seq with unique molecular identifiers. Nat Methods 11:163. https://doi.org/10.1038/nmeth.2772

    CAS  CrossRef  PubMed  Google Scholar 

  20. Cusanovich DA, Daza R, Adey A et al (2015) Multiplex single-cell profiling of chromatin accessibility by combinatorial cellular indexing. Science (80-), 348(6237):910 LP–914. http://science.sciencemag.org/content/348/6237/910.abstract

    CAS  CrossRef  Google Scholar 

  21. Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ (2013) Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat Methods 10:1213. https://doi.org/10.1038/nmeth.2688

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  22. Hu P, Zhang W, Xin H, Deng G (2016) Single cell isolation and analysis. Front Cell Dev Biol 4(116). https://doi.org/10.3389/fcell.2016.00116

  23. Hedlund E, Deng Q (2018) Single-cell RNA sequencing: technical advancements and biological applications. Mol Aspects Med 59:36–46

    CAS  CrossRef  Google Scholar 

  24. Cloonan N, Forrest ARR, Kolle G et al (2008) Stem cell transcriptome profiling via massive-scale mRNA sequencing. Nat Methods 5:613. https://doi.org/10.1038/nmeth.1223

    CAS  CrossRef  PubMed  Google Scholar 

  25. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621. https://doi.org/10.1038/nmeth.1226

    CAS  CrossRef  PubMed  Google Scholar 

  26. Nagalakshmi U, Wang Z, Waern K et al (2008) The transcriptional landscape of the yeast genome defined by RNA sequencing. Science (80-). 320(5881):1344 LP–1349. http://science.sciencemag.org/content/320/5881/1344.abstract

  27. Kolodziejczyk AA, Kim JK, Svensson V, Marioni JC, Teichmann SA (2015) The technology and biology of single-cell RNA sequencing. Mol Cell 58(4):610–620. https://doi.org/10.1016/j.molcel.2015.04.005

    CAS  CrossRef  PubMed  Google Scholar 

  28. Stegle O, Teichmann SA, Marioni JC (2015) Computational and analytical challenges in single-cell transcriptomics. Nat Rev Genet 16:133. https://doi.org/10.1038/nrg3833

    CAS  CrossRef  PubMed  Google Scholar 

  29. Saliba AE, Westermann AJ, Gorski SA, Vogel J (2014) Single-cell RNA-seq: advances and future challenges. Nucleic Acids Res 42(14):8845–8860. https://doi.org/10.1093/nar/gku555

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  30. Marr C, Zhou JX, Huang S (2016) Single-cell gene expression profiling and cell state dynamics: collecting data, correlating data points and connecting the dots. bioRxi, 44743. https://doi.org/10.1101/044743

  31. Buenrostro JD, Wu B, Litzenburger UM et al (2015) Single-cell chromatin accessibility reveals principles of regulatory variation. Nature 523:486. https://doi.org/10.1038/nature14590

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  32. Guo H, Zhu P, Wu X, Li X, Wen L, Tang F (2013) Single-cell methylome landscapes of mouse embryonic stem cells and early embryos analyzed using reduced representation bisulfite sequencing. Genome Res 23:2126–2135. https://doi.org/10.1101/gr.161679.113

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  33. Lieberman-Aiden E, van Berkum NL, Williams L et al (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science (80-), 326(5950):289 LP–293. http://science.sciencemag.org/content/326/5950/289.abstract

    CAS  CrossRef  Google Scholar 

  34. Lister R, O’Malley RC, Tonti-Filippini J et al (2008) Highly integrated single-base resolution maps of the epigenome in <em>Arabidopsis</em>. Cell 133(3):523–536. https://doi.org/10.1016/j.cell.2008.03.029

  35. Nagano T, Lubling Y, Stevens TJ et al (2013) Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature 502:59. https://doi.org/10.1038/nature12593

    CAS  CrossRef  PubMed  Google Scholar 

  36. Linnarsson S, Teichmann SA (2016) Single-cell genomics: coming of age. Genome Biol 17(1):16–18. https://doi.org/10.1186/s13059-016-0960-x

    CAS  CrossRef  Google Scholar 

  37. Macaulay IC, Ponting CP, Voet T (2017) Single-cell multiomics: multiple measurements from single cells. Trends Genet 33(2):155–168

    CAS  CrossRef  Google Scholar 

  38. Klein AM, Mazutis L, Akartuna I et al (2015) Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161(5):1187–1201. https://doi.org/10.1016/j.cell.2015.04.044

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  39. Macosko EZ, Basu A, Satija R et al (2015) Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161(5):1202–1214. https://doi.org/10.1016/j.cell.2015.05.002

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  40. Shalek AK, Satija R, Shuga J et al (2014) Single-cell RNA-seq reveals dynamic paracrine control of cellular variation. Nature 510:363. https://doi.org/10.1038/nature13437

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  41. Simpson EH (1951) The interpretation of interaction I contingency tables. J R Stat Soc Series B Stat Methodol 13:238–241

    Google Scholar 

  42. Hinton G (2008) Visualizing data using t-SNE visualizing data using t-SNE. J Mach Learn Res 9(2579–2605):85. https://doi.org/10.1007/s10479-011-0841-3

    CrossRef  Google Scholar 

  43. Svensson RR, Teichmann SA, Kar G (2017) Computational approaches for interpreting scRNA-seq data. FEBS Let 591(15):2213–2225. https://doi.org/10.1002/1873-3468.12684

    CAS  CrossRef  Google Scholar 

Download references

Acknowledgements

We would like to thank the members of the Pancreatic Cancer Research Laboratory at the Translational Genomics Research Institute for their technical support and insightful discussions during the preparation of this manuscript. The work was supported in part by the Stand Up to Cancer—Cancer Research UK—Lustgarten Foundation (SU2C-CRUK-Lustgarten) Dream Team Translational Research Grant, a Program of the Entertainment Industry Foundation, and the National Foundation for Cancer Research (NFCR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiyong Han .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Wiedmeier, J.E., Noel, P., Lin, W., Von Hoff, D.D., Han, H. (2019). Single-Cell Sequencing in Precision Medicine. In: Von Hoff, D., Han, H. (eds) Precision Medicine in Cancer Therapy . Cancer Treatment and Research, vol 178. Springer, Cham. https://doi.org/10.1007/978-3-030-16391-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16391-4_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16390-7

  • Online ISBN: 978-3-030-16391-4

  • eBook Packages: MedicineMedicine (R0)