Skip to main content

Zusammenfassung

This chapter outlines the principles of the digital signal processing () used in modern optical transceivers. The historic developments that have led to the emergence of DSP being applied in optical transceivers is reviewed, including the high-speed complementary metal oxide semiconductor () analog to digital converters () that have facilitated the creation of the application-specific integrated circuit () which underpins digital coherent transceivers. Following on from this, the mathematics associated with finite impulse response () filters is reviewed, including the Wiener and least-squares design of FIR filters. The mathematics associated with the adaptive multiple-input-multiple-output () filter employed in the receiver is also discussed, including derivation of the stochastic descent algorithm based on differentiation with respect to a complex vector. Subsequently, we provide an overview of DSP algorithms, before detailing both those required for equalization and synchronization. Following a summary of error correction used in a digital transceiver, we reflect on the current research trends and future opportunities for DSP in optical transceivers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • K. Poulton, R. Neff, B. Setterberg, B. Wuppermann, T. Kopley, R. Jewett, J. Pernillo, C. Tan, A. Montijo: A 20 GS/s 8 b ADC with a 1 MB memory in 0.18 \(\upmu\)m CMOS. In: IEEE Int. Solid-State Circuits Conf. (ISSCC) (2003), https://doi.org/10.1109/ISSCC.2003.1234315

    Chapter  Google Scholar 

  • H. Sun, K.T. Wu, K. Roberts: Real-time measurements of a 40 Gb/s coherent system, Opt. Express 16(2), 873–879 (2008)

    Article  Google Scholar 

  • K. Roberts, M. O'Sullivan, K.T. Wu, H. Sun, A. Awadalla, D.J. Krause, C. Laperle: Performance of dual-polarization QPSK for optical transport systems, J. Lightwave Technol. 27(16), 3546–3559 (2009)

    Article  Google Scholar 

  • M. O'Sullivan: Progress in real time, DSP assisted, coherent optical transmission. In: Opto-Electron. Commun. Conf. (2009), https://doi.org/10.1109/OECC.2009.5219777

    Chapter  Google Scholar 

  • P.J. Winzer: Beyond 100G ethernet, IEEE Commun. Mag. 48(7), 26–30 (2010)

    Article  Google Scholar 

  • S.S. Kidambi, R.P. Ramachandran: Complex coefficient nonrecursive digital filter design using a least-squares method, IEEE Trans. Signal Process. 44(3), 710–713 (1996)

    Article  Google Scholar 

  • D. Godard: Self-recovering equalization and carrier tracking in two-dimensional data communication systems, IEEE Trans. Commun. 28(11), 1867–1875 (1980)

    Article  Google Scholar 

  • A.V. Oppenheim, R.W. Schafer: Discrete-Time Signal Processing, 3rd edn. (Prentice Hall, Upper Saddle River 2009)

    MATH  Google Scholar 

  • I. Fatadin, S.J. Savory, D. Ives: Compensation of quadrature imbalance in an optical QPSK coherent receiver, IEEE Photonics Technol. Lett. 20(20), 1733–1735 (2008)

    Article  Google Scholar 

  • N. Stojanovic, X. Changsong: An efficient method for skew estimation and compensation in coherent receivers, IEEE Photonics Technol. Lett. 28(4), 489–492 (2016)

    Article  Google Scholar 

  • M. Paskov, D. Lavery, S.J. Savory: Blind equalization of receiver in-phase/quadrature skew in the presence of Nyquist filtering, IEEE Photonics Technol. Lett. 25(24), 2446–2449 (2013)

    Article  Google Scholar 

  • J.G. Proakis, M. Salehi: Digital Communications (McGraw-Hill, New York 2008)

    Google Scholar 

  • G.P. Agrawal: Fiber-Optic Communication Systems, Wiley Series in Microwave and Optical Engineering (Wiley, Hoboken 2012)

    Google Scholar 

  • S.J. Savory: Digital filters for coherent optical receivers, Opt. Express 16(2), 804–817 (2008)

    Article  Google Scholar 

  • A. Eghbali, H. Johansson, O. Gustafsson, S.J. Savory: Optimal least-squares FIR digital filters for compensation of chromatic dispersion in digital coherent optical receivers, J. Lightwave Technol. 32(8), 1449–1456 (2014)

    Article  Google Scholar 

  • C.D. Poole, R.E. Wagner: Phenomenological approach to polarisation dispersion in long single-mode fibres, Electron. Lett. 22(19), 1029–1030 (1986)

    Article  Google Scholar 

  • G.J. Foschini, C.D. Poole: Statistical theory of polarization dispersion in single mode fibers, J. Lightwave Technol. 9(11), 1439–1456 (1991)

    Article  Google Scholar 

  • S. Yamamoto, S. Yamanaka, A. Matsuura, T. Kobayashi, A. Iwaki, M. Suzuki, T. Inui, T. Sakano, M. Tomizawa, Y. Miyamoto, T. Kotanigawa, A. Maeda: PMD tolerance of 100-Gbit/s digital coherent PDM-QPSK in DSF-installed field testbed. In: 16th Opto-Electron. Commun. Conf. (2011) pp. 212–213

    Google Scholar 

  • S. Betti, F. Curti, G. De Marchis, E. Iannone: A novel multilevel coherent optical system: 4-quadrature signaling, J. Lightwave Technol. 9(4), 514–523 (1991)

    Article  Google Scholar 

  • Y. Han, G. Li: Coherent optical communication using polarization multiple-input-multiple-output, Opt. Express 13(19), 7527–7534 (2005)

    Article  Google Scholar 

  • C.B. Papadias, A.J. Paulraj: A constant modulus algorithm for multiuser signal separation in presence of delay spread using antenna arrays, IEEE Signal Process. Lett. 4(6), 178–181 (1997)

    Article  Google Scholar 

  • A. Vgenis, C.S. Petrou, C.B. Papadias, I. Roudas, L. Raptis: Nonsingular constant modulus equalizer for PDM-QPSK coherent optical receivers, IEEE Photonics Technol. Lett. 22(1), 45–47 (2010)

    Article  Google Scholar 

  • J. Zhou, G. Zheng, J. Wu: Constant modulus algorithm with reduced probability of singularity enabled by PDL mitigation, J. Lightwave Technol. 35(13), 2685–2694 (2017)

    Article  Google Scholar 

  • S.J. Savory: Digital coherent optical receivers: Algorithms and subsystems, IEEE J. Sel. Top. Quantum Electron. 16(5), 1164–1179 (2010)

    Article  Google Scholar 

  • B.C. Thomsen, R. Maher, D.S. Millar, S.J. Savory: Burst mode receiver for 112 Gb/s DP-QPSK with parallel DSP, Opt. Express 19(26), B770–B776 (2011)

    Article  Google Scholar 

  • M.S. Faruk, K. Kikuchi: Compensation for in-phase/quadrature imbalance in coherent-receiver front end for optical quadrature amplitude modulation, IEEE Photonics J. 5(2), 7800110 (2013)

    Article  Google Scholar 

  • F.M. Gardner: Phaselock Techniques (Wiley, Hoboken 2005)

    Book  Google Scholar 

  • L. Erup, F.M. Gardner, R.A. Harris: Interpolation in digital modems. II. Implementation and performance, IEEE Trans. Commun. 41(6), 998–1008 (1993)

    Article  Google Scholar 

  • F.M. Gardner: A BPSK/QPSK timing-error detector for sampled receivers, IEEE Trans. Commun. 34(5), 423–429 (1986)

    Article  Google Scholar 

  • H. Sun, K.T. Wu: A novel dispersion and PMD tolerant clock phase detector for coherent transmission systems. In: Opt. Fiber Commun. Conf./Nat. Fiber Opt. Eng. Conf. (2011), Paper OMJ4

    Google Scholar 

  • M. Yan, Z. Tao, L. Dou, L. Li, Y. Zhao, T. Hoshida, J.C. Rasmussen: Digital clock recovery algorithm for Nyquist signal. In: Opt. Fiber Commun. Conf./Nat. Fiber Opt. Eng. Conf. (2013), Paper OTu2I.7

    Google Scholar 

  • N. Stojanovic, C. Xie, Y. Zhao, B. Mao, N.G. Gonzalez, J. Qi, N. Binh: Modified Gardner phase detector for Nyquist coherent optical transmission systems. In: Opt. Fiber Commun. Conf./Nat. Fiber Opt. Eng. Conf. (2013), Paper JTh2A.50

    Google Scholar 

  • A. Leven, N. Kaneda, U. Koc, Y. Chen: Frequency estimation in intradyne reception, IEEE Photonics Technol. Lett. 19(5/8), 366 (2007)

    Article  Google Scholar 

  • I. Fatadin, S.J. Savory: Compensation of frequency offset for 16-QAM optical coherent systems using QPSK partitioning, IEEE Photonics Technol. Lett. 23(17), 1246–1248 (2011)

    Google Scholar 

  • A. Viterbi: Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission, IEEE Trans. Inf. Theor. 29(4), 543–551 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  • T. Pfau, S. Hoffmann, R. Noe: Hardware-efficient coherent digital receiver concept with feedforward carrier recovery for M-QAM constellations, J. Lightwave Technol. 27(8), 989–999 (2009)

    Article  Google Scholar 

  • C.E. Shannon: A mathematical theory of communication, The Bell Syst. Tech. J. 27(3), 379–423 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  • S.M. Bilal, C.R.S. Fludger, V. Curri, G. Bosco: Multistage carrier phase estimation algorithms for phase noise mitigation in 64-quadrature amplitude modulation optical systems, J. Lightwave Technol. 32(17), 2973–2980 (2014)

    Article  Google Scholar 

  • M. Magarini, L. Barletta, A. Spalvieri, F. Vacondio, T. Pfau, M. Pepe, M. Bertolini, G. Gavioli: Pilot-symbols-aided carrier-phase recovery for 100-G PM-QPSK digital coherent receivers, IEEE Photonics Technol. Lett. 24(9), 739–741 (2012)

    Article  Google Scholar 

  • M. Pajovic, D.S. Millar, T. Koike-Akino, R. Maher, D. Lavery, A. Alvarado, M. Paskov, K. Kojima, K. Parsons, B.C. Thomsen, S.J. Savory, P. Bayvel: Experimental demonstration of multi-pilot aided carrier phase estimation for DP-64QAM and DP-256QAM. In: Eur. Conf. Opt. Commun. (ECOC) (2015), https://doi.org/10.1109/ECOC.2015.7341655

    Chapter  Google Scholar 

  • D. Zibar, L. Carvalho, M. Piels, A. Doberstein, J. Diniz, B. Nebendahl, C. Franciscangelis, J. Estaran, H. Haisch, N.G. Gonzalez, J.R.F. de Oliveira, I.T. Monroy: Bayesian filtering for phase noise characterization and carrier synchronization of up to 192 Gb/s PDM 64-QAM. In: Eur. Conf. Opt. Commun. (ECOC) (2014), https://doi.org/10.1109/ECOC.2014.6963844

    Chapter  Google Scholar 

  • L. Pakala, B. Schmauss: Extended Kalman filtering for joint mitigation of phase and amplitude noise in coherent QAM systems, Opt. Express 24(6), 6391–6401 (2016)

    Article  Google Scholar 

  • P. Poggiolini: The GN model of non-linear propagation in uncompensated coherent optical systems, J. Lightwave Technol. 30(24), 3857–3879 (2012)

    Article  Google Scholar 

  • M. Scholten, T. Coe, J. Dillard: Continuously-interleaved BCH (CI-BCH) FEC delivers best-in-class NECG for 40G and 100G metro applications. In: Nat. Fiber Opt. Eng. Conf. (2010), https://doi.org/10.1364/NFOEC.2010.NTuB3

    Chapter  Google Scholar 

  • F. Chang, K. Onohara, T. Mizuochi: Forward error correction for 100 G transport networks, IEEE Commun. Mag. 48(3), S48–S55 (2010)

    Article  Google Scholar 

  • L. Szczecinski, A. Alvarado: Bit-Interleaved Coded Modulation: Fundamentals, Analysis and Design (Wiley, Hoboken 2015)

    Google Scholar 

  • R. Gallager: Low-density parity-check codes, IRE Trans. Inf. Theor. 8(1), 21–28 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  • D.J.C. MacKay: Good error-correcting codes based on very sparse matrices, IEEE Trans. Inf. Theor. 45(2), 399–431 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • T.J. Richardson, R.L. Urbanke: The capacity of low-density parity-check codes under message-passing decoding, IEEE Trans. Inf. Theor. 47(2), 599–618 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • N. Stolte: Rekursive Codes mit der Plotkin-Konstruktion und ihre Decodierung, Ph.D. Thesis (TU Darmstadt, Darmstadt 2002)

    Google Scholar 

  • E. Arikan: Channel polarization: A method for constructing capacity-achieving codes for symmetric binary-input memoryless channels, IEEE Trans. Inf. Theor. 55(7), 3051–3073 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • T. Koike-Akino, C. Cao, Y. Wang, S.C. Draper, D.S. Millar, K. Kojima, K. Parsons, L. Galdino, D.J. Elson, D. Lavery, P. Bayvel: Irregular polar coding for complexity-constrained lightwave systems, J. Lightwave Technol. 36(11), 2248–2258 (2018)

    Article  Google Scholar 

  • I. Tal, A. Vardy: List decoding of polar codes, IEEE Trans. Inf. Theor. 61(5), 2213–2226 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • M. Arabaci, I.B. Djordjevic, R. Saunders, R.M. Marcoccia: High-rate nonbinary regular quasi-cyclic LDPC codes for optical communications, J. Lightwave Technol. 27(23), 5261–5267 (2009)

    Article  Google Scholar 

  • L. Schmalen, A. Alvarado, R. Rios-Müller: Performance prediction of nonbinary forward error correction in optical transmission experiments, J. Lightwave Technol. 35(4), 1015–1027 (2017)

    Article  Google Scholar 

  • T. Koike-Akino, K. Sugihara, D.S. Millar, M. Pajovic, W. Matsumoto, A. Alvarado, R. Maher, D. Lavery, M. Paskov, K. Kojima, K. Parsons, B.C. Thomsen, S.J. Savory, P. Bayvel: Experimental demonstration of nonbinary LDPC convolutional codes for DP-64QAM/256QAM. In: 42nd Eur. Conf. Opt. Commun. (ECOC) (2016)

    Google Scholar 

  • H. Buelow, X. Lu, L. Schmalen, A. Klekamp, F. Buchali: Experimental performance of 4D optimized constellation alternatives for PM-8QAM and PM-16QAM. In: Opt. Fiber Commun. Conf. (2014), https://doi.org/10.1364/OFC.2014.M2A.6

    Chapter  Google Scholar 

  • T.H. Lotz, X. Liu, S. Chandrasekhar, P.J. Winzer, H. Haunstein, S. Randel, S. Corteselli, B. Zhu, D.W. Peckham: Coded PDM-OFDM transmission with shaped 256-iterative-polar-modulation achieving 11.15-b/s/Hz intrachannel spectral efficiency and 800-km reach, J. Lightwave Technol. 31(4), 538–545 (2013)

    Article  Google Scholar 

  • D.S. Millar, T. Fehenberger, T. Koike-Akino, K. Kojima, K. Parsons: Coded modulation for next-generation optical communications. In: Opt. Fiber Commun. Conf. (2018), https://doi.org/10.1364/OFC.2018.Tu3C.3

    Chapter  Google Scholar 

  • B. Chen, C. Okonkwo, H. Hafermann, A. Alvarado: Increasing achievable information rates via geometric shaping, arXiv:1804.08850 [cs.IT] (2018)

    Google Scholar 

  • P. Schulte, G. Böcherer: Constant composition distribution matching, IEEE Trans. Inf. Theor. 62(1), 430–434 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • F. Buchali, F. Steiner, G. Böcherer, L. Schmalen, P. Schulte, W. Idler: Rate adaptation and reach increase by probabilistically shaped 64-QAM: An experimental demonstration, J. Lightwave Technol. 34(7), 1599–1609 (2016)

    Article  Google Scholar 

  • J. Cho, S. Chandrasekhar, R. Dar, P.J. Winzer: Low-complexity shaping for enhanced nonlinearity tolerance. In: 42nd Eur. Conf. Opt. Commun. (ECOC) (2016)

    Google Scholar 

  • T. Fehenberger, D.S. Millar, T. Koike-Akino, K. Kojima, K. Parsons: Multiset-partition distribution matching, arXiv:1801.08445 [eess.SP] (2018)

    Google Scholar 

  • T. Yoshida, M. Karlsson, E. Agrell: Short-block-length shaping by simple mark ratio controllers for granular and wide-range spectral efficiencies. In: Eur. Conf. Opt. Commun. (ECOC) (2017), https://doi.org/10.1109/ECOC.2017.8346146

    Chapter  Google Scholar 

  • D. Cardenas, D. Lavery, P. Watts, S.J. Savory: Reducing the power consumption of the CMA equalizer update for a digital coherent receiver. In: Opt. Fiber Commun. Conf. (2014), https://doi.org/10.1364/OFC.2014.Th4D.5

    Chapter  Google Scholar 

  • M.S. Faruk, D. Lavery, R. Maher, S.J. Savory: A low complexity hybrid time-frequency domain adaptive equalizer for coherent optical receivers. In: Opt. Fiber Commun. Conf. (2016), https://doi.org/10.1364/OFC.2016.Th2A.39

    Chapter  Google Scholar 

  • K.P. Zhong, J.H. Ke, Y. Gao, J.C. Cartledge, A.P.T. Lau, C. Lu: Carrier phase estimation for DP-16QAM using QPSK partitioning and quasi-multiplier-free algorithms. In: Opt. Fiber Commun. Conf. (2014), https://doi.org/10.1364/OFC.2014.W4K.2

    Chapter  Google Scholar 

  • J. Krause Perin, A. Shastri, J.M. Kahn: Design of low-power DSP-free coherent receivers for data center links, J. Lightwave Technol. 35(21), 4650–4662 (2017)

    Article  Google Scholar 

  • T. Koike-Akino, K. Kojima, D.S. Millar, K. Parsons, T. Yoshida, T. Sugihara: Pareto optimization of adaptive modulation and coding set in nonlinear fiber-optic systems, J. Lightwave Technol. 35(4), 1041–1049 (2017)

    Article  Google Scholar 

  • C. Fougstedt, K. Szczerba, P. Larsson-Edefors: Low-power low-latency BCH decoders for energy-efficient optical interconnects, J. Lightwave Technol. 35(23), 5201–5207 (2017)

    Article  Google Scholar 

  • K. Roberts, Q. Zhuge, I. Monga, S. Gareau, C. Laperle: Beyond 100 Gb/s: Capacity, flexibility, and network optimization, J. Opt. Commun. Netw. 9(4), C12–C24 (2017)

    Article  Google Scholar 

  • R. Dar, P.J. Winzer: On the limits of digital back-propagation in fully loaded WDM systems, IEEE Photonics Technol. Lett. 28(11), 1253–1256 (2016)

    Article  Google Scholar 

  • M.J. Ablowitz, J.F. Ladik: A nonlinear difference scheme and inverse scattering, Stud. Appl. Math. 55(3), 213–229 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  • M.I. Yousefi, F.R. Kschischang: Information transmission using the nonlinear Fourier transform, Part I: Mathematical tools, IEEE Trans. Inf. Theor. 60(7), 4312–4328 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • J.D. Gibbon, P.J. Caudrey, R.K. Bullough, J.C. Eilbeck: An N-soliton solution of a nonlinear optics equation derived by a general inverse method, Lett. Nuovo Cim. 8(13), 775–779 (1973)

    Article  Google Scholar 

  • M.I. Yousefi, X. Yangzhang: Linear and nonlinear frequency-division multiplexing. In: 42nd Eur. Conf. Opt. Commun. (2016)

    Google Scholar 

  • S. Wahls, H.V. Poor: Fast numerical nonlinear Fourier transforms, IEEE Trans. Inf. Theor. 61(12), 6957–6974 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • S.T. Le, J.E. Prilepsky, S.K. Turitsyn: Nonlinear inverse synthesis for high spectral efficiency transmission in optical fibers, Opt. Express 22(22), 26720–26741 (2014)

    Article  Google Scholar 

  • V. Aref, H. Bülow, K. Schuh, W. Idler: Experimental demonstration of nonlinear frequency division multiplexed transmission. In: Eur. Conf. Opt. Commun. (ECOC) (2015), https://doi.org/10.1109/ECOC.2015.7341903

    Chapter  Google Scholar 

  • Z. Dong, S. Hari, T. Gui, K. Zhong, M.I. Yousefi, C. Lu, P.K.A. Wai, F.R. Kschischang, A.P.T. Lau: Nonlinear frequency division multiplexed transmissions based on NFT, IEEE Photonics Technol. Lett. 27(15), 1621–1623 (2015)

    Article  Google Scholar 

  • S.K. Turitsyn, J.E. Prilepsky, S.T. Le, S. Wahls, L.L. Frumin, M. Kamalian, S.A. Derevyanko: Nonlinear Fourier transform for optical data processing and transmission: Advances and perspectives, Optica 4(3), 307–322 (2017)

    Article  Google Scholar 

  • N. Eiselt, J. Wei, H. Griesser, A. Dochhan, M.H. Eiselt, J.-P. Elbers, J.J. Vegas Olmos, I. Tafur Monroy: Evaluation of real-time 8 x 56.25 Gb/s (400G) PAM-4 for inter-data center application over 80 km of SSMF at 1550 nm, J. Lightwave Technol. 35(4), 955–962 (2017)

    Article  Google Scholar 

  • A. Mecozzi, C. Antonelli, M. Shtaif: Kramers–Kronig coherent receiver, Optica 3(11), 1220–1227 (2016)

    Article  Google Scholar 

  • D. Che, A. Li, X. Chen, Q. Hu, Y. Wang, W. Shieh: Stokes vector direct detection for linear complex optical channels, J. Lightwave Technol. 33(3), 678–684 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seb J. Savory .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Savory, S.J., Millar, D.S. (2020). DSP for Optical Transponders. In: Mukherjee, B., Tomkos, I., Tornatore, M., Winzer, P., Zhao, Y. (eds) Springer Handbook of Optical Networks. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-16250-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16250-4_6

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16249-8

  • Online ISBN: 978-3-030-16250-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics