Skip to main content

Evolving Requirements and Trends of HPC

  • Chapter
Springer Handbook of Optical Networks

Zusammenfassung

High-performance computing (HPC) denotes the design, build or use of computing systems substantially larger than typical desktop or laptop computers, in order to solve problems that are unsolvable on these traditional machines. Today's largest high-performance computers, a.k.a. supercomputers, are all organized around several thousands of compute nodes, which are collectively leveraged to tackle heavy computational problems. This orchestrated operation is only possible if compute nodes are able to communicate among themselves with low latency and high bandwidth.

In 2004 the ASCI Purple supercomputer was the first to implement optical technologies in the interconnects that support these internode communications. However, research on optical interconnects for HPC applications dates back to the early 1990s. Historically, HPC has been a large driver for the development of short-distance optical links, such as the ones found in today's datacenters (as described elsewhere in this volume). As the number of research areas and industries that exploit HPC is growing, the need for improved HPC interconnection networks is expected to persist.

In this chapter we review the requirements of current HPC systems for optical communication networks and we forecast future requirements on the basis of discernible HPC trends.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • J.S. Dietrich: Cosmic cubism, Eng. Sci. 47(4), 17–20 (1984)

    Google Scholar 

  • J. Gao, H. Cheng, H.C. Wu, G. Liu, E. Lau, L. Yuan, C. Krause: Thunderbolt Interconnect - Optical and copper, J. Lightwave Technol. 35(15), 3125–3129 (2017)

    Article  Google Scholar 

  • T. Mikolov, K. Chen, G. Corrado, J. Dean: Efficient estimation of word representations in vector space, arXiv:1301.3781 [cs.CL] (2013)

    Google Scholar 

  • D.A. Reed, J. Dongarra: Exascale computing and big data, Commun. ACM 58(7), 56–68 (2015)

    Article  Google Scholar 

  • J.S. Vetter: Contemporary high performance computing. In: Contemporary High Performance Computing: From Petascale Toward Exascale (Chapman & Hall, CRC, New York 2013)

    Google Scholar 

  • N.R. Adiga, G. Almasi, G.S. Almasi, Y. Aridor, R. Barik, D. Beece, R. Bellofatto, G. Bhanot, R. Bickford, M. Blumrich, A.A. Bright, J. Brunheroto, C. Cascaval, J. Castanos, W. Chan, L. Ceze, P. Coteus, S. Chatterjee, D. Chen, G. Chiu, T.M. Cipolla, P. Crumley, K.M. Desai, A. Deutsch, T. Domany, M.B. Dombrowa, W. Donath, M. Eleftheriou, C. Erway, J. Esch, B. Fitch, J. Gagliano, A. Gara, R. Garg, R. Germain, M.E. Giampapa, B. Gopalsamy, J. Gunnels, M. Gupta, F. Gustavson, S. Hall, R.A. Haring, D. Heidel, P. Heidelberger, L.M. Herger, D. Hoenicke, R.D. Jackson, T. Jamal-Eddine, G.V. Kopcsay, E. Krevat, M.P. Kurhekar, A.P. Lanzetta, D. Lieber, L.K. Liu, M. Lu, M. Mendell, A. Misra, Y. Moatti, L. Mok, J.E. Moreira, B.J. Nathanson, M. Newton, M. Ohmacht, A. Oliner, V. Pandit, R.B. Pudota, R. Rand, R. Regan, B. Rubin, A. Ruehli, S. Rus, R.K. Sahoo, A. Sanomiya, E. Schenfeld, M. Sharma, E. Shmueli, S. Singh, P. Song, V. Srinivasan, B.D. Steinmacher-Burow, K. Strauss, C. Surovic, R. Swetz, T. Takken, R.B. Tremaine, M. Tsao, A.R. Umamaheshwaran, P. Verma, P. Vranas, T.J.C. Ward, M. Wazlowski, W. Barrett, C. Engel, B. Drehmel, B. Hilgart, D. Hill, F. Kasemkhani, D. Krolak, C.T. Li, T. Liebsch, J. Marcella, A. Muff, A. Okomo, M. Rouse, A. Schram, M. Tubbs, G. Ulsh, C. Wait, J. Wittrup, M. Bae, K. Dockser, L. Kissel, M.K. Seager, J.S. Vetter, K. Yates: An Overview of the BlueGene/L supercomputer. In: Proc. ACM Conf. Supercomput. (2002)

    Google Scholar 

  • J. Dongarra: Report on the Sunway TaihuLight System, Univ. Tennessee Comput. Sci. Rep. UT-EECS-16-742 (2016)

    Google Scholar 

  • R. Dolbeau: Theoretical Peak FLOPS per instruction set on less conventional hardware, http://www.dolbeau.name/dolbeau/publications/peak-alt.pdf (2016)

  • TOP500.org: Top 500 supercomputer sites, https://www.top500.org/ (2019)

  • The High Performance Conjugate Gradients (HPCG) Benchmark Project: http://www.hpcg-benchmark.org/

  • S. Rumley, D. Nikolova, R. Hendry, Q. Li, D. Calhoun, K. Bergman: Silicon photonics for exascale systems, J. Lightwave Technol. 33(3), 547–562 (2015)

    Article  Google Scholar 

  • Graph 500: Large-scale benchmarks, https://graph500.org/ (2017)

  • R.C. Murphy, K.B. Wheeler, B.W. Barrett, J.A. Ang: Introducing the graph 500. In: Proc. CUG (2010)

    Google Scholar 

  • E. Joseph, S. Conway: Major Trends in the Worldwide HPC Market (IDC, Framingham 2017)

    Google Scholar 

  • S. Rumley, M. Bahadori, R. Polster, S.D. Hammond, D.M. Calhoun, K. Wen, A. Rodrigues, K. Bergman: Optical interconnects for extreme scale computing systems, Parallel Comput. 64(Suppl. C), 65–80 (2017)

    Article  MathSciNet  Google Scholar 

  • U.S. Energy Information Administration: Electricity monthly update, https://www.eia.gov/electricity/monthly/update/wholesale_markets.php (2019)

  • J.E. Thornton: The CDC 6600 project, Ann. Hist. Comput. 2(4), 338–348 (1980)

    Article  Google Scholar 

  • A. Aiken, U. Banerjee, A. Kejariwal, A. Nicolau: Overview of ILP architectures. In: Instruction Level Parallelism (Springer, New York 2016) pp. 9–42

    Chapter  MATH  Google Scholar 

  • J.S. Vetter, B.R. de Supinski, L. Kissel, J. May, S. Vaidya: Evaluating high-performance computers, Concurr. Comput. 17(10), 1239–1270 (2005)

    Article  Google Scholar 

  • R. Espasa, M. Valero, J.E. Smith: Vector architectures: Past, present and future. In: Proc. Int. Conf. Supercomp. (1998) pp. 425–432

    Google Scholar 

  • A.H. Karp, M. Heath, D. Heller, H. Simon: 1994 Gordon Bell Prize winners, Computer 28(1), 68–74 (1995)

    Article  Google Scholar 

  • R.H. Dennard, F.H. Gaensslen, V.L. Rideout, E. Bassous, A.R. LeBlanc: Design of ion-implanted MOSFET's with very small physical dimensions, IEEE J. Solid-State Circuits 9(5), 256–268 (1974)

    Article  Google Scholar 

  • M.M. Waldrop: The chips are down for Moores law, Nature 530, 144–147 (2016)

    Article  Google Scholar 

  • N. Loubet, T. Hook, P. Montanini, C.W. Yeung, S. Kanakasabapathy, M. Guillom, T. Yamashita, J. Zhang, X. Miao, J. Wang, A. Young, R. Chao, M. Kang, Z. Liu, S. Fan, B. Hamieh, S. Sieg, Y. Mignot, W. Xu, S.C. Seo, J. Yoo, S. Mochizuki, M. Sankarapandian, O. Kwon, A. Carr, A. Greene, Y. Park, J. Frougier, R. Galatage, R. Bao, J. Shearer, R. Conti, H. Song, D. Lee, D. Kong, Y. Xu, A. Arceo, Z. Bi, P. Xu, R. Muthinti, J. Li, R. Wong, D. Brown, P. Oldiges, R. Robison, J. Arnold, N. Felix, S. Skordas, J. Gaudiello, T. Standaert, H. Jagannathan, D. Corliss, M.H. Na, A. Knorr, T. Wu, D. Gupta, S. Lian, R. Divakaruni, T. Gow, C. Labelle, S. Lee, V. Paruchuri, H. Bu, M. Khare: Stacked nanosheet gate-all-around transistor to enable scaling beyond FinFET. In: Symp. VLSI Technol. (2017) pp. T230–T231

    Google Scholar 

  • IEEE: IRDS More Moore white paper, https://irds.ieee.org/images/files/pdf/2016_MM.pdf (2016)

  • D. Foley, J. Danskin: Ultra-performance Pascal GPU and NVlink interconnect, IEEE Micro 37(2), 7–17 (2017)

    Article  Google Scholar 

  • S. Derradji, T. Palfer-Sollier, J.P. Panziera, A. Poudes, F.W. Atos: The BXI interconnect architecture. In: IEEE 23rd Proc. Ann. Symp. High Perform. Interconnects (2015) pp. 18–25

    Google Scholar 

  • D. Chen, N.A. Eisley, P. Heidelberger, R.M. Senger, Y. Sugawara, S. Kumar, V. Salapura, D.L. Satterfield, B. Steinmacher-Burow, J.J. Parker: The IBM Blue Gene/Q interconnection network and message unit. In: Proc. Int. Conf. High Perform. Comput. Netw. Storage Anal. (2011), Art. 26

    Google Scholar 

  • S. Scott, D. Abts, J. Kim, W.J. Dally: The BlackWidow high-radix Clos network, ACM SIGARCH Comput. Archit. News 34(2), 16–28 (2006)

    Article  Google Scholar 

  • G. Faanes, A. Bataineh, D. Roweth, T. Court, E. Froese, B. Alverson, T. Johnson, J. Kopnick, M. Higgins, J. Reinhard: Cray Cascade: A scalable HPC system based on a Dragonfly network. In: Proc. Int. Conf. High Perform. Comput. Netw. Storage Anal. (2012), Art. 103

    Google Scholar 

  • Cray: Cray® XC50™ supercomputer, https://www.cray.com/sites/default/files/Cray-XC50-NVIDIA-Tesla-P100-GPU-Accelerator-Blade.pdf (2017)

  • Mellanox: InfiniBand switch systems, http://www.mellanox.com/page/switch_systems_overview (2019)

  • S.H. Russ: Differential signaling. In: Signal Integrity: Applied Electromagnetics and Professional Practice (Springer, Berlin 2016) pp. 101–109

    Chapter  Google Scholar 

  • M. Besta, T. Hoefler: Slim Fly: A cost effective low-diameter network topology. In: Proc. Int. Conf. High Perform. Comput. Netw. Storage Anal. (2014) pp. 348–359

    Google Scholar 

  • C.A. Thraskias, E.N. Lallas, N. Neumann, L. Schares, B.J. Offrein, R. Henker, D. Plettemeier, F. Ellinger, J. Leuthold, I. Tomkos: Survey of photonic and plasmonic interconnect technologies for intra-datacenter and high-performance computing communications, IEEE Commun. Surv. Tutor. 20(4), 2758–2783 (2018)

    Article  Google Scholar 

  • S. Rumley, R.P. Polster, S.D. Hammond, A.F. Rodrigues, K. Bergman: End-to-end modeling and optimization of power consumption in HPC interconnects. In: 45th Int. Conf. Parallel Process. Workshops (2016) pp. 133–140, https://doi.org/10.1109/ICPPW.2016.33

    Chapter  Google Scholar 

  • V. Marjanović, J. Gracia, C.W. Glass: Performance modeling of the HPCG benchmark. In: High Performance Computing Systems. Performance Modeling, Benchmarking, and Simulation. PMBS 2014, Lecture Notes in Computer Science, Vol. 8966, ed. by S. Jarvis, S. Wright, S. Hammond (Springer, Cham 2015) pp. 172–192

    Google Scholar 

  • G. Michelogiannakis, K.Z. Ibrahim, J. Shalf, J.J. Wilke, S. Knight, J.P. Kenny: APHiD: Hierarchical task placement to enable a tapered fat tree topology for lower power and cost in HPC networks. In: 7th IEEE/ACM Int. Symp. Cluster Cloud Grid Comput. (2017) pp. 228–237

    Google Scholar 

  • S. Lammel, F. Zahn, H. Fröning: SONAR: Automated communication characterization for HPC applications. In: High Performance Computing. ISC High Performance 2016, Lecture Notes in Computer Science, Vol. 9945, ed. by M. Taufer, B. Mohr, J. Kunkel (Springer, Cham 2016) pp. 98–114

    Google Scholar 

  • J. Dean, L.A. Barroso: The tail at scale, Commun. ACM 56(2), 74–80 (2013)

    Article  Google Scholar 

  • N. Jain, A. Bhatele, S. White, T. Gamblin, L.V. Kale: Evaluating HPC networks via simulation of parallel workloads. In: Proc. Int. Conf. High Perform. Comput. Netw. Storage Anal. (2016) pp. 154–165

    Google Scholar 

  • N. Jain, A. Bhatele, L.H. Howell, D. Böhme, I. Karlin, E.A. León, M. Mubarak, N. Wolfe, T. Gamblin, M.L. Leininger: Predicting the performance impact of different fat-tree configurations. In: Proc. Int. Conf. High Perform. Comput. Netw. Storage Anal. (2017), Art. 50

    Google Scholar 

  • G. Kathareios, C. Minkenberg, B. Prisacari, G. Rodriguez, T. Hoefler: Cost-effective diameter-two topologies: Analysis and evaluation. In: Proc. Int. Conf. High Perform. Comput. Netw. Storage Anal. (2017), Art. 36

    Google Scholar 

  • Y. Ajima, Y. Takagi, T. Inoue, S. Hiramoto, T. Shimizu: The tofu interconnect. In: IEEE 19th Ann. Symp. High Perform. Interconnects (2011) pp. 87–94

    Google Scholar 

  • J. Kim, W.J. Dally, D. Abts: Flattened butterfly: A cost-efficient topology for high-radix networks, ACM SIGARCH Comput. Archit. News 35(2), 126–137 (2007)

    Article  Google Scholar 

  • J.H. Ahn, N. Binkert, A. Davis, M. McLaren, R.S. Schreiber: HyperX: Topology, routing, and packaging of efficient large-scale networks. In: Proc. Int. Conf. High Perform. Comput. Netw. Storage Anal. (2009), Art. 41

    Google Scholar 

  • S. Rumley, M. Glick, S.D. Hammond, A. Rodrigues, K. Bergman: Design methodology for optimizing optical interconnection networks in high performance systems. In: High Performance Computing. ISC High Performance 2015, Lecture Notes in Computer Science, Vol. 9137, ed. by J. Kunkel, T. Ludwig (Springer, Cham 2015) pp. 454–471

    Google Scholar 

  • J. Kim, W.J. Dally, S. Scott, D. Abts: Technology-driven, highly-scalable dragonfly topology, ACM SIGARCH Comput. Archit. News 36(3), 77–88 (2008)

    Article  Google Scholar 

  • B. Alverson, E. Froese, L. Kaplan, D. Roweth: Cray XC series network, WP-Aries01-1112 (2012)

    Google Scholar 

  • M.Y. Teh, J.J. Wilke, K. Bergman, S. Rumley: Design space exploration of the dragonfly topology. In: High Performance Computing. ISC High Performance 2017, Lecture Notes in Computer Science, Vol. 10524, ed. by J. Kunkel, R. Yokota, M. Taufer, J. Shalf (Springer, Cham 2017) pp. 57–74

    Google Scholar 

  • P. Gevros, J. Crowcroft, P. Kirstein, S. Bhatti: Congestion control mechanisms and the best effort service model, IEEE Netw. 15(3), 16–26 (2001)

    Article  Google Scholar 

  • V. Jacobson: Congestion avoidance and control, SIGCOMM Comput. Commun. Rev. 18(4), 314–329 (1988)

    Article  Google Scholar 

  • P. Grun: Introduction to InfiniBand for End Users (InfiniBand Trade, Beaverton 2010)

    Google Scholar 

  • A. Falk, T. Faber, J. Bannister, A. Chien, R. Grossman, J. Leigh: Transport protocols for high performance, Commun. ACM 46(11), 42–49 (2003)

    Article  Google Scholar 

  • W. Dally, B. Towles: Principles and Practices of Interconnection Networks (Morgan Kaufmann, New York 2003)

    Google Scholar 

  • T.M. Pinkston, J. Duato: Appendix F: Interconnection networks. In: Computer Architecture: A Quantitative Approach, 5th edn., ed. by J.L. Hennessy, D.A. Patterson (Morgan Kaufmann, Waltham 2011)

    Google Scholar 

  • IEEE Standards Association: Standard group MAC addresses: A tutorial guide, https://standards.ieee.org/content/dam/ieee-standards/standards/web/documents/tutorials/macgrp.pdf (2019)

  • S.L. Scott, G.M. Thorson: The cray t3e network: Adaptive routing in a high performance 3d torus. In: Proc. Symp. HOT Interconnects IV (1996) pp. 147–156

    Google Scholar 

  • A. Singh, W.J. Dally, A.K. Gupta, B. Towles: GOAL: A load-balanced adaptive routing algorithm for torus networks. In: Proc. 30th Ann. Int. Symp. Comput. Archit. (2003) pp. 194–205

    Google Scholar 

  • J. Kim, W.J. Dally, D. Abts: Adaptive routing in high-radix clos network. In: Proc. ACM/IEEE Conf. Supercomput. (2006), Art. 92

    Google Scholar 

  • N. Jiang, J. Kim, W.J. Dally: Indirect adaptive routing on large scale interconnection networks, ACM SIGARCH Comput. Archit. News 37(3), 220–231 (2009)

    Article  Google Scholar 

  • R. Alverson, D. Roweth, L. Kaplan: The Gemini system interconnect. In: IEEE 18th Symp. High Perform. Interconnects (2010) pp. 83–87

    Google Scholar 

  • P. Faizian, M.A. Mollah, Z. Tong, X. Yuan, M. Lang: A comparative study of SDN and adaptive routing on dragonfly networks. In: Proc. Int. Conf. High Perform. Comput. Netw. Storage Anal. (2017), Art. 51

    Google Scholar 

  • B. Barney: Using ASC Purple, https://computing.llnl.gov/tutorials/purple/index.html (2019)

  • S. Benjamin, K. Hasharoni, A. Maman, S. Stepanov, M. Mesh, H. Luesebrink, R. Steffek, W. Pleyer, C. Stömmer: 336-Channel electro-optical interconnect: Underfill process improvement, fiber bundle and reliability results. In: IEEE 64th Electron. Compon. Technol. Conf. (2014) pp. 1021–1027

    Google Scholar 

  • SWDM Alliance: http://www.swdm.org/

  • T. Saeki, S. Sato, M. Kurokawa, A. Moto, M. Suzuki, K. Tanaka, K. Tanaka, N. Ikoma, Y. Fujimura: 100 Gbit/s compact transmitter module integrated with optical multiplexer. In: IEEE Photonics Conf. (2013) pp. 307–308

    Google Scholar 

  • T.N. Huynh, F. Doany, D.M. Kuchta, D. Gazula, E. Shaw, J. O'Daniel, J. Tatum: 4×50Gb/s NRZ shortwave-wavelength division multiplexing VCSEL link over 50m multimode fiber. In: Opt. Fiber Commun. Conf. Exhib. (2017), https://doi.org/10.1364/OFC.2017.Tu2B.5

    Chapter  Google Scholar 

  • M.R.T. Tan, P. Rosenberg, W.V. Sorin, B. Wang, S. Mathai, G. Panotopoulos, G. Rankin: Universal photonic interconnect for data centers, J. Lightwave Technol. 36(2), 175–180 (2018)

    Article  Google Scholar 

  • L. Carroll, J.-S. Lee, C. Scarcella, K. Gradkowski, M. Duperron, H. Lu, Y. Zhao, C. Eason, P. Morrissey, M. Rensing, S. Collins, H.Y. Hwang, P. O’Brien: Photonic packaging: Transforming silicon photonic integrated circuits into photonic devices, Appl. Sci. 6(12), 426 (2016)

    Article  Google Scholar 

  • N. Kohmu, T. Takai, N. Chujo, H. Arimoto: A 25.78-Gbit/s × 4-ch active optical cable with ultra-compact form factor for high-density optical interconnects, Appl. Sci. 8(1), 137 (2018)

    Article  Google Scholar 

  • Y. Arakawa, T. Nakamura, Y. Urino, T. Fujita: Silicon photonics for next generation system integration platform, IEEE Commun. Mag. 51(3), 72–77 (2013)

    Article  Google Scholar 

  • P. Dumon: Towards foundry approach for silicon photonics: Silicon photonics platform ePIXfab, Electron. Lett. 45(1), 581–582 (2009)

    Article  Google Scholar 

  • M.T. Wade, J.M. Shainline, J.S. Orcutt, C. Sun, R. Kumar, B. Moss, M. Georgas, R.J. Ram, V. Stojanović, M.A. Popović: Energy-efficient active photonics in a zero-change, state-of-the-art CMOS process. In: Opt. Fiber Commun. Conf. (2014), https://doi.org/10.1364/OFC.2014.Tu2E.7

    Chapter  Google Scholar 

  • L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, M. Paniccia: 40 Gbit/s silicon optical modulator for highspeed applications, Electron. Lett. 43(22), 1196 (2007)

    Article  Google Scholar 

  • Y. Tang, H.-W. Chen, S. Jain, J.D. Peters, U. Westergren, J.E. Bowers: 50 Gb/s hybrid silicon traveling-wave electroabsorption modulator, Opt. Express 19(7), 5811–5816 (2011)

    Article  Google Scholar 

  • Q. Xu, B. Schmidt, S. Pradhan, M. Lipson: Micrometre-scale silicon electro-optic modulator, Nature 435(7040), 325–327 (2005)

    Article  Google Scholar 

  • Y. Liu, R. Ding, Q. Li, Z. Xuan, Y. Li, Y. Yang, A.E. Lim, P.G. Lo, K. Bergman, T. Baehr-Jones, M. Hochberg: Ultra-compact 320 Gb/s and 160 Gb/s WDM transmitters based on silicon microrings. In: Opt. Fiber Commun. Conf. (2014), https://doi.org/10.1364/OFC.2014.Th4G.6

    Chapter  Google Scholar 

  • M. Bahadori, S. Rumley, D. Nikolova, K. Bergman: Comprehensive design space exploration of silicon photonic interconnects, J. Lightwave Technol. 34(12), 2975–2987 (2016)

    Article  Google Scholar 

  • M. Bahadori, S. Rumley, R. Polster, A. Gazman, M. Traverso, M. Webster, K. Patel, K. Bergman: Energy-performance optimized design of silicon photonic interconnection networks for high-performance computing. In: Design Autom. Test Eur. Conf. Exhib. (2017) pp. 326–331

    Google Scholar 

  • A.V. Krishnamoorthy, O. Torudbakken, S. Müller, A. Srinivasan, P. Decker, H. Opheim, J.E. Cunningham, X. Zheng, M. Dignum, K. Raj: From chip to cloud: Optical interconnects in engineered systems for the enterprise. In: IEEE Opt. Interconnects Conf. (2016) pp. 34–35

    Google Scholar 

  • K. Padmaraju, D.F. Logan, T. Shiraishi, J.J. Ackert, A.P. Knights, K. Bergman: Wavelength locking and thermally stabilizing microring resonators using dithering signals, J. Lightwave Technol. 32(3), 505–512 (2014)

    Article  Google Scholar 

  • M. Piels, J.E. Bowers: 40 GHz Si/Ge uni-traveling carrier waveguide photodiode, J. Lightwave Technol. 32(20), 3502–3508 (2014)

    Article  Google Scholar 

  • M.L. Brongersma: Plasmonic photodetectors, photovoltaics, and hot-electron devices, Proc. IEEE Inst. Electr. Electron Eng. 104(12), 2349–2361 (2016)

    Article  Google Scholar 

  • D.A.B. Miller: Attojoule optoelectronics for low-energy information processing and communications, J. Lightwave Technol. 35(3), 346–396 (2017)

    Article  Google Scholar 

  • S.A. Maier: Plasmonics: Fundamentals and Applications (Springer, New York 2007)

    Book  Google Scholar 

  • D.K. Mynbaev, V. Sukharenko: Plasmonics for optical communications: The use of graphene for optimizing coupling efficiency. In: Int. Caribb. Conf. Devices Circuits Syst. (2014), https://doi.org/10.1109/ICCDCS.2014.7016180

    Chapter  Google Scholar 

  • M.L. Brongersma, V.M. Shalaev: The case for plasmonics, Science 328(5977), 440–441 (2010)

    Article  Google Scholar 

  • M. Ayata, Y. Fedoryshyn, W. Heni, B. Baeuerle, A. Josten, M. Zahner, U. Koch, Y. Salamin, C. Hoessbacher, C. Haffner, D.L. Elder, L.R. Dalton, J. Leuthold: High-speed plasmonic modulator in a single metal layer, Science 358(6363), 630–632 (2017)

    Article  Google Scholar 

  • D. Dai, Y. Shi, S. He, L. Wosinski, L. Thylen: Gain enhancement in a hybrid plasmonic nano-waveguide with a low-index or high-index gain medium, Opt. Express 19(14), 12925–12936 (2011)

    Article  Google Scholar 

  • S. Kamil, L. Oliker, A. Pinar, J. Shalf: Communication requirements and interconnect optimization for high-end scientific applications, IEEE Trans. Parallel Distrib. Syst. 21(2), 188–202 (2010)

    Article  Google Scholar 

  • K. Wen, P. Samadi, S. Rumley, C.P. Chen, Y. Shen, M. Bahadroi, K. Bergman, J. Wilke: Flexfly: Enabling a reconfigurable dragonfly through silicon photonics. In: Proc. Int. Conf. High Perform. Comput. Netw. Storage Anal. (2016) pp. 166–177

    Google Scholar 

  • C. Minkenberg, G. Rodriguez, B. Prisacari, L. Schares, P. Heidelberger, D. Chen, C. Stunkel: Performance benefits of optical circuit switches for large-scale dragonfly networks. In: Opt. Fiber Commun. Conf. (2016), https://doi.org/10.1364/OFC.2016.W3J.3

    Chapter  Google Scholar 

  • Q. Cheng, S. Rumley, M. Bahadori, K. Bergman: Optical technologies for data centers: A review, Optica 5(11), 1354 (2018)

    Article  Google Scholar 

  • I. Fujiwara, M. Koibuchi, T. Ozaki, H. Matsutani, H. Casanova: Augmenting low-latency HPC network with free-space optical links. In: IEEE 21st Int. Symp. High Perform. Comput. Archit. (2015) pp. 390–401

    Google Scholar 

  • Y. Hu, I. Fujiwara, M. Koibuchi: Job mapping and scheduling on free-space optical networks, IEICE Trans. Inform. Syst. E99.D(11), 2694–2704 (2016)

    Article  Google Scholar 

  • J.M. Kahn, D.A.B. Miller: Communications expands its space, Nat. Photonics 11(1), 5–8 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sébastien Rumley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Rumley, S., Bergman, K., Seyedi, M.A., Fiorentino, M. (2020). Evolving Requirements and Trends of HPC. In: Mukherjee, B., Tomkos, I., Tornatore, M., Winzer, P., Zhao, Y. (eds) Springer Handbook of Optical Networks. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-16250-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16250-4_22

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16249-8

  • Online ISBN: 978-3-030-16250-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics