Skip to main content

Multidrug-Resistant Gram-Negative Pathogens: The Urgent Need for ‘Old’ Polymyxins

  • Chapter
  • First Online:
Polymyxin Antibiotics: From Laboratory Bench to Bedside

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1145))

Abstract

Antibiotic resistance has presented a major health challenge in the world and many isolates of Enterobacteriaceae, Acinetobacter baumannii and Pseudomonas aeruginosa become resistant to almost all current antibiotics. This chapter provides an overview on the mechanisms of antibiotic resistance in these Gram-negative pathogens and outlines the formidable problem of the genetics of bacterial resistance. Prevalent multidrug-resistance in Gram-negative bacteria underscores the need for optimizing the clinical use of the last-line polymyxins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Magill SS, Edwards JR, Bamberg E et al (2014) Multistate point prevalence survey of healthcare-associated infections. N Engl J Med 370:1198–1208

    Article  CAS  Google Scholar 

  2. Peleg AY, Hooper DC (2010) Hospital-acquired infections due to Gram-negative bacteria. N Engl J Med 362:1804–1813

    Article  CAS  Google Scholar 

  3. Bradford PA, Urban C, Mariano N, Projan SJ, Rahal JJ, Bush K (1997) Imipenem resistance in Klebsiella pneumoniae is associated with the combination of ACT-1, a plasmid-mediated AmpC beta-lactamase, and the loss of an outer membrane protein. Antimicrob Agents Chemother 41:563–569

    Article  CAS  Google Scholar 

  4. World Health Organization (WHO) (2017) WHO priority pathogens list for R&D of new antibiotics [Online]. Available: http://www.who.int/medicines/publications/WHO-PPL-Short_Summary_25Feb-ET_NM_WHO.pdf?ua=1. Accessed 28 Apr 2019

  5. Yigit H, Queenan AM, Anderson GJ et al (2001) Novel carbapenem-hydrolyzing beta-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae. Antimicrob Agents Chemother 45:1151–1161

    Article  CAS  Google Scholar 

  6. Tumbarello M, Losito AR, Giamarellou H (2018) Optimizing therapy in carbapenem-resistant Enterobacteriaceae infections. Curr Opin Infect Dis 31:566–577

    CAS  PubMed  Google Scholar 

  7. Satlin MJ, Chen L, Patel G, Gomez-Simmonds A, Weston G, Kim AC, Seo SK, Rosenthal ME, Sperber SJ, Jenkins SG, Hamula CL, Uhlemann AC, Levi MH, Fries BC, Tang YW, Juretschko S, Rojtman AD, Hong T, Mathema B, Jacobs MR, Walsh TJ, Bonomo RA, Kreiswirth BN (2017) Multicenter clinical and molecular epidemiological analysis of bacteremia due to carbapenem-resistant Enterobacteriaceae (CRE) in the CRE Epicenter of the United States. Antimicrob Agents Chemother 61: pii: e02349–16

    Google Scholar 

  8. Navon-Venezia S, Leavitt A, Schwaber MJ et al (2009) First report on a hyperepidemic clone of KPC-3-producing Klebsiella pneumoniae in Israel genetically related to a strain causing outbreaks in the United States. Antimicrob Agents Chemother 53:818–820

    Article  CAS  Google Scholar 

  9. Yong D, Toleman MA, Giske CG et al (2009) Characterization of a new metallo-β-lactamase gene, bla NDM-1, and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob Agents Chemother 53:5046–5054

    Article  CAS  Google Scholar 

  10. Wailan AM, Paterson DL (2014) The spread and acquisition of NDM-1: a multifactorial problem. Expert Rev Anti-Infect Ther 12:91–115

    Article  CAS  Google Scholar 

  11. Castanheira M, Deshpande LM, Farrell SE, Shetye S, Shah N, Jones RN (2013) Update on the prevalence and genetic characterization of NDM-1-producing Enterobacteriaceae in Indian hospitals during 2010. Diagn Microbiol Infect Dis 75:210–213

    Article  CAS  Google Scholar 

  12. Poirel L, Potron A, Nordmann P (2012) OXA-48-like carbapenemases: the phantom menace. J Antimicrob Chemother 67:1597–1606

    Article  CAS  Google Scholar 

  13. Zowawi HM, Balkhy HH, Walsh TR, Paterson DL (2013) β-Lactamase production in key gram-negative pathogen isolates from the Arabian Peninsula. Clin Microbiol Rev 26:361–380

    Article  CAS  Google Scholar 

  14. Peleg AY, Seifert H, Paterson DL (2008) Acinetobacter baumannii: emergence of a successful pathogen. Clin Microbiol Rev 21:538–582

    Article  CAS  Google Scholar 

  15. Paton R, Miles RS, Hood J, Amyes SG, Miles RS, Amyes SG (1993) ARI 1: beta-lactamase-mediated imipenem resistance in Acinetobacter baumannii. Int J Antimicrob Agents 2:81–87

    Article  CAS  Google Scholar 

  16. Turton JF, Ward ME, Woodford N, Kaufmann ME, Pike R, Livermore DM, Pitt TL (2006) The role of ISAba1 in expression of OXA carbapenemase genes in Acinetobacter baumannii. FEMS Microbiol Lett 258:72–77

    Article  CAS  Google Scholar 

  17. Walsh TR, Toleman MA, Poirel L, Nordmann P (2005) Metallo-beta-lactamases: the quiet before the storm? Clin Microbiol Rev 18:306–325

    Article  CAS  Google Scholar 

  18. Gottig S, Gruber TM, Higgins PG, Wachsmuth M, Seifert H, Kempf VA (2014) Detection of pan drug-resistant Acinetobacter baumannii in Germany. J Antimicrob Chemother 69:2578–2579

    Article  Google Scholar 

  19. Bonomo RA, Szabo D (2006) Mechanisms of multidrug resistance in Acinetobacter spp. and Pseudomonas aeruginosa. Clin Infect Dis 43(Suppl 2):S49–S56

    Article  CAS  Google Scholar 

  20. Liu YY, Wang Y, Walsh TR, Yi LX, Zhang R, Spencer J, Doi Y, Tian G, Dong B, Huang X, Yu LF, Gu D, Ren H, Chen X, Lv L, He D, Zhou H, Liang Z, Liu JH, Shen J (2016) Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis 16:161–168

    Article  Google Scholar 

  21. Schwarz S, Johnson AP (2016) Transferable resistance to colistin: a new but old threat. J Antimicrob Chemother 71:2066–2070

    Article  Google Scholar 

  22. Wise MG, Estabrook MA, Sahm DF, Stone GG, Kazmierczak KM (2018) Prevalence of mcr-type genes among colistin-resistant Enterobacteriaceae collected in 2014–2016 as part of the INFORM global surveillance program. PLoS One 13:e0195281

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David L. Paterson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Paterson, D.L., Bonomo, R.A. (2019). Multidrug-Resistant Gram-Negative Pathogens: The Urgent Need for ‘Old’ Polymyxins. In: Li, J., Nation, R., Kaye, K. (eds) Polymyxin Antibiotics: From Laboratory Bench to Bedside. Advances in Experimental Medicine and Biology, vol 1145. Springer, Cham. https://doi.org/10.1007/978-3-030-16373-0_2

Download citation

Publish with us

Policies and ethics