Skip to main content

Part of the book series: Springer Handbooks ((SHB))

  • 3397 Accesses

Zusammenfassung

This chapter introduces the general architecture of an optical transponder and describes the three critical optical components that comprise the transponder, the laser, the optical modulator, and the photodetector. Following this, the subsystem consisting of the optical transmitter and the coherent receiver that are typically used for generating and detecting dual-polarization complex-modulated signals are explained. The typical characteristics of the components used in the transponder are presented both from current-generation products, as well as from more recent research demonstrations.

In this chapter, we focus on the line-side optics, as they are the key to understanding the components in a transponder. The transmitter at the line side consists of a number of high-performance optical components, such as narrow-linewidth lasers, and high-speed modulators with linear driver amplifiers. The receiver at the line side consists of \(90^{\circ}\) optical hybrids, high-dynamic-range linear balanced photodetectors (s), and high-gain low-noise transimpedance amplifiers (s). The digital electronic functions are in application-specific integrated circuits (s), which include digital-to-analog converters (s) for the transmitter to generate optical signals, analog-to-digital converters (s) for the receiver to recover the optical signals. Both ends need digital signal processing () engines to condition and process the signals. The client side optics, which are not covered in this chapter, are usually a subset or a simpler version of those used in the line-side part of the transponder.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • G.P. Agrawal, K.D. Niloy: Semiconductor Lasers (Springer, Berlin, Heidelberg 2013)

    Google Scholar 

  • H.C. Casey Jr., M.B. Panish: Heterostructure Lasers, Part A: Fundamental Principles (Academic Press, New York 1978)

    Google Scholar 

  • V. Jayaraman, Z.M. Chuang, L.A. Coldren: Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings, IEEE J. Quantum Electron. 29, 1824–1834 (1993)

    Article  Google Scholar 

  • M. Fleming, A. Mooradian: Spectral characteristics of external-cavity controlled semiconductor lasers, IEEE J. Quantum Electron. 17, 44–59 (1981)

    Article  Google Scholar 

  • J. Buus, E.J. Murphy: Tunable lasers in optical networks, J. Lightwave Technol. 24, 5–11 (2006)

    Article  Google Scholar 

  • C. Spiegelberg, J. Geng, Y. Hu, Y. Kaneda, S. Jiang, N. Peyghambarian: Low-noise narrow-linewidth fiber laser at 1550 nm, J. Lightwave Technol. 22, 57–62 (2004)

    Article  Google Scholar 

  • J. Geng, S. Staines, Z. Wang, J. Zong, M. Blake, S. Jiang: Highly stable low-noise Brillouin fiber laser with ultranarrow spectral linewidth, IEEE Photonics Technol. Lett. 18, 1813–1815 (2006)

    Article  Google Scholar 

  • ITU-T G.694.1: Spectral grids for WDM applications: DWDM frequency grid (2012)

    Google Scholar 

  • M. Fleming, A. Mooradian: Spectral characteristics of external-cavity controlled semiconductor lasers, IEEE J. Quantum Electron. 17, 44–59 (1981)

    Article  Google Scholar 

  • T. Pfau, S. Hoffmann, R. Noé: Hardware-efficient coherent digital receiver concept with feedforward carrier recovery for M-QAM constellations, J. Lightwave Technol. 27, 989–999 (2009)

    Article  Google Scholar 

  • W. Kobayashi, T. Ito, T. Yamanaka, T. Fujisawa, Y. Shibata, T. Kurosaki, M. Kohtoku, T. Tadokoro, H. Sanjoh: 50-Gb/s direct modulation of 1.3-$$\upmu$$m InGaAlAs based DFB laser with ridge waveguide structure, IEEE J. Sel. Top. Quantum Electron. 19, 1500908 (2013), https://doi.org/10.1109/jstqe.2013.2238509

    Article  Google Scholar 

  • Y. Matsui, T. Pham, W.A. Ling, R. Schatz, G. Carey, H. Daghighian, T. Sudo, C. Roxlo: 55-GHz bandwidth short-cavity distributed reflector laser and its application to 112-Gb/s PAM-4. In: Proc. Opt. Fiber Commun. Conf. (2016), Paper PDP Th5B.4

    Google Scholar 

  • J.I. Pankove: Optical Processes in Semiconductors (Prentice Hall, Englewood Cliffs 1971), Chap. 2-C-2

    Google Scholar 

  • M. Chacinski, U. Westergren, B. Stoltz, L. Thylen, R. Schatz, S. Hammerfeldt: Monolithically integrated 100 GHz DFB-TWEAM, J. Lightwave Technol. 27, 3410–3415 (2009)

    Article  Google Scholar 

  • F. Koyama, K. Iga: Frequency chirping in external modulators, J. Lightwave Technol. 6, 87–93 (1988)

    Article  Google Scholar 

  • H. Kim, A.H. Gnauck: Chirp characteristics of dual-drive. Mach–Zehnder modulator with a finite DC extinction ratio, IEEE Photonics Technol. Lett. 14, 298–300 (2002)

    Article  Google Scholar 

  • T. Kawanishi, T. Sakamoto, M. Izutsu: High-speed control of lightwave amplitude, phase, and frequency by use of electrooptic effect, IEEE J. Sel. Top. Quantum Electron. 13, 79–91 (2007)

    Article  Google Scholar 

  • M. Zhang, C. Wang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, M. Lončar: Ultra-high bandwidth integrated Lithium Niobate modulators with record-low Vπ. In: Proc. Opt. Fiber Commun. Conf. (2018), Paper Th4A.5

    Google Scholar 

  • Y. Ogiso, T. Yamada, J. Ozai, N. Kashio, N. Kikuchi, E. Yamada, H. Mawatari, H. Tanobe, S. Kanazawa, H. Yamazaki, Y. Ohiso, T. Fujii, M. Ishikawa, M. Kohtoku: Ultra-high bandwidth InP IQ modulator with 1.5 Vπ. In: Eur. Conf. Opt. Commun. (2016), Paper Tu.3.A.2

    Google Scholar 

  • S. Wolf, W. Hartmann, M. Lauermann, H. Zwickel, Y. Kutuvantavida, C. Kieninger, W. Freude, C. Koos: High-speed silicon-organic hybrid (SOH) modulators. In: Eur. Conf. Opt. Commun. (2016), Paper Tu.3.A.3

    Google Scholar 

  • O. Takanori, K. Kikuchi: Coherent Optical Fiber Communications, Vol. 4 (Springer, New York 1988)

    Google Scholar 

  • D. Ly-Gagnon, S. Tsukamoto, K. Katoh, K. Kikuchi: Coherent detection of optical quadrature phase-shift keying signals with carrier phase estimation, J. Lightwave Technol. 24, 12–21 (2006)

    Article  Google Scholar 

  • P.J. Winzer, R.-J. Essiambre: Advanced modulation formats for high-capacity optical transport networks, J. Lightwave Technol. 24, 4711–4728 (2006)

    Article  Google Scholar 

  • P.J. Winzer: High-spectral-efficiency optical modulation formats, J. Lightwave Technol. 30, 3824–3835 (2012)

    Article  Google Scholar 

  • Y. Ogiso, J. Ozaki, Y. Ueda, N. Kashio, N. Kikuchi, E. Yamada, H. Tanobe, S. Kanazawa, H. Yamazaki, Y. Ohiso, T. Fujii, M. Kohtoku: Over 67 GHz bandwidth and 1.5 Vp; InP-based optical I/Q modulator with n-i-p-n heterostructure, J. Lightwave Technol. 35, 1450–1455 (2017)

    Article  Google Scholar 

  • P. Dong, L. Chen, Y.-K. Chen: High-speed low-voltage single-drive push-pull silicon Mach–Zehnder modulators, Opt. Express 20, 6163–6169 (2012)

    Article  Google Scholar 

  • E.L. Wooten, K.M. Kissa, A. Yi-Yan, E.J. Murphy, D.A. Lafaw, P.F. Hallemeier, D. Maack, D.V. Attanasio, D.J. Fritz, G.J. McBrien, D.E. Bossi: A review of lithium niobate modulators for fiber-optic communications systems, IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000)

    Article  Google Scholar 

  • G. Lukovsky, R.F. Schwarz, R.B. Emmons: Transit-time considerations in p-i-n diodes, J. Appl. Phys. 35, 622–628 (1964)

    Article  Google Scholar 

  • K. Kato, A. Kozen, Y. Muramoto, Y. Itaya, T. Nagatsuma, M. Yaita: 110-GHz, 50%-efficiency mushroom-mesa waveguide p-i-n photodiode for a 1.55-$$\upmu$$m wavelength, IEEE Photonics Technol. Lett. 6, 719–721 (1994)

    Article  Google Scholar 

  • A. Umbach, D. Trommer, G.G. Mekonnen, W. Ebert, G. Unterborsch: Waveguide integrated 1.55 $$\upmu$$m photodetector with 45 GHz bandwidth, Electron. Lett. 32, 2143–2145 (1996)

    Article  Google Scholar 

  • J.C. Campbell, A. Beling: High-speed, waveguide photodiodes. In: Proc. Int. Top. Meet. Microwave (2008) pp. 51–54

    Google Scholar 

  • C. Shannon: Communication in the presence of noise, Proc. IRE 37(1), 10–21 (1949)

    Article  MathSciNet  Google Scholar 

  • A.J. Jerri: The Shannon sampling theorem – Its various extensions and applications: A tutorial review, Proc. IEEE Inst. Electr. Electron. Eng. 65, 1565–1596 (1977)

    Article  Google Scholar 

  • G. Raybon, A. Adamiecki, J. Cho, F. Jorge, A. Konczykowska, M. Riet, B. Duval, J.-Y. Dupuy, N. Fontaine, P.J. Winzer, S. Chandrasekhar, X. Chen: 180-GBaud all-ETDM single-carrier polarization multiplexed QPSK transmission over 4480 km. In: Proc. Opt. Fiber Commun. Conf. (2018), Paper Th4C.3

    Google Scholar 

  • H. Mardoyan, F. Jorge, O. Ozolins, J.M. Estaran, A. Udalcovs, A. Konczykowska, M. Riet, B. Duval, V. Nodjiadjim, J.-Y. Dupuy, X. Pang, U. Westergren, J. Chen, S. Popov, S. Bigo: 204-GBaud on-off keying transmitter for inter-data center communications. In: Proc. Opt. Fiber Commun. Conf. (2018), Paper Th4A.4

    Google Scholar 

  • P. Pupalaikis: High speed arbitrary waveform generator, U.S. Patent 7,535,394 (2009)

    Google Scholar 

  • X. Chen, S. Chandrasekhar, S. Randel, G. Raybon, A. Adamiecki, P. Pupalaikis, P.J. Winzer: All-electronic 100 GHz bandwidth digital-to-analog converter generating PAM signals up to 190 GBaud, J. Lightwave Technol. 35, 411–417 (2017)

    Article  Google Scholar 

  • D.H. Sheingold: Analog-Digital Conversion Handbook, Vol. 16 (Prentice-Hall, Englewood Cliffs 1986)

    Google Scholar 

  • R.J. Van de Plassche: CMOS Integrated Analog-to-Digital and Digital-to-Analog Converters, Vol. 742 (Springer, Berlin, Heidelberg 2013)

    MATH  Google Scholar 

  • C. Laperle, M. O’Sullivan: Advances in high-speed DACs, ADCs, and DSP for optical coherent transceivers, J. Lightwave Technol. 32, 629–643 (2014)

    Article  Google Scholar 

  • G. Lifante: Integrated Photonics: Fundamentals (Wiley, New York 2003)

    Book  Google Scholar 

  • R. Nagarajan, M. Kato, J. Pleumeekers, P. Evans, S. Corzine, S. Hurtt, A. Dentai, S. Murthy, M. Missey, R. Muthiah, R.A. Salvatore, C. Joyner, R. Schneider, M. Ziari, F. Kish, D. Welch: InP photonic integrated circuits, IEEE J. Sel. Top. Quantum Electron. 16, 1113–1125 (2010)

    Article  Google Scholar 

  • C.R. Doerr: Silicon photonic integration in telecommunications, Front. Phys. (2015), https://doi.org/10.3389/fphy.2015.00037

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Chen, X., Chandrasekhar, S. (2020). Optical Transponder Components. In: Mukherjee, B., Tomkos, I., Tornatore, M., Winzer, P., Zhao, Y. (eds) Springer Handbook of Optical Networks. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-16250-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16250-4_5

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16249-8

  • Online ISBN: 978-3-030-16250-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics