Skip to main content

Biological Synthesis of Nanoparticles by Different Groups of Bacteria

  • Chapter
  • First Online:
Microbial Nanobionics

Part of the book series: Nanotechnology in the Life Sciences ((NALIS))

Abstract

Nanotechnology is the creation, manipulation, and use of materials at the nanometer size scale (1–100 nm). Many characteristics of the material at the nanoscale are very different in the same materials from the larger scales. Although nanoscale materials can be produced using a variety of traditional physical and chemical processes, it is now possible to biologically synthesize materials via environment-friendly green chemistry-based techniques. In recent years, the convergence between nanotechnology and biology has created the new field of nanobiotechnology that incorporates the use of biological entities such as actinomycetes, algae, bacteria, fungi, viruses, yeasts, and plants in a number of biochemical and biophysical processes. The biological synthesis via nanobiotechnology processes has a significant potential to boost nanoparticle production without the use of harsh, toxic, and expensive chemicals commonly used in conventional physical and chemical processes. The aim of this review is to provide an overview synthesizing nanoparticles via different groups of bacteria and their potential applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abbasi E, Milani M, Fekri Aval S, Kouhi M, Akbarzadeh A, Tayefi Nasrabadi H, Nikasa P, Joo SW, Hanifehpour Y, Nejati-Koshki K (2016) Silver nanoparticles: synthesis methods, bio-applications and properties. Crit Rev Microbiol 42(2):173–180

    CAS  PubMed  Google Scholar 

  • Abdel-Aziz SM, Prasad R, Hamed AA, Abdelraof M (2018) Fungal nanoparticles: A novel tool for a green biotechnology? In: Fungal Nanobionics (eds. Prasad R, Kumar V, Kumar M, and Shanquan W), Springer Nature Singapore Pte Ltd. 61–87

    Google Scholar 

  • Ahamed M, AlSalhi MS, Siddiqui M (2010) Silver nanoparticle applications and human health. Clin Chim Acta 411(23–24):1841–1848

    Article  CAS  PubMed  Google Scholar 

  • Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan MI, Kumar R, Sastry M (2003a) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf B Biointerfaces 28(4):313–318

    Article  CAS  Google Scholar 

  • Ahmad A, Senapati S, Khan MI, Kumar R, Ramani R, Srinivas V, Sastry M (2003b) Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete, Rhodococcus species. Nanotechnology 14(7):824–828

    Article  CAS  Google Scholar 

  • Ahmad A, Senapati S, Khan MI, Kumar R, Sastry M (2003c) Extracellular biosynthesis of monodisperse gold nanoparticles by a novel extremophilic actinomycete, Thermomonospora sp. Langmuir 19(8):3550–3553

    Article  CAS  Google Scholar 

  • Ambika S, Sundrarajan M (2015) Green biosynthesis of ZnO nanoparticles using Vitex negundo L. extract: spectroscopic investigation of interaction between ZnO nanoparticles and human serum albumin. J Photochem Photobiol B 149:143–148

    Article  CAS  PubMed  Google Scholar 

  • Attard G, Casadesús M, Macaskie LE, Deplanche K (2012) Biosynthesis of platinum nanoparticles by Escherichia coli MC4100: can such nanoparticles exhibit intrinsic surface enantioselectivity? Langmuir 28(11):5267–5274

    Article  CAS  PubMed  Google Scholar 

  • Bai H, Zhang Z, Guo Y, Yang G (2009) Biosynthesis of cadmium sulfide nanoparticles by photosynthetic bacteria Rhodopseudomonas palustris. Colloids Surf B Biointerfaces 70(1):142–146

    Article  CAS  PubMed  Google Scholar 

  • Bao H, Lu Z, Cui X, Qiao Y, Guo J, Anderson JM, Li CM (2010) Extracellular microbial synthesis of biocompatible CdTe quantum dots. Acta Biomater 6(9):3534–3541

    Article  CAS  PubMed  Google Scholar 

  • Beveridge T, Murray R (1980) Sites of metal deposition in the cell wall of Bacillus subtilis. J Bacteriol 141(2):876–887

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bharde A, Wani A, Shouche Y, Joy PA, Prasad BL, Sastry M (2005) Bacterial aerobic synthesis of nanocrystalline magnetite. J Am Chem Soc 127(26):9326–9327

    Article  CAS  PubMed  Google Scholar 

  • Bhuyan T, Mishra K, Khanuja M, Prasad R, Varma A (2015) Biosynthesis of zinc oxide nanoparticles from Azadirachta indica for antibacterial and photocatalytic applications. Mater Sci Semicond Process 32:55–61

    Article  CAS  Google Scholar 

  • Brayner R, Barberousse H, Hemadi M, Djedjat C, Yéprémian C, Coradin T, Livage J, Fiévet F, Couté A (2007) Cyanobacteria as bioreactors for the synthesis of Au, Ag, Pd, and Pt nanoparticles via an enzyme-mediated route. J Nanosci Nanotechnol 7(8):2696–2708

    Article  CAS  PubMed  Google Scholar 

  • Bridges K, Kidson A, Lowbury E, Wilkins M (1979) Gentamicin-and silver-resistant pseudomonas in a burns unit. Br Med J 1(6161):446–449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brock TD, Gustafson J (1976) Ferric iron reduction by sulfur-and iron-oxidizing bacteria. Appl Environ Microbiol 32(4):567–571

    CAS  PubMed  PubMed Central  Google Scholar 

  • Castro L, Blázquez ML, González FG, Ballester A (2014) Mechanism and applications of metal nanoparticles prepared by bio-mediated process. Rev Adv Sci Eng 3(3):199–216

    Article  Google Scholar 

  • Chauhan R, Kumar A, Abraham J (2013) A biological approach to the synthesis of silver nanoparticles with Streptomyces sp. JAR1 and its antimicrobial activity. Sci Pharm 81(2):607–624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Correa-Llantén DN, Muñoz-Ibacache SA, Castro ME, Muñoz PA, Blamey JM (2013) Gold nanoparticles synthesized by Geobacillus sp. strain ID17 a thermophilic bacterium isolated from Deception Island, Antarctica. Microb Cell Factories 12(1):75–80

    Article  CAS  Google Scholar 

  • Cunningham DP, Lundie L (1993) Precipitation of cadmium by Clostridium thermoaceticum. Appl Environ Microbiol 59(1):7–14

    CAS  PubMed  PubMed Central  Google Scholar 

  • Darroudi M, Ahmad MB, Zamiri R, Zak A, Abdullah AH, Ibrahim NA (2011) Time-dependent effect in green synthesis of silver nanoparticles. Int J Nanomedicine 6:677–681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das VL, Thomas R, Varghese RT, Soniya E, Mathew J, Radhakrishnan E (2014) Extracellular synthesis of silver nanoparticles by the Bacillus strain CS 11 isolated from industrialized area. 3. Biotech 4(2):121–126

    Google Scholar 

  • Deepak V, Kalishwaralal K, Pandian SRK, Gurunathan S (2011) An insight into the bacterial biogenesis of silver nanoparticles, industrial production and scale-up. In: Metal nanoparticles in microbiology. Springer, Berlin, Heidelberg, pp 17–35

    Chapter  Google Scholar 

  • Dhoondia ZH, Chakraborty H (2012) Lactobacillus mediated synthesis of silver oxide nanoparticles. J Nanosci Nanotechnol 2:15–22

    Google Scholar 

  • Dobias J, Suvorova EI, Bernier-Latmani R (2011) Role of proteins in controlling selenium nanoparticle size. Nanotechnology 22(19):195605

    Article  CAS  PubMed  Google Scholar 

  • Du L, Jiang H, Liu X, Wang E (2007) Biosynthesis of gold nanoparticles assisted by Escherichia coli DH5α and its application on direct electrochemistry of hemoglobin. Electrochem Commun 9(5):1165–1170

    Article  CAS  Google Scholar 

  • Durán N, Marcato PD, Alves OL, De Souza GI, Esposito E (2005) Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J Nanobiotechnology 3(1):8

    Article  PubMed  PubMed Central  Google Scholar 

  • Elcey C, Kuruvilla AT, Thomas D (2014) Synthesis of magnetite nanoparticles from optimized iron reducing bacteria isolated from iron ore mining sites. Int J Curr Microbiol App Sci 3:408–417

    CAS  Google Scholar 

  • El-Shanshoury AE-RR, ElSilk SE, Ebeid ME (2011) Extracellular biosynthesis of silver nanoparticles using Escherichia coli ATCC 8739, Bacillus subtilis ATCC 6633, and Streptococcus thermophilus ESh1 and their antimicrobial activities. ISRN Nanotechnology 2011:7

    Article  CAS  Google Scholar 

  • Fernández-Llamosas H, Castro L, Blázquez ML, Díaz E, Carmona M (2016) Biosynthesis of selenium nanoparticles by Azoarcus sp. CIB. Microb Cell Factories 15(1):109

    Article  CAS  Google Scholar 

  • Fesharaki PJ, Nazari P, Shakibaie M, Rezaie S, Banoee M, Abdollahi M, Shahverdi AR (2010) Biosynthesis of selenium nanoparticles using Klebsiella pneumoniae and their recovery by a simple sterilization process. Braz J Microbiol 41(2):461–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gericke M, Pinches A (2006) Microbial production of gold nanoparticles. Gold Bull 39(1):22–28

    Article  CAS  Google Scholar 

  • Giljohann DA, Seferos DS, Daniel WL, Massich MD, Patel PC, Mirkin CA (2010) Gold nanoparticles for biology and medicine. Angew Chem Int Ed 49(19):3280–3294

    Article  CAS  Google Scholar 

  • Gou Y, Zhou R, Ye X, Gao S, Li X (2015) Highly efficient in vitro biosynthesis of silver nanoparticles using Lysinibacillus sphaericus MR-1 and their characterization. Sci Technol Adv Mater 16(1):015004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Govindaraju K, Basha SK, Kumar VG, Singaravelu G (2008) Silver, gold and bimetallic nanoparticles production using single-cell protein (Spirulina platensis) Geitler. J Mater Sci Mater Med 43(15):5115–5122

    Article  CAS  Google Scholar 

  • Haefeli C, Franklin C, Hardy KE (1984) Plasmid-determined silver resistance in Pseudomonas stutzeri isolated from a silver mine. Res J Recent Sci 158(1):389–392

    CAS  Google Scholar 

  • Hasan S (2015) A review on nanoparticles: their synthesis and types. Res J Recent Sci 2277:9–11

    Google Scholar 

  • He S, Guo Z, Zhang Y, Zhang S, Wang J, Gu N (2007) Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulata. Mater Lett 61(18):3984–3987

    Article  CAS  Google Scholar 

  • He S, Zhang Y, Guo Z, Gu N (2008) Biological synthesis of gold nanowires using extract of Rhodopseudomonas capsulata. Biotechnol Prog 24(2):476–480

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Jain PK, El-Sayed IH, El-Sayed MA (2007) Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy. Nanomedicine 2(5):681–693

    Article  CAS  PubMed  Google Scholar 

  • Hulkoti NI, Taranath T (2014) Biosynthesis of nanoparticles using microbes-a review. Colloids Surf B Biointerfaces 121:474–483

    Article  CAS  PubMed  Google Scholar 

  • Husseiny M, El-Aziz MA, Badr Y, Mahmoud M (2007) Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa. Spectrochim Acta A Mol Biomol Spectrosc 67(3–4):1003–1006

    Article  CAS  PubMed  Google Scholar 

  • Iravani S (2014) Bacteria in nanoparticle synthesis: current status and future prospects. ISRN 2014:18

    Google Scholar 

  • Iv M, Telischak N, Feng D, Holdsworth SJ, Yeom KW, Daldrup-Link HE (2015) Clinical applications of iron oxide nanoparticles for magnetic resonance imaging of brain tumors. Nanomedicine 10(6):993–1018

    Article  CAS  PubMed  Google Scholar 

  • Jain N, Bhargava A, Majumdar S, Tarafdar J, Panwar J (2011) Extracellular biosynthesis and characterization of silver nanoparticles using Aspergillus flavus NJP08: a mechanism perspective. Nanoscale 3(2):635–641

    Article  CAS  PubMed  Google Scholar 

  • Jang GG, Jacobs CB, Gresback RG, Ivanov IN, Meyer HM III, Kidder M, Joshi PC, Jellison GE, Phelps TJ, Graham DE (2015) Size tunable elemental copper nanoparticles: extracellular synthesis by thermoanaerobic bacteria and capping molecules. J Mater Chem C 3(3):644–650

    Article  CAS  Google Scholar 

  • Jeevan P, Ramya K, Rena AE (2012) Extracellular biosynthesis of silver nanoparticles by culture supernatant of Pseudomonas aeruginosa. Indian J Biotechnol 11:72–76

    CAS  Google Scholar 

  • Jha AK, Prasad K, Kulkarni A (2009) Synthesis of TiO2 nanoparticles using microorganisms. Colloids Surf B Biointerfaces 71(2):226–229

    Article  CAS  PubMed  Google Scholar 

  • Jin-Zhou F, Yue-Ying L, Ping-Ying G, Ding-Liang S, Zhong-Yu L, Bing-Xin Y, Sheng-Zhou W (2000) Spectroscopic characterization on the biosorption and bioreduction of Ag (I) by Lactobacillus sp. A09. Acta Phys Chim Sin 16(09):779–782

    Google Scholar 

  • Joerger R, Klaus T, Granqvist CG (2000) Biologically produced silver-carbon composite materials for optically functional thin-film coatings. Adv Mater Res 12(6):407–409

    Article  CAS  Google Scholar 

  • Kalabegishvili TL, Kirkesali EI, Rcheulishvili AN, Ginturi EN, Murusidze IG, Pataraya DT, Gurielidze MA, Tsertsvadze GI, Gabunia VN, Lomidze LG (2012) Synthesis of gold nanoparticles by some strains of Arthrobacter genera. Mater Sci Eng A Struct Mater 2(2):164–173

    CAS  Google Scholar 

  • Kalimuthu K, Babu RS, Venkataraman D, Bilal M, Gurunathan S (2008) Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloids Surf B Biointerfaces 65(1):150–153

    Article  CAS  PubMed  Google Scholar 

  • Kalishwaralal K, Deepak V, Pandian SRK, Gurunathan S (2009) Biological synthesis of gold nanocubes from Bacillus licheniformis. Bioresour Technol 100(21):5356–5358

    Article  CAS  PubMed  Google Scholar 

  • Kessi J, Ramuz M, Wehrli E, Spycher M, Bachofen R (1999) Reduction of selenite and detoxification of elemental selenium by the phototrophic bacterium Rhodospirillum rubrum. Appl Environ Microbiol 65(11):4734–4740

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khlebtsov N, Dykman L (2011) Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies. Chem Soc Rev 40(3):1647–1671

    Article  CAS  PubMed  Google Scholar 

  • Kirthi AV, Rahuman AA, Rajakumar G, Marimuthu S, Santhoshkumar T, Jayaseelan C, Elango G, Zahir AA, Kamaraj C, Bagavan A (2011) Biosynthesis of titanium dioxide nanoparticles using bacterium Bacillus subtilis. Mater Lett 65(17–18):2745–2747

    Article  CAS  Google Scholar 

  • Klaus T, Joerger R, Olsson E, Granqvist C-G (1999) Silver-based crystalline nanoparticles, microbially fabricated. Proc Natl Acad Sci U S A 96(24):13611–13614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Konishi Y, Ohno K, Saitoh N, Nomura T, Nagamine S (2004) Microbial synthesis of gold nanoparticles by metal reducing bacterium. Trans Mater Res Soc Jpn 29:2341–2343

    CAS  Google Scholar 

  • Konishi Y, Tsukiyama T, Ohno K, Saitoh N, Nomura T, Nagamine S (2006) Intracellular recovery of gold by microbial reduction of AuCl4− ions using the anaerobic bacterium Shewanella algae. Hydrometallurgy 81(1):24–29

    Article  CAS  Google Scholar 

  • Konishi Y, Ohno K, Saitoh N, Nomura T, Nagamine S, Hishida H, Takahashi Y, Uruga T (2007) Bioreductive deposition of platinum nanoparticles on the bacterium Shewanella algae. J Biotechnol 128(3):648–653

    Article  CAS  PubMed  Google Scholar 

  • Koren K, Brodersen KE, Jakobsen SL, Kühl M (2015) Optical sensor nanoparticles in artificial sediments – a new tool to visualize O2 dynamics around the rhizome and roots of seagrasses. Environ Sci Technol Lett 49(4):2286–2292

    Article  CAS  Google Scholar 

  • Kushwaha A, Singh VK, Bhartariya J, Singh P, Yasmeen K (2015) Isolation and identification of E. coli bacteria for the synthesis of silver nanoparticles: characterization of the particles and study of antibacterial activity. Eur J Exp Biol 5(1):65–70

    CAS  Google Scholar 

  • Labrenz M, Druschel GK, Thomsen-Ebert T, Gilbert B, Welch SA, Kemner KM, Logan GA, Summons RE, De Stasio G, Bond PL (2000) Formation of sphalerite (ZnS) deposits in natural biofilms of sulfate-reducing bacteria. Science 290(5497):1744–1747

    Article  CAS  PubMed  Google Scholar 

  • Lee SY (1996) High cell-density culture of Escherichia coli. Trends Biotechnol 14(3):98–105

    Article  CAS  PubMed  Google Scholar 

  • Lengke MF, Fleet ME, Southam G (2006) Morphology of gold nanoparticles synthesized by filamentous cyanobacteria from gold (I) − thiosulfate and gold (III) − chloride complexes. Langmuir 22(6):2780–2787

    Article  CAS  PubMed  Google Scholar 

  • Lengke MF, Fleet ME, Southam G (2007) Biosynthesis of silver nanoparticles by filamentous cyanobacteria from a silver (I) nitrate complex. Langmuir 23(5):2694–2699

    Article  CAS  PubMed  Google Scholar 

  • Li X, Xu H, Chen Z-S, Chen G (2011) Biosynthesis of nanoparticles by microorganisms and their applications. J Nanomater 2011:1–16

    Google Scholar 

  • Lin Z-Y, Fu J-K, Wu J-M, Liu Y-Y, Cheng H (2001) Preliminary study on the mechanism of non-enzymatic bioreduction of precious metal ions. Acta Phys Chim Sin 17(05):477–480

    CAS  Google Scholar 

  • Liu S, Wei L, Hao L, Fang N, Chang MW, Xu R, Yang Y, Chen Y (2009) Sharper and faster “nano darts” kill more bacteria: a study of antibacterial activity of individually dispersed pristine single-walled carbon nanotube. ACS Nano 3(12):3891–3902

    Article  CAS  PubMed  Google Scholar 

  • Lloyd J, Ridley J, Khizniak T, Lyalikova N, Macaskie L (1999) Reduction of technetium by Desulfovibrio desulfuricans: biocatalyst characterization and use in a flowthrough bioreactor. Appl Environ Microbiol 65(6):2691–2696

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lovley DR, Stolz JF, Nord GL, Phillips EJ (1987) Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism. Nature 330(6145):252–254

    Article  CAS  Google Scholar 

  • Malarkodi C, Chitra K, Rajeshkumar S, Gnanajobitha G, Paulkumar K, Vanaja M, Annadurai G (2013) Novel eco-friendly synthesis of titanium oxide nanoparticles by using Planomicrobium sp. and its antimicrobial evaluation. Der Pharmacia Sinica 4(3):59–66

    CAS  Google Scholar 

  • Mann S (2001) Biomineralization: principles and concepts in bioinorganic materials chemistry, vol 5. Oxford University Press on Demand, New York

    Google Scholar 

  • Marshall MJ, Beliaev AS, Dohnalkova AC, Kennedy DW, Shi L, Wang Z, Boyanov MI, Lai B, Kemner KM, McLean JS (2006) C-type cytochrome-dependent formation of U (IV) nanoparticles by Shewanella oneidensis. PLoS Biol 4(8):e268

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mohanpuria P, Rana NK, Yadav SK (2008) Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res 10(3):507–517

    Article  CAS  Google Scholar 

  • Mohseniazar M, Barin M, Zarredar H, Alizadeh S, Shanehbandi D (2011) Potential of microalgae and lactobacilli in biosynthesis of silver nanoparticles. Bioimpacts 1(3):149–152

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mokhtari N, Daneshpajouh S, Seyedbagheri S, Atashdehghan R, Abdi K, Sarkar S, Minaian S, Shahverdi HR, Shahverdi AR (2009) Biological synthesis of very small silver nanoparticles by culture supernatant of Klebsiella pneumonia: the effects of visible-light irradiation and the liquid mixing process. Mater Res Bull 44(6):1415–1421

    Article  CAS  Google Scholar 

  • Momeni S, Nabipour I (2015) A simple green synthesis of palladium nanoparticles with Sargassum alga and their electrocatalytic activities towards hydrogen peroxide. Appl Biochem Biotechnol 176(7):1937–1949

    Article  CAS  PubMed  Google Scholar 

  • Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16(10):2346–2353

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Ramani R, Parischa R, Ajayakumar P, Alam M (2001) Bioreduction of AuCl4 ions by the fungus, Verticillium sp and surface trapping of the gold nanoparticles formed. Angew Chem Int Ed 40(19):3585–3588

    Article  CAS  Google Scholar 

  • Mullen M, Wolf D, Ferris F, Beveridge T, Flemming C, Bailey G (1989) Bacterial sorption of heavy metals. Appl Environ Microbiol 55(12):3143–3149

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nair B, Pradeep T (2002) Coalescence of nanoclusters and formation of submicron crystallites assisted by Lactobacillus strains. Cryst Growth Des 2(4):293–298

    Article  CAS  Google Scholar 

  • Nanda A, Saravanan M (2009) Biosynthesis of silver nanoparticles from Staphylococcus aureus and its antimicrobial activity against MRSA and MRSE. Nanomedicine 5(4):452–456

    Article  CAS  PubMed  Google Scholar 

  • Nasrollahzadeh M, Sajadi SM (2015) Green synthesis of copper nanoparticles using Ginkgo biloba L. leaf extract and their catalytic activity for the Huisgen [3+2] cycloaddition of azides and alkynes at room temperature. J Colloid Interface Sci 457:141–147

    Article  CAS  PubMed  Google Scholar 

  • Parikh RY, Singh S, Prasad B, Patole MS, Sastry M, Shouche YS (2008) Extracellular synthesis of crystalline silver nanoparticles and molecular evidence of silver resistance from Morganella sp.: towards understanding biochemical synthesis mechanism. Chem Bio Chem 9(9):1415–1422

    Article  CAS  PubMed  Google Scholar 

  • Peng H-I, Miller BL (2011) Recent advancements in optical DNA biosensors: exploiting the plasmonic effects of metal nanoparticles. Analyst 136(3):436–447

    Article  CAS  PubMed  Google Scholar 

  • Pereira L, Mehboob F, Stams AJ, Mota MM, Rijnaarts HH, Alves MM (2015) Metallic nanoparticles: microbial synthesis and unique properties for biotechnological applications, bioavailability and biotransformation. Crit Rev Biotechnol 35(1):114–128

    Article  CAS  PubMed  Google Scholar 

  • Prakash N, Soni N (2011) Factors affecting the geometry of silver nanoparticles synthesis in Chrysosporium tropicum and Fusarium oxysporum. Am J Biochem 2(1):112–121

    Google Scholar 

  • Prakash A, Sharma S, Ahmad N, Ghosh A, Sinha P (2011) Synthesis of AgNps by Bacillus cereus bacteria and their antimicrobial potential. J Biomater Nanobiotechnol 2(02):155–161

    Article  CAS  Google Scholar 

  • Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. J Nanoparticles:963961. https://doi.org/10.1155/2014/963961

    Article  CAS  Google Scholar 

  • Prasad R (2016) Advances and applications through fungal nanobiotechnology. Springer, Cham. isbn:978-3-319-42989-2

    Book  Google Scholar 

  • Prasad R (2017) Fungal nanotechnology: applications in agriculture, industry, and medicine. Springer International Publishing. isbn:978-3-319-68423-9

    Google Scholar 

  • Prasad K, Jha AK, Kulkarni A (2007) Lactobacillus assisted synthesis of titanium nanoparticles. Nanoscale Res Lett 2(5):248–250

    Article  CAS  PubMed Central  Google Scholar 

  • Prasad NVKV, Subba Rao Kambala V, Naidu R (2011) A critical review on biogenic silver nanoparticles and their antimicrobial activity. Curr Nanosci 7(4):531–544

    Article  CAS  Google Scholar 

  • Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713

    Article  CAS  Google Scholar 

  • Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol 8:316–330. https://doi.org/10.1002/wnan.1363

    Article  Google Scholar 

  • Prasad R, Bhattacharyya A, Nguyen QD (2017) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014. https://doi.org/10.3389/fmicb.2017.01014

    Article  PubMed  PubMed Central  Google Scholar 

  • Prasad R, Kumar V, Kumar M, Shanquan W (2018) Fungal nanobionics: principles and applications. Springer, Singapore. isbn:978-981-10-8666-3. https://www.springer.com/gb/book/9789811086656

    Book  Google Scholar 

  • Priyadarshini S, Gopinath V, Priyadharsshini NM, Mubarak Ali D, Velusamy P (2013) Synthesis of anisotropic silver nanoparticles using novel strain, Bacillus flexus and its biomedical application. Colloids Surf B Biointerfaces 102:232–237

    Article  CAS  PubMed  Google Scholar 

  • Rai M, Gade A, Yadav A (2011) Biogenic nanoparticles: an introduction to what they are, how they are synthesized and their applications. In: Metal nanoparticles in microbiology. Springer, Berlin, Heidelberg, pp 1–14

    Chapter  Google Scholar 

  • Rai M, Ingle AP, Birla S, Yadav A, Santos CAD (2016) Strategic role of selected noble metal nanoparticles in medicine. Crit Rev Microbiol 42(5):696–719

    CAS  PubMed  Google Scholar 

  • Ramanathan R, O’Mullane AP, Parikh RY, Smooker PM, Bhargava SK, Bansal V (2010) Bacterial kinetics-controlled shape-directed biosynthesis of silver nanoplates using Morganella psychrotolerans. Langmuir 27(2):714–719

    Article  PubMed  CAS  Google Scholar 

  • Ranganath E, Rathod V, Banu A (2012) Screening of Lactobacillus spp. for mediating the biosynthesis of silver nanoparticles from silver nitrate. IOSR PHR 2(2):237–241

    Google Scholar 

  • Roh Y, Lauf R, McMillan A, Zhang C, Rawn C, Bai J, Phelps T (2001) Microbial synthesis and the characterization of metal-substituted magnetites. Solid State Commun 118(10):529–534

    Article  CAS  Google Scholar 

  • Saif Hasan S, Singh S, Parikh RY, Dharne MS, Patole MS, Prasad B, Shouche YS (2008) Bacterial synthesis of copper/copper oxide nanoparticles. J Nanosci Nanotechnol 8(6):3191–3196

    Article  CAS  Google Scholar 

  • Saifuddin N, Wong C, Yasumira A (2009) Rapid biosynthesis of silver nanoparticles using culture supernatant of bacteria with microwave irradiation. J Chem 6(1):61–70

    CAS  Google Scholar 

  • Saklani V, Suman JV, Jain K (2012) Microbial synthesis of silver nanoparticles: a review. J Biotechnol Biomaterial 13:007

    Google Scholar 

  • Samadi N, Golkaran D, Eslamifar A, Jamalifar H, Fazeli MR, Mohseni FA (2009) Intra/extracellular biosynthesis of silver nanoparticles by an Autochthonous Strain of Proteus mirabilis isolated from photographic waste. J Biomed Nanotechnol 5(3):247–253

    Article  CAS  PubMed  Google Scholar 

  • Saravanan M, Vemu AK, Barik SK (2011) Rapid biosynthesis of silver nanoparticles from Bacillus megaterium (NCIM 2326) and their antibacterial activity on multi drug resistant clinical pathogens. Colloids Surf B Biointerfaces 88(1):325–331

    Article  CAS  PubMed  Google Scholar 

  • Schröfel A, Kratošová G, Bohunická M, Dobročka E, Vávra I (2011) Biosynthesis of gold nanoparticles using diatoms-silica-gold and EPS-gold bionanocomposite formation. J Nanopart Res 13(8):3207–3216

    Article  CAS  Google Scholar 

  • Schübbe S, Kube M, Scheffel A, Wawer C, Heyen U, Meyerdierks A, Madkour MH, Mayer F, Reinhardt R, Schüler D (2003) Characterization of a spontaneous nonmagnetic mutant of Magnetospirillum gryphiswaldense reveals a large deletion comprising a putative magnetosome island. J Bacteriol 185(19):5779–5790

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Selid PD, Xu H, Collins EM, Striped Face-Collins M, Zhao JX (2009) Sensing mercury for biomedical and environmental monitoring. Sensors 9(7):5446–5459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shah M, Fawcett D, Sharma S, Tripathy SK, Poinern GEJ (2015) Green synthesis of metallic nanoparticles via biological entities. Materials 8(11):7278–7308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shahverdi AR, Fakhimi A, Shahverdi HR, Minaian S (2007a) Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomedicine 3(2):168–171

    Article  CAS  PubMed  Google Scholar 

  • Shahverdi AR, Minaeian S, Shahverdi HR, Jamalifar H, Nohi A-A (2007b) Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: a novel biological approach. Process Biochem 42(5):919–923

    Article  CAS  Google Scholar 

  • Shantkriti S, Rani P (2014) Biological synthesis of copper nanoparticles using Pseudomonas fluorescens. Int J Curr Microbiol App Sci 3(9):374–383

    Google Scholar 

  • Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interf Sci 145(1–2):83–96

    Article  CAS  Google Scholar 

  • Sharma N, Pinnaka AK, Raje M, Ashish F, Bhattacharyya MS, Choudhury AR (2012) Exploitation of marine bacteria for production of gold nanoparticles. Microb Cell Factories 11(1):86

    Article  CAS  Google Scholar 

  • Shedbalkar U, Singh R, Wadhwani S, Gaidhani S, Chopade B (2014) Microbial synthesis of gold nanoparticles: current status and future prospects. Adv Colloid Interf Sci 209:40–48

    Article  CAS  Google Scholar 

  • Shim H-W, Jin Y-H, Seo S-D, Lee S-H, Kim D-W (2010) Highly reversible lithium storage in bacillus subtilis-directed porous Co3O4 nanostructures. ACS Nano 5(1):443–449

    Article  PubMed  CAS  Google Scholar 

  • Shivaji S, Madhu S, Singh S (2011) Extracellular synthesis of antibacterial silver nanoparticles using psychrophilic bacteria. Process Biochem 46(9):1800–1807

    Article  CAS  Google Scholar 

  • Shivakrishna P, Krishna MRPG, Charya MS (2013) Synthesis of silver nano particles from marine bacteria Pseudomonas aeruginosa. Octa J Biosci 1(2):108–114

    Google Scholar 

  • Shobha G, Moses V, Ananda S (2014) Biological synthesis of copper nanoparticles and its impact-a review. Int J Pharm Sci Invent 3(8):28–38

    Google Scholar 

  • Singh S, Bhatta UM, Satyam P, Dhawan A, Sastry M, Prasad B (2008) Bacterial synthesis of silicon/silica nanocomposites. J Mater Chem 18(22):2601–2606

    Article  CAS  Google Scholar 

  • Singh P, Kim Y-J, Zhang D, Yang D-C (2016) Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol 34(7):588–599

    Article  CAS  PubMed  Google Scholar 

  • Slawson RM, Van Dyke MI, Lee H, Trevors JT (1992) Germanium and silver resistance, accumulation, and toxicity in microorganisms. Plasmid 27(1):72–79

    Article  CAS  PubMed  Google Scholar 

  • Slawson R, Lohmeier-Vogel E, Lee H, Trevors J (1994) Silver resistance in Pseudomonas stutzeri. Biometals 7(1):30–40

    Article  CAS  PubMed  Google Scholar 

  • Sneha K, Sathishkumar M, Mao J, Kwak I, Yun Y-S (2010) Corynebacterium glutamicum-mediated crystallization of silver ions through sorption and reduction processes. Chem Eng J 162(3):989–996

    Article  CAS  Google Scholar 

  • Southam G, Beveridge TJ (1996) The occurrence of sulfur and phosphorus within bacterially derived crystalline and pseudocrystalline octahedral gold formed in vitro. Geochim Cosmochim Acta 60(22):4369–4376

    Article  CAS  Google Scholar 

  • Sunkar S, Nachiyar CV (2012) Microbial synthesis and characterization of silver nanoparticles using the endophytic bacterium Bacillus cereus: a novel source in the benign synthesis. Global J Med Res 12:43–50

    Google Scholar 

  • Sweeney RY, Mao C, Gao X, Burt JL, Belcher AM, Georgiou G, Iverson BL (2004) Bacterial biosynthesis of cadmium sulfide nanocrystals. J Chem 11(11):1553–1559

    CAS  Google Scholar 

  • Syed B, Prasad NM, Satish S (2016) Endogenic mediated synthesis of gold nanoparticles bearing bactericidal activity. J Microsc Ultrastruct 4(3):162–166

    Article  PubMed  PubMed Central  Google Scholar 

  • Taylor DE (1999) Bacterial tellurite resistance. Trends Microbiol 7(3):111–115

    Article  CAS  PubMed  Google Scholar 

  • Thakkar KN, Mhatre SS, Parikh RY (2010) Biological synthesis of metallic nanoparticles. Nanomedicine 6(2):257–262

    Article  CAS  PubMed  Google Scholar 

  • Thomas R, Janardhanan A, Varghese RT, Soniya E, Mathew J, Radhakrishnan E (2014) Antibacterial properties of silver nanoparticles synthesized by marine Ochrobactrum sp. Braz J Microbiol 45(4):1221–1227

    Article  CAS  PubMed  Google Scholar 

  • Torres S, Campos V, León C, Rodríguez-Llamazares S, Rojas S, Gonzalez M, Smith C, Mondaca M (2012) Biosynthesis of selenium nanoparticles by Pantoea agglomerans and their antioxidant activity. J Nanopart Res 14(11):1236

    Article  CAS  Google Scholar 

  • Tsibakhashvil N, Kalabegishvili T, Gabunia V, Gintury E, Kuchava N, Bagdavadze N, Pataraya D, Gurielidzse M, Gvarjaladze D, Lomidze L (2010) Synthesis of silver nanoparticles using bacteria. Nano Studies 2:179–182

    Google Scholar 

  • Vanaja M, Rajeshkumar S, Paulkumar K, Gnanajobitha G, Malarkodi C, Annadurai G (2013) Kinetic study on green synthesis of silver nanoparticles using Coleus aromaticus leaf extract. Adv Appl Sci Res 4(3):50–55

    CAS  Google Scholar 

  • Varshney R, Bhadauria S, Gaur M, Pasricha R (2011) Copper nanoparticles synthesis from electroplating industry effluent. Nano Biomed Eng 3(2):115–119

    Article  CAS  Google Scholar 

  • Visha P, Nanjappan K, Selvaraj P, Jayachandran S, Elango A, Kumaresan G (2015) Biosynthesis and structural characteristics of selenium nanoparticles using Lactobacillus Acidophilus bacteria by wet sterilization process. J Adv Vet Anim Res 4:178–183

    Google Scholar 

  • Visweswara Rao P, Hua Gan S (2015) Recent advances in nanotechnology-based diagnosis and treatments of diabetes. Curr Drug Metab 16(5):371–375

    Article  CAS  Google Scholar 

  • Waghmare S, Deshmukh A, Kulkarni S, Oswaldo L (2011) Biosynthesis and characterization of manganese and zinc nanoparticles. Univers J Environ Res Technol 1(1):64–69

    CAS  Google Scholar 

  • Waki M, Sugiyama E, Kondo T, Sano K, Setou M (2015) Nanoparticle-assisted laser desorption/ionization for metabolite imaging. In: Mass spectrometry imaging of small molecules. Humana Press; Copyright Holder: Springer, New York, pp 159–173

    Google Scholar 

  • Watson J, Ellwood D, Soper A, Charnock J (1999) Nanosized strongly-magnetic bacterially-produced iron sulfide materials. J Magn Magn Mater 203(1–3):69–72

    Article  CAS  Google Scholar 

  • Whiteley C, Govender Y, Riddin T, Rai M (2011) Enzymatic synthesis of platinum nanoparticles: prokaryote and eukaryote systems. In: Metal nanoparticles in microbiology. Springer, Berlin, Heidelberg, pp 103–134

    Chapter  Google Scholar 

  • Wrótniak-Drzewiecka W, Gaikwad S, Laskowski D, Dahm H, Niedojadło J, Gade A, Rai M (2014) Novel approach towards synthesis of silver nanoparticles from Myxococcus virescens and their lethality on pathogenic bacterial cells. Austin J Biotechnol Bioeng 1(1):7

    Google Scholar 

  • Yadav A, Theivasanthi T, Paul P, Upadhyay K (2015) Extracellular biosynthesis of silver nanoparticles from plant growth promoting rhizobacteria Pseudomonas sp. Int J Curr Microbiol App Sci 4(8):1057–1068

    CAS  Google Scholar 

  • Yates MD, Cusick RD, Logan BE (2013) Extracellular palladium nanoparticle production using Geobacter sulfurreducens. ACS Sustain Chem Eng 1(9):1165–1171

    Article  CAS  Google Scholar 

  • Yong P, Rowson NA, Farr JPG, Harris IR, Macaskie LE (2002) Bioreduction and biocrystallization of palladium by Desulfovibrio desulfuricans NCIMB 8307. Biotechnol Bioeng 80(4):369–379

    Article  CAS  PubMed  Google Scholar 

  • Zahir AA, Chauhan IS, Bagavan A, Kamaraj C, Elango G, Shankar J, Arjaria N, Roopan SM, Rahuman AA, Singh N (2015) Green synthesis of silver and titanium dioxide nanoparticles using Euphorbia prostrata extract shows shift from apoptosis to G0/G1 arrest followed by necrotic cell death in Leishmania donovani. Antimicrob Agents Chemother 59(8):4782–4799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zarina A, Nanda A (2014) Green approach for synthesis of silver nanoparticles from marine Streptomyces-MS 26 and their antibiotic efficacy. J Pharm Sci Res 6(10):321–327

    Google Scholar 

  • Zhang W, Chen Z, Liu H, Zhang L, Gao P, Li D (2011) Biosynthesis and structural characteristics of selenium nanoparticles by Pseudomonas alcaliphila. Colloids Surf B Biointerfaces 88(1):196–201

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehrnaz Hatami .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Marooufpour, N., Alizadeh, M., Hatami, M., Asgari Lajayer, B. (2019). Biological Synthesis of Nanoparticles by Different Groups of Bacteria. In: Prasad, R. (eds) Microbial Nanobionics. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-16383-9_3

Download citation

Publish with us

Policies and ethics