Skip to main content

Green Engineering of Silver Nanoparticles to Combat Plant and Foodborne Pathogens: Potential Economic Impact and Food Quality

  • Chapter
  • First Online:
Plant Nanobionics

Abstract

Bacteria, fungi, and viruses cause plant and foodborne diseases that pose immense threat to the agricultural food production, food quality, and economic growth for developing countries, particularly for regions such as sub-Saharan Africa (SSA), where most of the countries depend significantly on agricultural production for food and income. Nanotechnology is a modern technology that promises to overcome barriers associated with the current traditional approach for biological control against plant and foodborne pathogens. However, the nonbiological method for the synthesis of nanoparticles using chemical agents showed to have a negative effect on the environment and humans and is expensive. Biosynthesis employing plant materials promises to offer inexpensive, rapid, and eco-friendly method and is a single-step procedure for the production of safe metallic nanoparticles. This chapter focuses on the biosynthesis of silver nanoparticles (Ag NPs) employing plant materials and their antimicrobial activity against agriculture (phytopathogens) and foodborne pathogens. This chapter also addresses the potential benefits that nanomaterials have in plant protection, food quality, and the potential economic impact in SSA countries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abalaka ME, Akpor OB, Osemwegie OO (2017) Green synthesis and antibacterial activities of silver nanoparticles against Escherichia coli, Salmonella typhi, Pseudomonas aeruginosa and Staphylococcus aureus. Adv Life Sci 4:60–65

    CAS  Google Scholar 

  • Abdel-Aziz S.M., Prasad R., Hamed A.A., Abdelraof M. (2018) Fungal Nanoparticles: A Novel Tool for a Green Biotechnology?. In: Prasad R., Kumar V., Kumar M., Wang S. (eds) Fungal Nanobionics: Principles and Applications. Springer, Singapore, pp 61–87

    Chapter  Google Scholar 

  • Aguilar-Mendez AM, Martı n-Martı´nez ES, Ortega-Arroyo L, Cobia´n-Portillo G, Sa´nchez-Espı´ndola E (2010) Synthesis and characterization of silver nanoparticles: effect on phytopathogen Colletotrichum gloesporioides. J Nanopart Res 13:2525–2532

    Article  CAS  Google Scholar 

  • Ahmed S, Ahmad M, Swami BL, Ikram S (2016) A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J Adv Res 7:17–28

    Article  CAS  PubMed  Google Scholar 

  • Akinsiku AA, Dare EO, Ajanaku KO, Adekoya JA, Ayo-Ajayi J (2018) Green synthesized optically active organically capped silver nanoparticles using stem extract of African cucumber (Momordica charantia). J Mater Environ Sci 9:902–908

    CAS  Google Scholar 

  • Ali K, Ahmed B, Dwivedi S, Saquib Q, Al-khedhairy AA, Musarrat J (2015) Microwave accelerated green synthesis of stable silver nanoparticles with Eucalyptus globulus leaf extract and their antibacterial and antibiofilm activity on clinical isolates. PLoS One 10(10):e0131178. eCollection 2015. https://doi.org/10.1371/journal.pone.0131178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allafchian AR, Mirahmadi-Zare SZ, Jalali SAH, Hashemi SS (2016) Green synthesis of silver nanoparticles using phlomis leaf extract and investigation of their antibacterial activity. J Nanostruct Chem 6:129–135

    Article  CAS  Google Scholar 

  • Anandalakshmi K, Venugobal J, Ramasamy V (2016) Characterization of silver nanoparticles by green synthesis method using Pedalium murex leaf extract and their antibacterial activity. Appl Nanosci 6:399–408

    Article  CAS  Google Scholar 

  • Anwar N, Khan A, Shah M, Anwar S (2018) Green synthesis of silver nanoparticles using an aqueous extract of Monotheca buxifolia (Flac.) Dcne. Russ J Phys Chem A 92:124–131

    Article  CAS  Google Scholar 

  • Armstrong GL, Hollingsworth J, Morris JG (1996) Emerging foodborne pathogens: Escherichia coli O157:H7 as a model of entry of a new pathogen into the food supply of the developed world. Epidemiol Rev 18:29–51

    Article  CAS  PubMed  Google Scholar 

  • Aromal SA, Philip D (2012) Green synthesis of gold nanoparticles using Trigonella foenum-graecum and its size dependent catalytic activity. Spectrochim Acta A Mol Biomol Spectrosc 97:1–5

    Article  CAS  Google Scholar 

  • Avoseh ON, Oyedeji OO, Aremu O, Nkeh-Chungag BN, Songca SP, Oyedeji AO, Sneha Mohan S, Oluwafemi OS (2017) Biosynthesis of silver nanoparticles from Acacia mearnsii De Wild stem bark. Green Chem Lett Rev 10(2):59–68

    Article  CAS  Google Scholar 

  • Aziz WJ, Jassim HA (2018) Green chemistry for the preparation of silver nanoparticles using mint leaf leaves extracts and evaluation of their antimicrobial potential. WNOFNS 18:163–170

    Google Scholar 

  • Aziz N, Fatma T, Varma A, Prasad R (2014) Biogenic synthesis of silver nanoparticles using Scenedesmus abundans and evaluation of their antibacterial activity. J Nanoparticles:689419. https://doi.org/10.1155/2014/689419

    Article  CAS  Google Scholar 

  • Aziz N, Faraz M, Pandey R, Sakir M, Fatma T, Varma A, Barman I, Prasad R (2015) Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial and photocatalytic properties. Langmuir 31:11605–11612. https://doi.org/10.1021/acs.langmuir.5b03081

    Article  CAS  PubMed  Google Scholar 

  • Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol 7:1984. https://doi.org/10.3389/fmicb.2016.01984

    Article  PubMed  PubMed Central  Google Scholar 

  • Aziz N, Faraz M, Sherwani MA, Fatma T, Prasad R (2019) Illuminating the anticancerous efficacy of a new fungal chassis for silver nanoparticle synthesis. Front Chem 7:65. https://doi.org/10.3389/fchem.2019.00065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Badrelden AM, Elmaksoud AIA, El-Maaty REA, Hassan A, Mohamed AAB, Elebeedy D (2018) Green synthesis of silver nanoparticles mediated extract of various in vitro plants (Bacopa monnieri, Coleus blumei, Cichorium intybus). Biosci Res 15:01–11

    Article  Google Scholar 

  • Balashanmugam P, Balakumaran MD, Murugan R, Dhanapal K, Kalaichelvan PT (2016) Phytogenic synthesis of silver nanoparticles, optimization and evaluation of in vitro antifungal activity against human and plant pathogens. Microbiological Research 192:52–64

    Article  CAS  PubMed  Google Scholar 

  • Banerjee P, Satapathy M, Mukhopahayay A, Das P (2014) Leaf extract mediated green synthesis of silver nanoparticles from widely available Indian plants: synthesis, characterization, antimicrobial property and toxicity analysis. Bioresour Bioprocess 1:3

    Article  Google Scholar 

  • Benakashani F, Allafchian AR, Jalali SAH (2016) Biosynthesis of silver nanoparticles using Capparis spinosa L. leaf extract and their antibacterial activity. Karbala Int J Mod Sci 2:251–258

    Article  Google Scholar 

  • Bhattacharyya A, Duraisamy P, Govindarajan M, Buhroo AA, Prasad R (2016) Nano-biofungicides: emerging trend in insect pest control. In: Prasad R (ed) Advances and applications through fungal nanobiotechnology. Springer International Publishing, Cham, pp 307–319

    Chapter  Google Scholar 

  • Billington C, Hudson JA, D’Sa E (2014) Prevention of bacterial foodborne disease using nanobiotechnology. Nanotechnol Sci Appl 7:73–83

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bindhani BK, PanigrahI AK (2015) Biosynthesis and characterization of silver nanoparticles (SNPs) by using leaf extracts of Ocimum Sanctum L (Tulsi) and study of its antibacterial activities. J Nanomed Nanotechnol S6. https://doi.org/10.4172/2157-7439

  • Bonnia NN, Fairuzi AA, Akhir RM, Yahya SM, Rani MA, Ratim S, Rahman NA, Md Akil H (2018) Comparison study on biosynthesis of silver nanoparticles usingfresh and hot air oven dried Imperata cylindrical leaf. IOP Conf Series: Mater Sci Eng 290. https://doi.org/10.1088/1757-899X/290/1/012002

    Article  Google Scholar 

  • Bragg PD, Rainnie DJ (1974) The effect of silver ions on the respiratory chain of Escherichia coli. Can J Microbiol 20:883–889

    Article  CAS  PubMed  Google Scholar 

  • Brown T, Smith D (1976) The effects of silver nitrate on the growth and ultrastructure of the yeast Cryptococcus albidus. Microbios Lett 3:155–162

    CAS  Google Scholar 

  • Chahardooli M, Khodadadi E, Khodadadi E (2014) Green synthesis of silver nanoparticles using oak leaf and fruit extracts (Quercus) and its antibacterial activity against plant pathogenic bacteria. Int J Biosci 4:97–103

    Google Scholar 

  • Chiguvare H, Oyedeji OO, Matewu R, Aremu O, Oyemitan IA, Oyedeji AO, Nkeh-Chungag BN, Songca SP, Mohan S, Oluwafemi OS (2016) Synthesis of silver nanoparticles using Buchu plant extracts and their analgesic properties. Molecules 21:774. https://doi.org/10.3390/molecules21060774

    Article  CAS  PubMed Central  Google Scholar 

  • Choi O, Hu Z (2008) Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environ Sci Technol 42:4583–4588

    Article  CAS  PubMed  Google Scholar 

  • Chouhan N, Meena RK (2015) Biosynthesis of silver nanoparticles using Trachyspermum ammi and evaluation of their antibacterial activities. Int J Pharma Biol Sci 62:1077–1086

    Google Scholar 

  • Cicek S, Gungor AA, Adiguzel A, Nadaroglu H (2015) Biochemical evaluation and green synthesis of nano silver using peroxidase from Euphorbia (Euphorbia amygdaloides) and its antibacterial activity. J Chem Article ID 486948, 7 pages. https://doi.org/10.1155/2015/486948

    Article  CAS  Google Scholar 

  • Compant S, Duffy B, Nowak J, Clément C, Ait Barka E (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conrad AH, Tramp CR, Long CJ, Wells DC, Paulsen AQ, Conrad GW (1999) Ag+ alters cell growth, neurite extension, cardiomyocyte beating, and fertilized egg constriction. Aviat Space Environ Med 70:1096–1105

    CAS  PubMed  Google Scholar 

  • Cozzini P, Ingletto G, Singh R, Asta CD (2008) Mycotoxin detection plays “Cops and robbers”: Cyclodextrin chemosensors as specialized police. Int J Mol Sci 9:2474–2494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dallas P, Sharma VK, Zboril R (2011) Silver polymeric nanocomposites as advanced antimicrobial agents: classification, synthetic paths, applications, and perspectives. Adv Colloid Interf Sci 166:119–135

    Article  CAS  Google Scholar 

  • Das MP, Livingstone JR, Veluswamy P, Das J (2018) Exploration of Wedelia chinensis leaf-assisted silver nanoparticles for antioxidant, antibacterial and in vitro cytotoxic applications. J Food Drug Anal 26:917–925

    Article  PubMed  CAS  Google Scholar 

  • Devi TA, Ananthi N, Amaladhas TP (2016) Photobiological synthesis of noble metal nanoparticles using Hydrocotyle asiatica and application as catalyst for the photodegradation of cationic dyes. J Nanostrut Chem 6:75–92

    Article  CAS  Google Scholar 

  • Devi LS, Joshi SR (2018) Antimicrobial and Synergistic Effects of Silver Nanoparticles Synthesized Using Soil Fungi of High Altitudes of Eastern Himalaya. Mycobiology 40(1):27–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dhayalan M, Denison MIJ, Jegadeeshwari AL, Krishnan K, Gandhi NN (2017) In vitro antioxidant, antimicrobial, cytotoxic potential of gold and silver nanoparticles prepared using Embelia ribes. Nat Prod Res 31:465–468

    Article  CAS  PubMed  Google Scholar 

  • Elavazhagan T, Arunachalam KD (2011) Memecylon edule leaf extract mediated green synthesis of silver and goldnanoparticles. Int J Nanomedicine 6:1265–1278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elemike EE, Fayemi OE, Ekennia AC, Onwudiwe DC, Ebenso EE (2017) Silver nanoparticles mediated by Costus afer leaf extract: synthesis, antibacterial, antioxidant and electrochemical properties. Molecules 22:701. https://doi.org/10.3390/molecules22050701

    Article  CAS  PubMed Central  Google Scholar 

  • Emamifar A, Kadivar M, Shahedi M, Soleimanian-Zad S (2011) Effect of nanocomposite packaging containing Ag and ZnO on inactivation of Lactobacillus plantarum in orange juice. Food Control 22:408e413

    Article  CAS  Google Scholar 

  • Ezealisiji KM, Noundou XS, Ukwueze SE (2017) Green synthesis and characterization of monodispersed silver nanoparticles using root bark aqueous extract of Annona muricata Linn and their antimicrobial activity. Appl Nanosci 7:905–911

    Article  CAS  Google Scholar 

  • Feng Q, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO (2008) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52:662–668

    Article  Google Scholar 

  • Francis S, Koshy E, Mathew B (2018) Microwave aided synthesis of silver and gold nanoparticles and their antioxidant, antimicrobial and catalytic potentials. J Nanostruct 8:55–66

    CAS  Google Scholar 

  • Geddes JR, Carney SM, Davies C, Furukawa TA, Kupfer DJ, Frank E et al (2003) Relapse prevention with antidepressant drug treatment in depressive disorders: a systematic review. Lancet 361:653–661. https://doi.org/10.1016/S0140-6736(03)12599-8

    Article  CAS  PubMed  Google Scholar 

  • Geethalakshmi R, Sarada DVL (2010) Synthesis of plant mediated silver nanoparticles using Trianthema decandra extract and evaluation of their antimicrobial activities. Int J Eng Sci Technol 2:970–975

    Google Scholar 

  • Gholami-Shabani M, Gholami-Shabani Z, Shams-Ghahfarokhi M, Jamzivar F, Razzaghi-Abyaneh M (2017) Green nanotechnology: biomimetic synthesis of metal nanoparticles using plants and their application in agriculture and forestry. Nanotechnology:133–176

    Google Scholar 

  • Ghosh PK, Saxena TK, Gupta R, Yadav RP, Davidson S (1996) Microbial lipases: production and applications. Sci Prog 79:119–157

    CAS  PubMed  Google Scholar 

  • Gottlieb OR, Borin MR, Brito NR (2002) Integration of ethnobotany and phytochemistry: dream or reality. Phytochemistry 60:145–152

    Article  CAS  PubMed  Google Scholar 

  • Gruère GP (2012) Implications of nanotechnology growth in food and agriculture in OECD countries. Food Policy 37:191–198

    Article  Google Scholar 

  • Gupta N, Upadhyaya CP, Singh A, Abd-Elsalam KA, Prasad R (2018) Applications of silver nanoparticles in plant protection. In: Abd-Elsalam K, Prasad R (eds) Nanobiotechnology applications in plant protection. Springer International Publishing AG, pp 247–266

    Google Scholar 

  • He Y, Li X, Zheng Y, Wang Z, Ma Z, Yanga Q, Yao B, Zhao Y, Zhang H (2018) A green approach for synthesizing silver nanoparticles, and their antibacterial and cytotoxic activities. New J Chem 42:2882–2888

    Article  CAS  Google Scholar 

  • Huang J, Li Q, Sun D, Lu Y, Su Y, Yang X, Wang H, Wang Y, Shao W, He N (2007) Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology 18:105–104

    Google Scholar 

  • Huang CH, Vallad GE, Zhang S, Wen A, Balogh B, Figueiredo JFL, Behlau F, Jones JB, Momol MT, Olson SM (2012) Effect of application frequency and reduced rates of Acibenzolar-S-Methyl on the field efficacy of induced resistance against bacterial spot on tomato. Plant Dis 96:221–227

    Article  PubMed  Google Scholar 

  • Inbaraj BS, Chen BH (2016) Nanomaterial-based sensors for detection of foodborne bacterial pathogens and toxins as well as pork adulteration in meat products. J Food Drug Anal 2:15–28

    Article  CAS  Google Scholar 

  • Inoue YM, Hoshino H, Takahashi T, Noguchi T, Murata Y, Kanzaki HH, Sasatsu M (2002) Bactericidal activity of Ag-zeolite mediated by reactive oxygen species under aerated condition. J Inorg Biochem 92:37–42

    Article  CAS  PubMed  Google Scholar 

  • Iravani S (2011) Green synthesis of metal nanoparticles using plants. Green Chem 13:2638–2650

    Article  CAS  Google Scholar 

  • Ismail M., Prasad R., Ibrahim A.I.M., Ahmed A.I.S. (2017) Modern Prospects of Nanotechnology in Plant Pathology. In: Prasad R., Kumar M., Kumar V. (eds) Nanotechnology. Springer, Singapore, pp 305–317

    Chapter  Google Scholar 

  • Jain PK, Huang X, El-Sayed IH, El-Sayed MA (2008) Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc Chem Res 41:1578–1586

    Article  CAS  PubMed  Google Scholar 

  • Jay JM (2000) Modern food microbiology, 6th edn. Aspen Publishers, Singapore

    Book  Google Scholar 

  • Jo YK, Kim BH, Jung G (2009) Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Dis 93:1037–1043

    Article  CAS  PubMed  Google Scholar 

  • Joshi PS, Ramesh G, Packiyam JE, Jayanna SK (2007) Green synthesis and evaluation of silver nanoparticles using leaf extract from Calotropis gigantean. Int J Curr Biotechnol 5:1–5

    Google Scholar 

  • Joshi N, Jain N, Pathak A, Singh J, Prasad R, Upadhyaya CP (2018) Biosynthesis of silver nanoparticles using Carissa carandas berries and its potential antibacterial activities. J Sol-Gel Sci Techn 86(3):682–689. https://doi.org/10.1007/s10971-018-4666-2

    Article  CAS  Google Scholar 

  • Käferstein FK, Motarjemi Y, Bettcher DW (1997) Foodborne disease control: a transnational challenge. In World Health Organization, Geneva, Switzerland. Emerg Infect Dis 3:503–510

    Article  PubMed  PubMed Central  Google Scholar 

  • Kalishwaralal K, Deepak V, Pandian RK, Kottaisamy M, BarathManiKanth S, Kartikeyan B, Gurunathan S (2010) Biosynthesis of silver and gold nanoparticles using Brevibacterium casei. Colloids Surf B Biointerfaces 77 (2):257–262

    Article  CAS  PubMed  Google Scholar 

  • Karatoprak GS, Aydin G, Altinsoy B, Altinkaynak C, Kos M, Ocsoy I (2017) The effect of Pelargonium endlicherianum Fenzl root extracts on formation of nanoparticles and their antimicrobial activities. Enzy Micro Technol 97:21–26

    Article  CAS  Google Scholar 

  • Karthik R, Hou Y, Chen S, Elangovan A, Ganesan M (2016) Eco-friendly synthesis of Ag-NPs using Cerasus serrulata plant extract- its catalytic, electrochemical reduction of 4-NPh and antibacterial activity. J Ind Eng Chem 37:330–339

    Article  CAS  Google Scholar 

  • Kavitha HU, Satish S (2011) Eco-friendly management of plant pathogens by some medicinal plant extracts. J Agric Technol 7:449–461

    Google Scholar 

  • Khairunnisa CM, Anjana M (2018) Green synthesis and characterization of silver nanoparticles using Curcuma amada and evaluation of their antimicrobial activity. IOSR-JP 13:01–05

    Google Scholar 

  • Khan MZH, Tareq FK, Hossem MA, Roki MN (2018) Green synthesis and characterization of silver nanoparticles using Coriandrum sativum leaf extract. J Eng Sci Tech Rev 13:158–166

    Google Scholar 

  • Khatami M, Sharifi I, Nobre MAL, Zafarnia N, Aflatoonian MR (2018) Waste-grass-mediated green synthesis of silver nanoparticles and evaluation of their anticancer, antifungal and antibacterial activity. Green Chem Lett Rev 11(2):125–134

    Article  CAS  Google Scholar 

  • Kiaya V (2014) Post-harvest losses and strategies to reduce them. Technical Paper on Postharvest Losses, Action Contre la Faim (ACF)

    Google Scholar 

  • Kim J, Kuk E, Yu K, Kim JH, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang CY, Kim YK, Lee YS, Jeong DH, Cho MH (2007) Antimicrobial effects of silver nanoparticles. Nanomedicine 3:95–101

    Article  CAS  Google Scholar 

  • Krishnaraj C, Ramachandran R, Mohan K, Kalaichelvan PT (2012) Optimization for rapid synthesis of silver nanoparticles and its effect on phytopathogenic fungi. Spectrochim Acta A Mol Biomol Spectrosc 93:95–99

    Article  CAS  PubMed  Google Scholar 

  • Kulkarni N, Muddapur U (2014) Biosynthesis of metal nanoparticles: a review. J Nanotechnol:1–8

    Article  CAS  Google Scholar 

  • Kumar AS, Abyaneh MK, Gosavi SW, Kulkarni SK, Pasricha R, Ahmad A, Khan MI (2007) Nitrate reductase-mediated synthesis of silver nanoparticles from AgNO3. Biotechnol Lett 29:439–445

    Article  CAS  Google Scholar 

  • Kumar R, Sharma P, Bamal A, Negi S, Chaudhary S (2017) A safe, efficient and environment friendly biosynthesis of silver nanoparticles using Leucaena leucocephala seed extract and its antioxidant, antimicrobial, antifungal activities and potential in sensing. Green Process Synth 6:01–18

    Article  CAS  Google Scholar 

  • Kumar KK, Kumar D, Ramesh RP (2018) Green synthesis of silver nanoparticles using Hydnocarpus pentandra leaf extract in-vitro cyto-toxicity studies against MCF-7 cell line. J Young Pharm 10:16–19

    Article  CAS  Google Scholar 

  • Kuppusamy P, Yusoff MM, Maniam GP, Govindan N (2016) Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications – an updated report. Saudi Pharm J 24:473–484

    Article  PubMed  Google Scholar 

  • Lara HH, Ayala-Nunez NV, del Carmen I, Turrent L, Padilla CR (2010) Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria. World J Microbiol Biotechnol 26:615–621

    Article  CAS  Google Scholar 

  • Lateef A, Azeez MA, Asafa TB, Yekeen TA, Akinboro A, Oladipo IC, Azeez L, Ajibade SE, Ojo SA, Gueguim-Kana EB, Beukesf LS (2016) Biogenic synthesis of silver nanoparticles using a pod extract of Cola nitida: antibacterial and antioxidant activities and applications a paint additive. J Taibah Univ Sci 10:551–562

    Article  Google Scholar 

  • Liau SY, Read DC, Pugh WJ, Furr JR, Russell AD (1997) Interaction of silver nitrate with readily identifiable groups: relationship to the antibacterial action silver ions. Lett Appl Microbiol 25:279–283

    Article  CAS  PubMed  Google Scholar 

  • Loo YL, Chieng BW, Nishibuchi M, Son Radu S (2012) Synthesis of silver nanoparticles by using tea leaf extract from Camellia Sinensis. Int J Nanomedicine 7:4263–4267

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lux R (2004) The nanotech report 2004: investment overview and market research for nanotechnology, 3rd edn. Lux Research, New York

    Google Scholar 

  • Mahdizadeh V, Safaie N, Khelghatibana F (2015) Evaluation of antifungal activity of silver nanoparticles against some phytopathogenic fungi and Trichoderma harzianum. J Crop Prot 4(3):291–300

    Google Scholar 

  • Makarov VV, Love AJ, Sinitsyna OV, Makarova SS, Yaminsky IV, Taliansky ME, Kalinina NO. (2014) “Green” nanotechnologies: synthesis of metal nanoparticles using plants. Acta Naturae. 6(1):35–44

    Google Scholar 

  • Marini M, De Niederhausern N, Iseppi R, Bondi M, Sabia C, Toselli M et al (2007) Antibacterial activity of plastics coated with silver-doped organic-inorganic hybrid coatings prepared by sol-gel processes. Biomacromolecules 8:1246–1254

    Article  CAS  PubMed  Google Scholar 

  • Matei A, Cernica I, Cadar O, Roman C, Schiopu V (2008) Synthesis and characterization of ZnO-polymer nanocomposites. Int J Mater Form 1:767–770

    Article  Google Scholar 

  • Matsumura Y, Yoshikata K, Kunisaki S, Tsuchido T (2002) Mode of bacterial action of silver zeolite and its comparison with that of silver nitrate. Appl Environ Microbiol 69:278–4281

    Google Scholar 

  • Menon S, Agarwal H, Kumar SR, Kumar SV (2017) Green synthesis of silver nanoparticles using medicinal plant Acalytpha Indica leaf and its application as an antioxidant and antimicrobial agent against foodborne pathogens. Int J App Pharm 9:42–50

    Article  CAS  Google Scholar 

  • Min JS, Kim KS, Kim SW, Jung JH, Lamsal K, Kim SB, Jung M, Lee YS (2009) Effects of colloidal silver nanoparticles on sclerotium-forming phytopathogenic fungi. Plant Pathol J 25(4):376–380

    Article  CAS  Google Scholar 

  • Mohammadlou M, Maghsoudi H, Jafarizadeh-Malmiri H (2016) Review on green silver nanoparticles based on plants: synthesis, potential applications and eco-friendly approach. Food Res Int 23:446–463

    CAS  Google Scholar 

  • Mohanta YK, Panda SK, Bastia AK, Mohanta TK (2017) Biosynthesis of silver nanoparticles from Protium serratum and investigation of their potential impacts on food safety and control. Front Microbiol 8:626. https://doi.org/10.3389/fmicb.2017.00626

    Article  PubMed  PubMed Central  Google Scholar 

  • Moodley JS, Krishna SRN, Pillay K, Govender S, Govender P (2018) Green synthesis of silver nanoparticles from Moringa oleifera leaf extracts and its antimicrobial potential. Adv Nat Sci Nanosci Nanotechnol l 9:1–9

    Google Scholar 

  • Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri J, Ram’ırez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnol 16:2346–2353

    Article  CAS  Google Scholar 

  • Mukhopadhyay SS (2014) Nanotechnology in agriculture: prospects and constraints. Nanotechnol Sci Appl 7:63–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nair LS, Laurencin CT (2007) Silver nanoparticles: synthesis and therapeutic applications. J Biomed Nanotechnol 3:301–316

    Article  CAS  Google Scholar 

  • Nalvolthula R, Merugu R, Rudra MPP (2015) Phytochemical analysis; synthesis; antitumor and antimicrobial activity of silver nanoparticles using flower extracts of Ixora coccinea. Inter J Chem Tech Res 7:2374–2380

    CAS  Google Scholar 

  • Nasrollahi A, Pourshamsian K, Mansourkiaee P (2011) Antifungal activity of silver nanoparticles on some of fungi. Int J Nano Dimens 1:233–239

    CAS  Google Scholar 

  • Natarajan K, Selvaraj S, Ramachandra MV (2010) Microbial production of silver nanoparticles. Dig J Nanomater Biostruct 5:135–140

    Google Scholar 

  • Nivas D, Kannan K, Kannan VR, Bastas KK (2016) Bacteriophages emerging biocontrol agents for plant pathogenic bacteria. In: Kannan VR, Bastas KK (eds) Sustainable approaches to controlling plant. Pathogenic bacteria. CRC Press, Boca Raton

    Google Scholar 

  • Obradovic A, Jones JB, Momol MT, Olson SM, Jackson LE, Balogh B, Guven K, Iriarte FB (2005) Integration of biological control agents and systemic acquired resistance inducers against bacterial spot on tomato. Plant Dis 89:712–716

    Article  CAS  PubMed  Google Scholar 

  • Ocsoy I, Paret ML, Ocsoy MA, Kunwar S, Chen T, You M, Tan W (2013) Nanotechnology in Plant Disease Management: DNA-Directed Silver Nanoparticles on Graphene Oxide as an Antibacterial against. ACS Nano 7(10):8972–8980

    Article  CAS  PubMed  Google Scholar 

  • Oluwaniyi OO, Haleemat I, Alabi B, Bodede O, Labulo Ayomide H, Oseghale CO (2016) Biosynthesis of silver nanoparticles using aqueous leaf extract of Thevetia peruviana Juss and its antimicrobial activities. Appl Nanosci 6:903

    Article  CAS  Google Scholar 

  • Pal KK, Gardener BM (2006) Biological control of plant pathogens. Plant Health Instructor. https://doi.org/10.1094/PHI-A-2006-1117-0

  • Panacek A, Kvitek L, Prucek R, Kolar M, Vecerova R, Pizurova N, Sharma VK, Nevecna T, Zboril R (2006) Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Phys Chem B 110:16248–16253

    Article  CAS  PubMed  Google Scholar 

  • Parihar VS, Barbuddhe SB, Danielsson-Tham ML, Tham W (2008) Isolation and characterization of Listeria species from tropical seafoods. Food Cont 19:566–569

    Article  CAS  Google Scholar 

  • Park Y (2014) A new paradigm shift for the green synthesis of antibacterial silver nanoparticles utilizing plant extracts. Toxicol Res 30:169–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park HJ, Kim SH, Kim HJ, Choi SH (2006) A new composition of nanosized silica-silver for control of various plant diseases. Plant Pathol J 22:295–302

    Article  Google Scholar 

  • Patra JK, Baek KH (2014) Green nanobiotechnology: factors affecting synthesis and characterization techniques. J Nanomater. https://doi.org/10.1155/2014/417305

    Article  CAS  Google Scholar 

  • Patra JK, Baek KH (2017) Antibacterial activity and synergistic antibacterial potential of biosynthesized silver nanoparticles against foodborne pathogenic bacteria along with its anticandidal and antioxidant effects. Front Microbiol 8:1–14

    Article  Google Scholar 

  • Perugu S, Nagati V, Bhanoori M (2016) Green synthesis of silver nanoparticles using leaf extract of medicinally potent plant Saraca indica: a novel study. Appl Nanosci 6:747–753

    Article  CAS  Google Scholar 

  • Phanjom P, Zoremi DE, Mazumder J, Saha M, Baruah SB (2012) Green synthesis of silver nanoparticles using leaf extract of Myrica esculenta. Int J Nano Sci Nanotechnol 3(2):73–79

    Google Scholar 

  • Ponarulselvam S, Panneerselvam C, Murugan K, Aarthi N, Kalimuthu K, Thangamani S (2012) Synthesis of silver nanoparticles using leaves of Catharanthus roseus Linn. G. Don and their antiplasmodial activities. Asian Pac J Trop Biomed 2:574–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prabhu S, Poulose EK (2012) Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int Nano Lett 2:32

    Article  Google Scholar 

  • Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. J Nanoparticles:963961. https://doi.org/10.1155/2014/963961

    Article  CAS  Google Scholar 

  • Prasad R, Swamy VS (2013) Antibacterial activity of silver nanoparticles synthesized by bark extract of Syzygium cumini. J Nanoparticles. https://doi.org/10.1155/2013/431218

    Article  CAS  Google Scholar 

  • Prasad KS, Pathak D, Patel A, Dalwadi P, Prasad R, Patel P, Kaliaperumal SK (2011) Biogenic synthesis of silver nanoparticles using Nicotiana tobaccum leaf extract and study of their antibacterial effect. Afr J Biotechnol 9(54):8122–8130

    Google Scholar 

  • Prasad R, Swamy VS, Varma A (2012) Biogenic synthesis of silver nanoparticles from the leaf extract of Syzygium cumini (L.) and its antibacterial activity. Int J Pharma Bio Sci 3(4):745–752

    CAS  Google Scholar 

  • Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13:705–713

    Article  CAS  Google Scholar 

  • Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol 8:316–330. https://doi.org/10.1002/wnan.1363

    Article  Google Scholar 

  • Prasad R, Bhattacharyya A, Nguyen QD (2017) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1–13

    Article  Google Scholar 

  • Prasad R, Jha A, Prasad K (2018a) Exploring the realms of nature for nanosynthesis. Springer International Publishing (ISBN 978-3-319-99570-0) (in press) https://www.springer.com/978-3-319-99570-0

  • Prasad R, Kumar V, Kumar M, Wang S (2018b) Fungal nanobionics: principles and applications. Springer Nature Singapore Pte Ltd. (ISBN 978-981-10-8666-3) https://www.springer.com/gb/book/9789811086656

  • Pugazhendh S, Kirubha E, Palanisamy PK, Gopalakrishnan R (2015) Synthesis and characterization of silver nanoparticles from Alpinia calcarata by green approach and its applications in bactericidal and nonlinear optics. Appl Surf Sci 357:1801–1808

    Article  CAS  Google Scholar 

  • Ragsdale NN (2000) The impact of the food quality protection act on the future of plant disease management. Annu Rev Phytopathol 38:577–596

    Article  CAS  PubMed  Google Scholar 

  • Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27:76–83

    Article  CAS  PubMed  Google Scholar 

  • Rajakumar G, Gomathi T, Thiruvengadam M, Rajeswari VD, Kalpana VN, Chung IM (2017) Evaluation of anti-cholinesterase, antibacterial and cytotoxic activities of green synthesized silver nanoparticles using from Millettia pinnata flower extract. Micro Pathol 103:123–128

    Article  CAS  Google Scholar 

  • Rajeshkumar S, Malarkodi C (2014) In vitro antibacterial activity and mechanism of silver nanoparticles against foodborne pathogens. Bioinorg Chem Appl 581890:10. https://doi.org/10.1155/2014/581890

    Article  CAS  Google Scholar 

  • Ramesh PS, Kokila T, Geetha D (2015) Plant mediated green synthesis and antibacterial activity of silver nanoparticles using Emblica Officinalis fruit extract. Spectrochim Acta A Mol Biomol Spectrosc 142:339–343

    Article  CAS  PubMed  Google Scholar 

  • Ramteke C, Chakrabarti T, Sarangi BK, Pandey R (2013) Synthesis of silver nanoparticles from the aqueous extract of leaves of Ocimum sanctum for enhanced antibacterial activity. J Chem:7. https://doi.org/10.1155/2013/278925

    Article  CAS  Google Scholar 

  • Rateng B (2017) Nanotech holds promise for Africa, but not prioritized. Sci Dev Net 18/10/17, https://www.scidev.net/sub-saharan-africa/r-d/news/nanotech-africa-prioritised.html

  • Richards RM (1981) Antimicrobial action of silver nitrate. Microbios 31:83–91

    CAS  PubMed  Google Scholar 

  • Roopan SM, Madhumitha RG, Rahuman AA, Kamaraj C, Bharathi A, Surendra TV (2013) Low-cost and eco-friendly phyto-synthesis of silver nanoparticles using Cocos nucifera coir extract and its larvicidal activity. Industrial Crops and Products 43:631–635

    Article  CAS  Google Scholar 

  • Roy S, Das TK (2015) Plant mediated green synthesis of silver nanoparticles-a review. Int J Plant Biol Res 3:1044

    Google Scholar 

  • Roy K, Sarkar CK, Ghosh CK (2015) Single-step novel biosynthesis of silver nanoparticles using Cucumis sativus fruit extract and study of its photocatalytic and antibacterial activity. Dig J Nanomater Bios 10:107–115

    Google Scholar 

  • Russell AD, Hugo WB (1994) Antimicrobial activity and action of silver. Prog Med Chem 31:351–370

    Article  CAS  PubMed  Google Scholar 

  • Sadeghi B, Gholamhoseinpoor F (2015) A study on the stability and green synthesis of silver nanoparticles using Ziziphora tenuior (Zt) extract at room temperature. Spectrochim Acta Part A: Mol Biomol Spectrosc 134:310–135

    Article  CAS  Google Scholar 

  • Sangeetha J, Thangadurai D, Hospet R, Harish ER, Purushotham P, Mujeeb MA, Shrinivas J, David M, Mundaragi AC, Thimmappa AC, Arakera SB, Prasad R (2017a) Nanoagrotechnology for Soil Quality, Crop Performance and Environmental Management. In: Prasad R., Kumar M., Kumar V. (eds) Nanotechnology. Springer, Singapore, pp 73–97

    Chapter  Google Scholar 

  • Sangeetha J, Thangadurai D, Hospet R, Purushotham P, Karekalammanavar G, Mundaragi AC, David M, Shinge MR, Thimmappa SC, Prasad R, Harish ER (2017b) Agricultural Nanotechnology: Concepts, Benefits, and Risks. In: Prasad R., Kumar M., Kumar V. (eds) Nanotechnology. Springer, Singapore, pp 1–17

    Google Scholar 

  • Shaik MR, Khan M, Kuniyil M, Al-Warthan A, Alkhathlan HZ, Siddiqui MR, Shaik JP, Ahamed A, Mahmood A, Khan M, Adil SF (2018) Plant-extract-assisted green synthesis of silver nanoparticles using Origanum vulgare L. extract and their microbicidal activities. Sustainability 10:913. https://doi.org/10.3390/su10040913

    Article  CAS  Google Scholar 

  • Shankar SS, Rai A, Ahmad A, Sastry M (2004) Rapid synthesis of Au, Ag, and bimetallic Au coreeAg shell nanoparticles using Neem (Azadirachta indica) leaf broth. J Colloid Interface Sci 275(2):496e502

    Article  CAS  Google Scholar 

  • Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interf Sci 145:83–96

    Article  CAS  Google Scholar 

  • Singh J, Mehta A, Rawa TM, Basu S (2018) Green synthesis of silver nanoparticles using sun dried tulsi leaves and its catalytic application for 4-Nitrophenol reduction. J Environ Chem Eng 6:1468–1474

    Article  CAS  Google Scholar 

  • Smith (2008) cites projections from Nanotechnology: A Global Strategic Business Report (Global Industry Analysts). For more information see: http://www.researchandmarkets.com/reports/338364/nanotechnology_global_strategic_business_report

  • Sowmya C, Lavakumar V, Venkateshan N, Ravichandiran V, Saigopal DVR (2018) Exploration of Phyllanthus acidus mediated silver nanoparticles and its activity against infectious bacterial pathogen. Chem Central J 12:42

    Article  CAS  Google Scholar 

  • Suna Q, Cai X, Li J, Zheng M, Chen Z, Yu CP (2014) Green synthesis of silver nanoparticles using tea leaf extract and evaluation of their stability and antibacterial activity. Colloid Surf A: Physicochem Eng Aspects 444:226–231

    Article  CAS  Google Scholar 

  • Sunita D, Tambhale D, Parag V, Adhyapak A (2014) Facile green synthesis of silver nanoparticles using Psoralea corylifolia seed extract and their in-vitro antimicrobial activities. Int J Pharm Biol Sci 5:457–467

    Google Scholar 

  • Swamy VS, Prasad R (2012) Green synthesis of silver nanoparticles from the leaf extract of Santalum album and its antimicrobial activity. J Optoelectron Biomed Mater 4(3):53–59

    Google Scholar 

  • Swamy MK, Sudipta, KM, Jayanta K, Balasubramanya S (2014) The green synthesis, characterization, and evaluation of the biological activities of silver nanoparticles synthesized from Leptadenia reticulata leaf extract. Appl Nanosci 1–9

    Google Scholar 

  • Tareq FK, Fayzunnesa M, Kabir MS (2017) Antimicrobial activity of plant-median synthesized silver nanoparticles against food and agricultural pathogens. Microb Pathog 109:228–232

    Article  CAS  PubMed  Google Scholar 

  • Tran TTT, Vu TTH, Nguyen TH (2013) Biosynthesis of silver nanoparticles using Tithonia diversifolia leaf extract and their antimicrobial activity. Mater Lett 105:220–223

    Article  CAS  Google Scholar 

  • Vélez E, Campillo G, Morales G, Hincapié C, Osorio J, Arnache O (2018) Silver nanoparticles obtained by Aqueous or Ethanolic Aloe vera extracts: an assessment of the antibacterial activity and mercury removal capability. J Nanomater:1–7. https://doi.org/10.1155/2018/7215210

    Article  CAS  Google Scholar 

  • Vuong LD, Luan ND, Ngoc DD, Anh PT, Bao VQ (2017) Green synthesis of silver nanoparticles from fresh leaf extract of centella asiatica and their applications. Int J Nanosci 16:1–8

    Article  CAS  Google Scholar 

  • Yadav A, Kaushik A, Josh A (2018) Green synthesis of silver nanoparticles using Ocimum sanctum L. and Ocimum americanum L. Int J Life Sci Pharma Res 8:42

    Google Scholar 

  • Yugandhar P, Haribabu R, Savithramma N (2015) Synthesis, characterization and antimicrobial properties of green-synthesised silver nanoparticles from stem bark extract of Syzygium alternifolium (Wt.) Walp. 3Biotech 5:1031–1039

    Google Scholar 

  • Zandi K, Weisany W, Ahmadi H, Bazargan I, Naseri L (2013) Effect of nanocomposite-based packaging on postharvest quality of strawberry during storage. Bull Env Pharmacol Life Sci 2:28–36

    Google Scholar 

  • Zarei M, Jamnejad A, Khajehali E (2014) Antibacterial effect of silver nanoparticles against four foodborne pathogens. Jundishapur J Microbiol 7:8720–8724

    Google Scholar 

  • Zargar M, Shameli S, Reza Najafi G, Farahani F (2014) Plant mediated green biosynthesis of silver nanoparticles using Vitex negundo L. extract. J Ind Eng Chem 20:4169–4175

    Article  CAS  Google Scholar 

  • Zia F, Ghafoor N, Iqbal M, Mehboob S (2016) Green synthesis and characterization of silver nanoparticles using Cydonia oblong seed extract. Appl Nanosci 6:1023–1029

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mufamadi, M.S., Mulaudzi, R.B. (2019). Green Engineering of Silver Nanoparticles to Combat Plant and Foodborne Pathogens: Potential Economic Impact and Food Quality. In: Prasad, R. (eds) Plant Nanobionics. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-16379-2_16

Download citation

Publish with us

Policies and ethics