Skip to main content

Auto-calibration of Fractional Fuzzy Controllers by Using the Swarm Social-Spider Method

  • Chapter
  • First Online:
New Advancements in Swarm Algorithms: Operators and Applications

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 160))

  • 413 Accesses

Abstract

Fuzzy controllers (FCs) based on integer concepts have proved their interesting capacities in several engineering domains. The fact that dynamic processes can be more precisely modeled by using fractional systems has generated a great interest in considering the design of FCs under fractional principles. In the design of fractional FCs, the parameter adjustment operation is converted into a multidimensional optimization task where fractional orders, and controller parameters, are assumed as decision elements. In the design of fractional FCs, the complexity of the optimization problem produces multi-modal error surfaces which are significantly hard to solve. Several swarm algorithms have been successfully used to identify the optimal elements of fractional FCs. But, most of them present a big weakness since they usually get sub-optimal solutions as a result of their improper balance between exploitation and exploration in their search process. This chapter analyses the optimal parameter calibration of fractional FCs. To determine the best elements, the approach employs the Social Spider Optimization (SSO) algorithm, which is based on the simulation of the cooperative operation of social-spiders. In SSO, candidate solutions represent a group of spiders, which interact with each other by considering the biological concepts of the spider colony. Different to most of the swarm algorithms, the approach explicitly avoids the concentration of solutions in the promising positions, eliminating critical defects such as the premature convergence and the deficient balance of exploration-exploitation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Oldham, K., Spanier, J.: The Fractional Calculus: Theory and Application of Differentiation and Integration to Arbitrary Order. Academic Press, New York (1974)

    MATH  Google Scholar 

  2. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  3. Das, S., Pan, I., Das, S., Gupta, A.: A novel fractional order fuzzy PID controller and its optimal time domain tuning based on integral performance indices. J. Eng. Appl. Artif. Intell. 25, 430–442 (2012)

    Article  Google Scholar 

  4. Delavari, H., Ghaderi, R., Ranjbar, A., Momani, S.: Fuzzy fractional order sliding mode controller for nonlinear systems. Commun. Nonlinear Sci. Numer. Simul. 15(4), 963–978 (2010)

    Article  MathSciNet  Google Scholar 

  5. Jesus, I.S., Barbosa, R.S.: Genetic optimization of fuzzy fractional PD+I controllers. ISA Trans. 57, 220–230 (2015)

    Article  Google Scholar 

  6. Barbosa, R.S., Jesus, I.S.: A methodology for the design of fuzzy fractional PID controllers. In: ICINCO 2013—Proceedings of the 10th International Conference on Informatics in Control, Automation and Robotics, vol. 1, pp. 276–281 (2013)

    Google Scholar 

  7. Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)

    Article  Google Scholar 

  8. He, Y., Chen, H., He, Z., Zhou, L.: Multi-attribute decision making based on neutral averaging operators for intuitionistic fuzzy information. Appl. Soft Comput. 27, 64–76 (2015)

    Article  Google Scholar 

  9. Pana, I., Das, S.: Fractional order fuzzy control of hybrid power system with renewable generation using chaotic PSO. ISA Trans. 62, 19–29 (2016)

    Article  Google Scholar 

  10. Roy, G.G., Chakraborty, P., Das, S.: Designing fractional-order PIλDμ controller using differential harmony search algorithm. Int. J. Bio-Inspired Comput. 2(5), 303–309 (2010)

    Article  Google Scholar 

  11. Xu, Y., Zhou, J., Xue, X., Fu, W., Zhu, W., Li, C.: An adaptively fast fuzzy fractional order PID control for pumped storage hydro unit using improved gravitational search algorithm. Energy Convers. Manag. 111, 67–78 (2016)

    Article  Google Scholar 

  12. Sharma, R., Rana, K.P.S., Kumar, V.: Performance analysis of fractional order fuzzy PID controllers applied to a robotic manipulator. Expert Syst. Appl. 41, 4274–4289 (2014)

    Article  Google Scholar 

  13. Tan, K.C., Chiam, S.C., Mamun, A.A., Goh, C.K.: Balancing exploration and exploitation with adaptive variation for evolutionary multi-objective optimization. Eur. J. Oper. Res. 197, 701–713 (2009)

    Article  Google Scholar 

  14. Chen, G., Low, C.P., Yang, Z.: Preserving and exploiting genetic diversity in evolutionary programming algorithms. IEEE Trans. Evol. Comput. 13(3), 661–673 (2009)

    Article  Google Scholar 

  15. Cuevas, E., Cienfuegos, M., Zaldívar, D., Pérez-Cisneros, M.: A swarm optimization algorithm inspired in the behavior of the social-spider. Expert Syst. Appl. 40(16), 6374–6384 (2013)

    Article  Google Scholar 

  16. Goldberg, D.E.: Genetic Algorithm in Search Optimization and Machine Learning. Addison-Wesley (1989)

    Google Scholar 

  17. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the 1995 IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948, Dec 1995

    Google Scholar 

  18. Geem, Z.W., Kim, J., Loganathan, G.: Music-inspired optimization algorithm harmony search. Simulation 76, 60–68 (2001)

    Article  Google Scholar 

  19. Rashedi, E., Nezamabadi-pour, H., Saryazdi, S.: GSA: a gravitational search algorithm. Inf. Sci. 179, 2232–2248 (2009)

    Article  Google Scholar 

  20. Yang, X.S., Deb, S.: Engineering optimization by cuckoo search. Int. J. Math. Model. Numer. Optim. 1(4), 339–343 (2010)

    MATH  Google Scholar 

  21. Pereira, D.R., Pazoti, M.A., Pereira, L.A.M., Rodrigues, D., Ramos, C.O., Souza, A.N., Papa, J.P.: Social-spider optimization-based support vector machines applied for energy theft detection. Comput. Electr. Eng. 49, 25–38 (2016)

    Article  Google Scholar 

  22. Mirjalili, S.Z., Saremi, S., Mirjalili, S.M.: Designing evolutionary feedforward neural networks using social spider optimization algorithm. Neural Comput. Appl. 26(8), 1919–1928 (2015)

    Article  Google Scholar 

  23. Klein, C.E., Segundo, E.H.V., Mariani, V.C., Coelho, L.D.S.: Modified social-spider optimization algorithm applied to electromagnetic optimization. IEEE Trans. Magn. 52(3), 2–10 (2016)

    Article  Google Scholar 

  24. Ouadfel, S., Taleb-Ahmed, A.: Social spiders optimization and flower pollination algorithm for multilevel image thresholding: a performance study. Expert Syst. Appl. 55, 566–584 (2016)

    Article  Google Scholar 

  25. Tawhid, M.A., Ali, A.F.: A simplex social spider algorithm for solving integer programming and minimax problems. Memetic Comput. (In press)

    Google Scholar 

  26. Jesus, I., Machado, J.: Application of fractional calculus in the control of heat systems. J. Adv. Comput. Intell. Intell. Inform. 11(9), 1086–1091 (2007)

    Article  Google Scholar 

  27. Machado, J.: Analysis and design of fractional-order digital control systems. SAMS J. Syst. Anal. Modell. Simul. 27, 107–122 (1997)

    MATH  Google Scholar 

  28. Liu, L., Pan, F., Xue, D.: Variable-order fuzzy fractional PID controller. ISA Trans. 55, 227–233 (2015)

    Article  Google Scholar 

  29. Shah, P., Agashe, S.: Review of fractional PID controller. Mechatronics 38, 29–41 (2016)

    Article  Google Scholar 

  30. El-Khazali, R.: Fractional-order PIλDµ controller design. Comput. Math. Appl. 66, 639–646 (2013)

    Article  MathSciNet  Google Scholar 

  31. Owolabi, K.M.: Robust and adaptive techniques for numerical simulation of nonlinear partial differential equations of fractional order. Commun. Nonlinear Sci. Numer. Simul. 44, 304–317 (2017)

    Article  MathSciNet  Google Scholar 

  32. Hélie, T.: Simulation of fractional-order low-pass filters. IEEE/ACM Trans. Audio Speech Lang. Process. 22(11), 1636–1647 (2014)

    Article  Google Scholar 

  33. Hwang, C., Leu, J.-F., Tsay, S.-Y.: A note on time-domain simulation of feedback fractional-order systems. IEEE Trans. Autom. Control 47(4), 625–631 (2002)

    Article  MathSciNet  Google Scholar 

  34. Podlubny, I.: Fractional Differential Equations. Academic Press (1998)

    Google Scholar 

  35. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley (1993)

    Google Scholar 

  36. Dorcak, L.: Numerical models for the simulation of the fractional-order control systems. Numer. Model. Simul. Fractional-Order Control Syst. (1994)

    Google Scholar 

  37. Barbosa, R., Machado, J.A., Silva, M.: Time domain design of fractional differintegrators using least-squares. Signal Process. 86(10), 2567–2581 (2006)

    Article  Google Scholar 

  38. Chen, Y.Q., Vinagre, B., Podlubny, I.: Continued fraction expansion to discretize fractional order derivatives—an expository review. Nonlinear Dyn. 38(1–4), 155–170 (2004)

    Article  Google Scholar 

  39. Vinagre, B.M., Chen, Y., Petráš, I.: Two direct Tustin discretization methods for fractional-order differentiator/integrator. J. Frankl. Inst. 340(5), 349–362 (2003)

    Article  MathSciNet  Google Scholar 

  40. Jacobs, B.A.: A new Grünwald-Letnikov derivative derived from a second-order scheme. Abstr. Appl. Anal. 2015, Article ID 952057, 9 pages (2015). https://doi.org/10.1155/2015/952057

  41. Scherer, R., Kalla, S.L., Tang, Y., Huang, J.: The Grünwald-Letnikov method for fractional differential equations. Comput. Math Appl. 62, 902–917 (2011)

    Article  MathSciNet  Google Scholar 

  42. Liu, H., Li, S., Cao, J., Li, G., Alsaedi, A., Alsaadi, F.E.: Adaptive fuzzy prescribed performance controller design for a class of uncertain fractional-order nonlinear systems with external disturbances. Neurocomputing (In press)

    Google Scholar 

  43. Bigdeli, N.: The design of a non-minimal state space fractional-order predictive functional controller for fractional systems of arbitrary order. J. Process Control 29, 45–56 (2015)

    Article  Google Scholar 

  44. Cordón, O., Herrera, F.: A three-stage evolutionary process for learning descriptive and approximate fuzzy-logic-controller knowledge bases from examples. Int. J. Approximate Reasoning 17(4), 369–407 (1997)

    Article  Google Scholar 

  45. Mamdani, E., Assilian, S.: An experiment in linguistic synthesis with a fuzzy logic controller. Int. J. Man Mach. Stud. 7, 1–13 (1975)

    Article  Google Scholar 

  46. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern. SMC-15, 116–132 (1985)

    Google Scholar 

  47. Xu, J.-X., Li, C., Hang, C.C.: Tuning of fuzzy PI controllers based on gain/phase margin specifications and ITAE index. ISA Trans. 35(1), 79–91 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Cuevas .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cuevas, E., Fausto, F., González, A. (2020). Auto-calibration of Fractional Fuzzy Controllers by Using the Swarm Social-Spider Method. In: New Advancements in Swarm Algorithms: Operators and Applications. Intelligent Systems Reference Library, vol 160. Springer, Cham. https://doi.org/10.1007/978-3-030-16339-6_7

Download citation

Publish with us

Policies and ethics