Skip to main content

Impact of Nanomaterials on the Microbial System

  • Chapter
  • First Online:
Book cover Microbial Nanobionics

Abstract

Nowadays, the incessant increase in infectious diseases is one of the most important and greatest challenges globally. Most of the commercially available antibiotics are ineffective owing to the development of drug resistance and adverse side effects. The drug or multidrug resistance results in higher dose administration of antimicrobial drugs, which may lead to severe toxicity to the surrounding cells. Therefore, the development of newer drugs is a necessity to combat such issues and also control the infection against pathogens. In this context, nanomaterials are emerging tools for controlling infections without development of any resistance. Several metal and metal oxide-based nanomaterials have been used as antimicrobial agents that efficiently control the infection against pathogens. Moreover, various nanocarriers have also been used for the delivery of antibiotics to improve their effectiveness against pathogens. Additionally, combined therapy, such as nanomaterials with commercially available antimicrobial drugs, are also used for treating infectious diseases, showing synergetic effects on controlling the infections. These nanomaterials have advantages over commercially available antibiotics such as cost-effectiveness, safety, prolonged effectiveness, and no development of resistance. The mode of action of these nanomaterials is mainly the generation of reactive oxygen species, disruption of cellular membrane, inhibition of enzymes, and synthesis of DNA. Despite the tremendous success of nanomaterials in infection control, long-term exposure-related toxicity remains a concern. Usually, extensive use of nanomaterials may cause adverse effects, as nanomaterials release ions into the environment, which kills some beneficial micro-organisms. This chapter summarizes antimicrobial nanomaterials for controlling the infection against pathogens and adverse effects on the environment, ecosystem, and human health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afreen S, Omar RA, Talreja N, Chauhan D, Ashfaq M (2018) Carbon-Based Nanostructured Materials for Energy and Environmental Remediation Applications. In: Prasad R, Aranda E (eds) Approaches in Bioremediation. Nanotechnology in the Life Sciences. Springer, Cham

    Chapter  Google Scholar 

  • Ajitha B, Reddy YAK, Reddy PS (2014) Biosynthesis of silver nanoparticles using Plectranthus amboinicus leaf extract and its antimicrobial activity. Spectrochim Acta A Mol Biomol Spectrosc 128:257–262

    Article  CAS  PubMed  Google Scholar 

  • Allahverdiyev AM, Abamor ES, Bagirova M, Rafailovich M (2014) Antimicrobial effects of TiO2 and Ag2O nanoparticles against drug resistant bacteria and leishmania parasites. Future Microbiol 6:933–940

    Article  CAS  Google Scholar 

  • Applerot G, Lellouche J, Perkas N, Nitzan Y, Gedanken A, Banin E (2012) ZnO nanoparticle-coated surfaces inhibit bacterial biofilm formation and increase antibiotic susceptibility. RSC Adv 2(6):2314–2321

    Article  CAS  Google Scholar 

  • Ashfaq M, Singh S, Sharma A, Verma N (2013) Cytotoxic evaluation of the hierarchal web of carbon micro-nanofibers. Ind Eng Chem Res 52:4672–4682

    Article  CAS  Google Scholar 

  • Ashfaq M, Khan S, Verma N (2014) Synthesis of PVA-CAP-based biomaterial in situ dispersed with Cu nanoparticles and carbon micro-nanofibers for antibiotic drug delivery applications. Biochem Eng J 90:79–89

    Article  CAS  Google Scholar 

  • Ashfaq M, Verma N, Khan S (2016) Copper/Zinc bimetal nanoparticles-dispersed carbon Nanofibers: a novel potential antibiotics. Mater Sci Eng C 59:938–947

    Article  CAS  Google Scholar 

  • Ashfaq M, Verma N, Khan S (2017a) Carbon nanofibers as a micronutrient carrier in plants: efficient translocation and controlled release of Cu nanoparticles. Environ Sci Nano 4:138–148

    Article  CAS  Google Scholar 

  • Ashfaq M, Verma N, Khan S (2017b) Highly effective Cu/Zn-carbon micro/nanofiber-polymer nanocomposite-based wound dressing biomaterial against the P. aeruginosa multi-and extensively drug-resistant strains. Mater Sci Eng C 77:630–641

    Article  CAS  Google Scholar 

  • Ashfaq M, Verma N, Khan S (2018) Novel polymeric composite grafted with metal nanoparticle-dispersed CNFs as a chemiresistive non-destructive fruit sensor material. Mater Chem Phys 217:216–227

    Article  CAS  Google Scholar 

  • Ashkarran AA, Ghavami M, Aghaverdi H, Stroeve P, Mahmoudi M (2012) Bacterial effects and protein corona evaluations: crucial ignored factors in the prediction of bio-efficacy of various forms of silver nanoparticles. Chem Res Toxicol 25(6):1231–1242

    Article  CAS  PubMed  Google Scholar 

  • Avella M, De Vlieger JJ, Errico ME, Fischer S, Vacca P, Volpe MG (2005) Biodegradable starch/clay nanocomposite films for food packaging applications. Food Chem 93:467–474

    Article  CAS  Google Scholar 

  • Aziz N, Fatma T, Varma A, Prasad R (2014) Biogenic synthesis of silver nanoparticles using Scenedesmus abundans and evaluation of their antibacterial activity. J Nanopar: 689419. http://sci-hub.tw/10.1155/2014/689419

  • Aziz N, Faraz M, Pandey R, Sakir M, Fatma T, Varma A, Barman I, Prasad R (2015) Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial and photocatalytic properties. Langmuir 31:11605–11612. http://sci-hub.tw/10.1021/acs.langmuir.5b03081

    Article  CAS  Google Scholar 

  • Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol 7:1984. http://sci-hub.tw/10.3389/fmicb.2016.01984

  • Aziz N, Faraz M, Sherwani MA, Fatma T, Prasad R (2019) Illuminating the anticancerous efficacy of a new fungal chassis for silver nanoparticle synthesis. Front Chem 7:65. https://doi.org/10.3389/fchem.2019.00065

  • Baek YW, An YJ (2011) Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and Sb2O3) to Escherichia coli, Bacillus subtilis, and Streptococcus aureus. Sci Total Environ 409(8):1603–1608

    Article  CAS  PubMed  Google Scholar 

  • Baker-Austin C, Wright MS, Stepanauskas R, McArthur JV (2006) Co-selection of antibiotic and metal resistance. Trends Microbiol 14(4):176–182

    Article  CAS  PubMed  Google Scholar 

  • Bakry R, Vallant RM, Najam-ul-Haq M, Rainer M, Szabo Z, Huck CW, Bonn GK (2007) Medicinal applications of fullerenes. Int J Nanomedicine 2(4):639–649

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bhadauriya P, Mamtani H, Ashfaq M, Raghav A, Teotia AK, Kumar A, Verma N (2018) Synthesis of yeast-immobilized and copper nanoparticle-dispersed carbon nanofiber-based diabetic wound dressing material: simultaneous control of glucose and bacterial infections. ACS Appl Bio Mater 1(2):246–258

    Article  CAS  Google Scholar 

  • Bolla JM, Alibert-Franco S, Handzlik J, Chevalier J, Mahamoud A, Boyer G, Kieć-Kononowicz K, Pagès JM (2011) Strategies for bypassing the membrane barrier in multidrug resistant gram-negative bacteria. FEBS Lett 585(11):1682–1690

    Article  CAS  PubMed  Google Scholar 

  • Bouwmeester H, Dekkers S, Noordam MY, Hagens WI, Bulder AS, Heer C, Voorde SECG, Wijnhoven SWP, Marvin HJP, Sips AJAM (2009) Review of health safety aspects of nanotechnologies in food production. Regul Toxicol Pharmacol 53:52–62

    Article  CAS  PubMed  Google Scholar 

  • Brown MR, Allison DG, Gilbert P (1988) Resistance of bacterial biofilms to antibiotics a growth-rate related effect? J Antimicrob Chemother 22(6):777–780

    Article  CAS  PubMed  Google Scholar 

  • Cha C, Shin SR, Annabi N, Dokmeci MR, Khademhosseini A (2013) Carbon-based nanomaterials: multifunctional materials for biomedical engineering. ACS Nano 7(4):2891–2897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chauhan D, Afreen S, Mishra S, Sankararamakrishnan N (2016) Synthesis, characterization and application of Zinc augmented aminated PAN nanofibers towards decontamination of chemical and biological contaminants. J Ind Eng Chem 55:50–64

    Article  CAS  Google Scholar 

  • Chen H, Weiss J, Shahidi F (2006) Nanotechnology in nutraceuticals and functional foods. Food Technol 03.06:30–36

    Google Scholar 

  • Chen WJ, Tsai PJ, Chen YC (2008) Functional Fe3O4/TiO2 core/shell magnetic nanoparticles as photo killing agents for pathogenic bacteria. Small 4(4):485–491

    Article  CAS  PubMed  Google Scholar 

  • Choi O, Hu Z (2008) Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environ Sci Technol 42(12):4583–4588

    Article  CAS  PubMed  Google Scholar 

  • Devi LS, Joshi SR (2012) Antimicrobial and synergistic effects of silver nanoparticles synthesized using soil fungi of high altitudes of eastern Himalaya. Mycobiology 40(1):27–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donaldson K, Stone V, Tran CL, Kreyling W, Borm PJ (2004) Nanotoxicology. Occup Environ Med 619:727–728

    Article  Google Scholar 

  • Donsì F, Annunziata M, Sessa M, Ferrari G (2010) Nanoencapsulation of essential oils to enhance their antimicrobial activity in foods. J Biotechnol 44:1908–1914

    Google Scholar 

  • Echegoyen Y, Nerín C (2013) Nanoparticle release from nano-silver antimicrobial food containers. Food Chem Toxicol 62:16–22

    Article  CAS  PubMed  Google Scholar 

  • Egger S, Lehmann RP, Height MJ, Loessner MJ, Schuppler M (2009) Antimicrobial properties of a novel silver-silica nanocomposite material. Appl Environ Microbiol 75:2973–2976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fabrega J, Fawcett SR, Renshaw JC, Lead JR (2009) Silver nanoparticle impact on bacterial growth: effect of pH, concentration, and organic matter. Environ Sci Technol 43(19):7285–7290

    Article  CAS  PubMed  Google Scholar 

  • Fang J, Lyon DY, Wiesner MR, Dong J, Alvarez PJ (2007) Effect of a fullerene water suspension on bacterial phospholipids and membrane phase behavior. Environ Sci Technol 41(7):2636–2642

    Article  CAS  PubMed  Google Scholar 

  • Fendler JH (2001) Colloid chemical approach to nanotechnology. Korean J Chem Eng 18:1–13

    Article  CAS  Google Scholar 

  • Feng L, Xie N, Zhong J (2014) Carbon nanofibers and their composites: a review of synthesizing, properties and applications. Materials 7(5):3919–3945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feris K, Otto C, Tinker J, Wingett D, Punnoose A, Thurber A, Kongara M, Sabetian M, Quinn B, Hanna C, Pink D (2009) Electrostatic interactions affect nanoparticle-mediated toxicity to gram-negative bacterium Pseudomonas aeruginosa PAO1. Langmuir 26(6):4429–4436

    Article  CAS  Google Scholar 

  • Friedman A, Blecher K, Sanchez D, Tuckman-Vernon C, Gialanella P, Friedman JM, Martinez LR, Nosanchuk JD (2011) Susceptibility of gram-positive and-negative bacteria to novel nitric oxide-releasing nanoparticle technology. Virulence 2(3):217–221

    Article  PubMed  Google Scholar 

  • Gajjar P, Pettee B, Britt DW, Huang W, Johnson WP, Anderson AJ (2009) Antimicrobial activities of commercial nanoparticles against an environmental soil microbe, Pseudomonas putida KT2440. J Biol Eng 3(9):1–13

    Google Scholar 

  • Geiser M, Rothen-Rutishauser B, Kapp N, Schürch S, Kreyling W, Schulz Y, Semmler M, Im Hof V, Heyder V, Gehr P (2005) Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells. Environ Health Perspect 113:1555–1560

    Article  PubMed  PubMed Central  Google Scholar 

  • Guzman M, Dille J, Godet S (2012) Synthesis and antibacterial activity of silver nanoparticles against gram-positive and gram-negative bacteria. Nanomedicine 8(1):37–45

    Article  CAS  PubMed  Google Scholar 

  • Hajipour MJ, Fromm KM, Ashkarran AA, de Aberasturi DJ, de Larramendi IR, Rojo T, Serpooshan V, Parak WJ, Mahmoudi M (2012) Antibacterial properties of nanoparticles. Trends Biotechnol 30(10):499–511

    Article  CAS  PubMed  Google Scholar 

  • Hammel E, Tang X, Trampert M, Schmitt T, Mauthner K, Eder A, Pötschke P (2004) Carbon nanofibers for composite applications. Carbon 42(5–6):1153–1158

    Article  CAS  Google Scholar 

  • Heinlaan M, Ivask A, Blinova I, Dubourguier HC, Kahru A (2008) Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere 71(7):1308–1316

    Article  CAS  PubMed  Google Scholar 

  • Huang Z, Zheng X, Yan D, Yin G, Liao X, Kang Y, Yao Y, Huang D, Hao B (2008) Toxicological effect of ZnO nanoparticles based on bacteria. Langmuir 24(8):4140–4144

    Article  CAS  PubMed  Google Scholar 

  • Huh AJ, Kwon YJ (2011) Nanoantibiotics: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J Control Release 156(2):128–145

    Article  CAS  PubMed  Google Scholar 

  • Impellitteri CA, Tolaymat TM, Scheckel KG (2009) The speciation of silver nanoparticles in antimicrobial fabric before and after exposure to a hypochlorite/detergent solution. J Environ Qual 38:1528–1530

    Article  CAS  PubMed  Google Scholar 

  • Jain KK (2008) The handbook of nanomedicine. Springer, Humana Press, Totowa, NJ

    Google Scholar 

  • Jarboe LR, Hyduke DR, Tran LM, Chou KJ, Liao JC (2008) Determination of the Escherichia coli S-nitrosoglutathione response network using integrated biochemical and systems analysis. J Biol Chem 283(8):5148–5157

    Article  CAS  PubMed  Google Scholar 

  • Jiang W, Mashayekhi H, Xing B (2009) Bacterial toxicity comparison between nano-and micro-scaled oxide particles. Environ Pollut 157(5):1619–1625

    Article  CAS  PubMed  Google Scholar 

  • Jones N, Ray B, Ranjit KT, Manna AC (2008) Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol Lett 279:71–76

    Article  CAS  PubMed  Google Scholar 

  • Juan L, Zhimin Z, Anchun M, Lei L, Jingchao Z (2010) Deposition of silver nanoparticles on titanium surface for antibacterial effect. Int J Nanomedicine 5:261–267

    Article  PubMed  PubMed Central  Google Scholar 

  • Khan SS, Mukherjee A, Chandrasekaran N (2011) Studies on interaction of colloidal silver nanoparticles (SNPs) with five different bacterial species. Colloids Surf B Biointerfaces 87(1):129–138

    Article  CAS  PubMed  Google Scholar 

  • Krishna G, Kumar SS, Pranitha V, Alha M, Charaya S (2015) Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against Salmonella sp. Int J Pharm Pharm Sci 7(11):84–88

    CAS  Google Scholar 

  • Kumar A, Pandey AK, Singh SS, Shanker R, Dhawan A (2011a) Cellular uptake and mutagenic potential of metal oxide nanoparticles in bacterial cells. Chemosphere 83(8):1124–1132

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Talreja N, Deva D, Sankararamakrishnan N, Sharma A, Verma N (2011b) Development of bi-metal doped micro and nano multi-functional polymeric adsorbent for the removal of fluoride and arsenic in waste-water. Desalination 282:27–38

    Article  CAS  Google Scholar 

  • Kumar R, Ashfaq M, Verma N (2018) Novel PVA/Starch-encapsulated Cu/Zn bimetal nanoparticle carrying carbon nanofibers as a biodegradable and anti-reactive oxidative nanofertilizer. J Mater Sci 53(10):7150–7164

    Article  CAS  Google Scholar 

  • Kumar D, Talreja N (2019) Nickel nanoparticles-doped rhodamine grafted carbon nanofibers as colorimetric probe: Naked eye detection and highly sensitive measurement of aqueous Cr3+ and Pb2+. Korean J Chem Eng 36:126–135

    Article  CAS  Google Scholar 

  • Landini P, Antoniani D, Burgess JG, Nijland R (2010) Molecular mechanisms of compounds affecting bacterial biofilm formation and dispersal. Appl Microbiol Biotechnol 86(3):813–823

    Article  CAS  PubMed  Google Scholar 

  • Lara HH, Garza-Treviño EN, Ixtepan-Turrent L, Singh DK (2011) Silver nanoparticles are broad-spectrum bactericidal and virucidal compounds. J Nanobiotechnol 9(30):1–8

    Google Scholar 

  • Leid JG, Ditto AJ, Knapp A, Shah PN, Wright BD, Blust R, Christensen L, Clemons CB, Wilber JP, Young GW, Kang AG (2011) In vitro antimicrobial studies of silver carbene complexes: activity of free and nanoparticle carbene formulations against clinical isolates of pathogenic bacteria. J Antimicrob Chemother 67(1):138–148

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lellouche J, Friedman A, Lahmi R, Gedanken A, Banin E (2012) Antibiofilm surface functionalization of catheters by magnesium fluoride nanoparticles. Int J Nanomedicine 7:1175–1188

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu L, Xu K, Wang H, Tan PKJ, Fan W, Venkatraman SS, Li L, Yang Y (2009) Self-assembled cationic peptide nanoparticles as an efficient antimicrobial agent. Nat Nanotechnol 4:457–463

    Article  CAS  PubMed  Google Scholar 

  • Lu C, Brauer MJ, Botstein D (2009) Slow growth induces heat-shock resistance in normal and respiratory-deficient yeast. Mol Biol Cell 20(3):891–903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maness PC, Smolinski S, Blake DM, Huang Z, Wolfrum EJ, Jacoby WA (1999) Bactericidal activity of photocatalytic TiO2 reaction: toward an understanding of its killing mechanism. Appl Environ Microbiol 65(9):4094–4098

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mollasalehi H, Yazdanparast R (2013) An improved non-crosslinking gold nanoprobe-NASBA based on 16S rRNA for rapid discriminative bio- sensing of major salmonellosis pathogens. Biosens Bioelectron 47(231):236

    Google Scholar 

  • Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16(10):2346–2356

    Article  CAS  PubMed  Google Scholar 

  • Musee N, Thwala M, Nota N (2011) The antibacterial effects of engineered nanomaterials: implications for wastewater treatment plants. J Environ Monit 13(5):1164–1183

    Article  CAS  PubMed  Google Scholar 

  • Mustafa S, Khan HM, Shukla I, Shujatullah F, Shahid M, Ashfaq M, Azam A (2011) Effect of ZnO Nanoparticles on ESBL producing Escherichia coli and Klebsiella sp. East J Med 16:253–257

    Google Scholar 

  • Nasr NF (2015) Applications of nanotechnology in food microbiology. Int J Curr Microbiol App Sci 4(4):846–853

    CAS  Google Scholar 

  • Neethirajan S, Jayas SD (2011) Nanotechnology for the food and bioprocessing industries. Food Bioprocess Technol 4:39–47

    Article  CAS  Google Scholar 

  • Oberdorster E (2004) Manufactured nanomaterials fullerenes C60 induce oxidative stress in the brain of juvenile largemouth bass. Environ Health Perspect 112:1058–1062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan X, Redding JE, Wiley PA, Wen L, McConnell JS, Zhang B (2010) Mutagenicity evaluation of metal oxide nanoparticles by the bacterial reverse mutation assay. Chemosphere 79(1):113–116

    Article  CAS  PubMed  Google Scholar 

  • Poveda RL, Gupta N (2016) Carbon nanofibers: structure and fabrication. In: Carbon nanofiber reinforced polymer composites. Springer, Cham, pp 11–26

    Chapter  Google Scholar 

  • Pramanik A, Laha D, Bhattacharya D, Pramanik P, Karmakar P (2012) A novel study of antibacterial activity of copper iodide nanoparticle mediated by DNA and membrane damage. Colloids Surf B: Biointerfaces 96:50–55

    Article  CAS  PubMed  Google Scholar 

  • Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. J Nanopart: 963961. http://sci-hub.tw/10.1155/2014/963961

  • Prasad R, Aranda E (2018) Approaches in Bioremediation: The New Era of Environmental Microbiology and Nanobiotechnology. Springer International Publishing (978-3-030-02369-0). https://doi.org/10.1007/978-3-030-02369-0

    Google Scholar 

  • Prasad R, Swamy VS (2013) Antibacterial activity of silver nanoparticles synthesized by bark extract of Syzygium cumini. J Nanopart. http://sci-hub.tw/10.1155/2013/431218

  • Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713

    Article  CAS  Google Scholar 

  • Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol 8:316–330. http://sci-hub.tw/10.1002/wnan.1363

    PubMed  Google Scholar 

  • Prasad R, Bhattacharyya A, Nguyen QD (2017a) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014. http://sci-hub.tw/10.3389/fmicb.2017.01014

  • Prasad R, Pandey R, Varma A, Barman I (2017b) Polymer based nanoparticles for drug delivery systems and cancer therapeutics. In: Kharkwal H, Janaswamy S (eds) Natural polymers for drug delivery. CAB International, Wallingford, pp 53–70

    Google Scholar 

  • Prasad R, Kumar M, Kumar V (2017c) Nanotechnology: An Agriculture Paradigm. Springer Singapore (ISBN: 978-981-10-4573-8). http://www.springer.com/us/book/9789811045721

  • Prasad R, Kumar V, Kumar M (2017d) Nanotechnology: Food and Environmental Paradigm. Springer Singapore (ISBN 978-981-10-4678-0). http://www.springer.com/us/book/9789811046773

  • Prasad R, Jha A, Prasad K (2018) Exploring the realms of nature for nanosynthesis. Springer, Cham. https://www.springer.com/978-3-319-99570-0

    Book  Google Scholar 

  • Qiu Z, Yu Y, Chen Z, Jin M, Yang D, Zhao Z, Wang J, Shen Z, Wang X, Qian D, Huang A (2012) Nanoalumina promotes the horizontal transfer of multiresistance genes mediated by plasmids across genera. Proc Natl Acad Sci 109(13):4944–4949

    Article  CAS  PubMed  Google Scholar 

  • Ramos MADS, Da Silva PB, Spósito L, De Toledo LG, Bonifácio BV, Rodero CF, Dos Santos KC, Chorilli M, Bauab TM (2018) Nanotechnology-based drug delivery systems for control of microbial biofilms: a review. Int J Nanomedicine 13:1179–1213

    Article  Google Scholar 

  • Ruparelia JP, Chatterjee AK, Duttagupta SP, Mukherji S (2008) Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater 4(3):707–716

    Article  CAS  PubMed  Google Scholar 

  • Salem W, Leitner DR, Zingl FG, Schratter G, Prassl R, Goessler W, Reidl J, Schild S (2015) Antibacterial activity of silver and zinc nanoparticles against Vibrio cholerae and enterotoxic Escherichia coli. Int J Med Microbiol 305(1):85–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sankararamakrishnan N, Chauhan D (2014) Studies on the use of novel nano composite (CNT/Chitosan/Fe(0)) towards arsenate removal. J Environ Res Develop 8:594–599

    Google Scholar 

  • Sankararamakrishnan N, Chauhan D, Dwivedi J (2016) Synthesis of functionalized carbon nanotubes by floating catalytic chemical vapor deposition method and their sorption behavior toward arsenic. Chem Eng J 284:599–608

    Article  CAS  Google Scholar 

  • Santo CE, Taudte N, Nies DH, Grass G (2008) Contribution of copper ion resistance to survival of Escherichia coli on metallic copper surfaces. Appl Environ Microbiol 74(4):977–986

    Article  CAS  Google Scholar 

  • Saraswat R, Talreja N, Deva D, Sankararamakrisnan N, Sharma A, Verma N (2012) Development of novel in-situ nickel-doped, phenolic resin-based micro-nanoactivated carbon adsorbents for the removal of vitamin B-12. Chem Eng J 197:250–260

    Article  CAS  Google Scholar 

  • Simon-Deckers A, Loo S, Mayne-L’hermite M, Herlin-Boime N, Menguy N, Reynaud C, Gouget B, Carriere M (2009) Size-, composition-and shape-dependent toxicological impact of metal oxide nanoparticles and carbon nanotubes toward bacteria. Environ Sci Technol 43(21):8423–8429

    Article  CAS  PubMed  Google Scholar 

  • Sinha R, Karan R, Sinha A, Khare SK (2011) Interaction and nanotoxic effect of ZnO and Ag nanoparticles on mesophilic and halophilic bacterial cells. Bioresour Technol 102(2):1516–1520

    Article  CAS  PubMed  Google Scholar 

  • Sun YZ, Talreja N, Tao CH, Texter J, Muhler M, Strunk J, Chen J (2018) Catalysis of carbon dioxide photoreduction on nanosheets: fundamentals and challenges. Angew Chem Int Ed 57:7610–7627

    Article  CAS  Google Scholar 

  • Suri SS, Fenniri H, Singh B (2007) Nanotechnology-based drug delivery systems. J Occup Med Toxicol 2(1):16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Swamy VS, Prasad R (2012) Green synthesis of silver nanoparticles from the leaf extract of Santalum album and its antimicrobial activity. J Optoelectron Biomed Mater. 4(3):53–59

    Google Scholar 

  • Talreja N, Verma N, Kumar D (2014) Removal of hexavalent chromium from water using Fe-grown carbon nanofibers containing porous carbon microbeads. J Water Process Eng 3:34–45

    Article  Google Scholar 

  • Talreja N, Verma N, Kumar D (2016) Carbon bead-supported ethylene diamine functionalized carbon nanofibers: an excellent adsorbent for salicylic acid. CLEAN-Soil Air Water 44(11):1461–1470

    Article  CAS  Google Scholar 

  • Talreja N, Kumar D (2018) Engineered nanoparticles’ toxicity: environmental aspects. In: Nanotechnology in Prof. Chaudhery Mustansar Hussain, Ajay Kumar Mishra, Environmental Science, 2 Volumes,Wiley-VCH

    Google Scholar 

  • Tao CH, Gao YN, Talreja N, Guo F, Texter J, Yan C, Sun YZ (2017) Two-dimensional nanosheets for electrocatalysis in energy generation and conversion. J Mater Chem A 5:7257–7284

    Article  CAS  Google Scholar 

  • Thill A, Zeyons O, Spalla O, Chauvat F, Rose J, Auffan M, Flank AM (2006) Cytotoxicity of CeO2 nanoparticles for Escherichia coli. Physico-chemical insight of the cytotoxicity mechanism. Environ Sci Technol 40(19):6151–6156

    Article  CAS  PubMed  Google Scholar 

  • Weiss JP, Takhistov P, McClements DJ (2006) Functional materials in food nanotechnology. J Food Sci 71:107–116

    Article  CAS  Google Scholar 

  • Yadav BC, Kumar R (2008) Structure, properties and applications of fullerenes. Int J Nanotechnol Appl 2(1):15–24

    Google Scholar 

  • You J, Zhang Y, Hu Z (2011) Bacteria and bacteriophage inactivation by silver and zinc oxide nanoparticles. Colloids Surf B: Biointerfaces 85(2):161–167

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The authors acknowledge support from Chulalongkorn University Pathumwan, Bangkok, 10330, Thailand, through Chulalongkorn Academic Advancement into its Second Century Project (Small Medical Device).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Omar, R.A., Afreen, S., Talreja, N., Chauhan, D., Ashfaq, M., Srituravanich, W. (2019). Impact of Nanomaterials on the Microbial System. In: Prasad, R. (eds) Microbial Nanobionics. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-16383-9_6

Download citation

Publish with us

Policies and ethics