Skip to main content

Part of the book series: Springer Handbooks ((SHB))

  • 3361 Accesses

Zusammenfassung

A particular thread of research in optical networking that is concerned with the efficient assignment of traffic demands to available network bandwidth became known as traffic grooming in the mid-1990s. Initially motivated by the distinctly different network characteristics of optical and electronic communication channels, the area focused on how subwavelength traffic components were to be mapped to wavelength communication channels, such that the need to convert traffic back to the electronic domain at intermediate network nodes, for the purpose of differential routing, was minimized. Over time, it broadened to include joint considerations with other network design goals and constraints. It was influenced in turn by existing technology limitations, and in turn served to influence continuing technology trends. Traffic grooming has had a significant effect on both the research and practice of transport networking. It continues to be a meaningful area not just in historical terms, but as a wealth of techniques that can be called upon for considering the traffic engineering problem afresh as each new development at the optical layer, or change in economic realities of networking equipment or traffic requirements, redefines the conditions of that problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • L.R. Ford, D.R. Fulkerson: Flows in Networks (Princeton Univ. Press, Princeton 1962)

    MATH  Google Scholar 

  • M.R. Garey, D.S. Johnson: Computers and Intractability. A Guide to the Theory of NP-Completeness (Freeman, New York 1979)

    MATH  Google Scholar 

  • W.J. Goralski: Sonet (McGraw-Hill, New York 2000)

    Google Scholar 

  • M. Pióro, D. Medhi: Routing, Flow, and Capacity Design in Communication and Computer Networks (Morgan Kaufman, San Francisco 2004)

    MATH  Google Scholar 

  • B. Mukherjee, D. Banerjee, S. Ramamurthy, A. Mukherjee: Some principles for designing a wide-area WDM optical network, IEEE ACM Trans. Netw. 4(5), 684–696 (1996)

    Article  Google Scholar 

  • R. Ramaswami, K.N. Sivarajan: Routing and wavelength assignment in all-optical networks, IEEE ACM Trans. Netw. 3(5), 489–500 (1995)

    Article  Google Scholar 

  • E. Modiano: Traffic grooming in WDM networks, IEEE Commun. Mag. 39(7), 124–129 (2001)

    Article  Google Scholar 

  • R. Dutta, G.N. Rouskas: Traffic grooming in WDM networks: Past and future, IEEE Network 16(6), 46–56 (2002)

    Article  Google Scholar 

  • K. Zhu, B. Mukherjee: A review of traffic grooming in WDM optical networks: Architectures and challenges, Opt. Netw. Mag. 4(2), 55–64 (2003)

    Google Scholar 

  • K. Zhu, H. Zhu, B. Mukherjee: Traffic Grooming in Optical WDM Mesh Networks (Springer, Boston 2006)

    Google Scholar 

  • R. Dutta, A.E. Kamal, G.N. Rouskas (Eds.): Traffic Grooming for Optical Networks: Foundations, Techniques and Frontiers (Springer, New York 2008)

    Google Scholar 

  • D. Bertsimas, J.N. Tsitsiklis: Introduction to Linear Optimization, Athena Scientific Series in Optimization and Neural Computation, Vol. 6 (Athena Scientific, Belmont 1997) pp. 479–530

    Google Scholar 

  • S. Huang, R. Dutta: Dynamic traffic grooming: the changing role of traffic grooming, IEEE Commun. Surv. Tutor. 9(1), 32–50 (2007)

    Article  Google Scholar 

  • T.E. Stern: Linear lightwave networks: How far can they go? In: IEEE Glob. Telecommun. Conf. Exhib. (1990), https://doi.org/10.1109/GLOCOM.1990.116805

    Chapter  Google Scholar 

  • K. Bala, T.E. Stern, D. Simchi-Levi, K. Bala: Routing in a linear lightwave network, IEEE ACM Trans. Netw. 3(4), 459–469 (1995)

    Article  Google Scholar 

  • H. Harada, K. Shimizu, T. Kudou, T. Ozeki: Hierarchical optical path cross-connect systems for large scale WDM networks. In: Opt. Fiber Commun. Conf. (1999), https://doi.org/10.1109/OFC.1999.766439

    Chapter  Google Scholar 

  • J. Yamawaku, E. Yamazaki, A. Takada, T. Morioka: Field trial of virtual-groupedwavelength-path switching with QPM-LN waveband converter and PLC matrix switch in JGN II test bed, Electron. Lett. 41, 88–89 (2005)

    Article  Google Scholar 

  • M. Lee, J. Yu, Y. Kim, C. Kang, J. Park: Design of hierarchical crossconnect WDM networks employing a two-stage multiplex scheme of waveband and wavelength, IEEE J. Sel. Areas Commun. 20(1), 166–171 (2002)

    Article  Google Scholar 

  • L. Noirie, M. Vigoureux, E. Dotaro: Impact of intermediate grouping on the dimensioning of multi-granularity optical networks. In: Opt. Fiber Commun. Conf. Exhib. (2001), https://doi.org/10.1109/OFC.2001.927315

    Chapter  Google Scholar 

  • X. Cao, V. Anand, Y. Xiong, C. Qiao: A study of waveband switching with multilayer multigranular optical cross-connects, IEEE J. Sel. Areas Commun. 21(7), 1081–1095 (2003)

    Article  Google Scholar 

  • S. Yao, C. Ou, B. Mukherjee: Design of hybrid optical networks with waveband and electrical TDM switching. In: IEEE Glob. Telecommun. Conf. (2003), https://doi.org/10.1109/GLOCOM.2003.1258746

    Chapter  Google Scholar 

  • K. Sato, H. Hasegawa: Optical networking technologies that will create future bandwidth-abundant networks, IEEE/OSA J. Opt. Commun. Netw. 1(2), A81–A93 (2009)

    Article  Google Scholar 

  • J. Sakaguchi, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, T. Hayashi, T. Taru, T. Kobayashi, M. Watanabe: 109-Tb/s (7x97x172-Gb/s SDM/WDM/PDM) QPSK transmission through 16.8-km homogeneous multi-core fiber. In: Opt. Fiber Commun. Conf. (2011), https://doi.org/10.1364/OFC.2011.PDPB6

    Chapter  Google Scholar 

  • D.J. Richardson, J.M. Fini, L.E. Nelson: Space-division multiplexing in optical fibres, Nat. Photon. 7(5), 354 (2013)

    Article  Google Scholar 

  • D. Klonidis, F. Cugini, O. Gerstel, M. Jinno, V. Lopez, E. Palkopoulou, M. Sekiya, D. Siracusa, G. Thouénon, C. Betoule: Spectrally and spatially flexible optical network planning and operations, IEEE Commun. Mag. 53(2), 69–78 (2015)

    Article  Google Scholar 

  • J. Sakaguchi, W. Klaus, B.J. Puttnam, J.M.D. Mendinueta, Y. Awaji, N. Wada, Y. Tsuchida, K. Maeda, M. Tadakuma, K. Imamura, R. Sugizaki, T. Kobayashi, Y. Tottori, M. Watanabe, R.V. Jensen: 19-core MCF transmission system using EDFA with shared core pumping coupled via free-space optics, Opt. Express 22(1), 90–95 (2014)

    Article  Google Scholar 

  • P. Lechowicz, K. Walkowiak, M. Klinkowski: Selection of spectral-spatial channels in SDM flexgrid optical networks. In: Int. Conf. Opt. Netw. Design Model. (2017), https://doi.org/10.23919/ONDM.2017.7958542

    Chapter  Google Scholar 

  • A. Muhammad, G. Zervas, G. Saridis, E.H. Salas, D. Simeonidou, R. Forchheimer: Flexible and synthetic SDM networks with multi-core-fibers implemented by programmable ROADMs. In: Eur. Conf. Opt. Commun. (2014), https://doi.org/10.1109/ECOC.2014.6963910

    Chapter  Google Scholar 

  • H. Tode, Y. Hirota: Routing, spectrum, and core and/or mode assignment on space-division multiplexing optical networks, IEEE/OSA J. Opt. Commun. Netw. 9(1), A99–A113 (2017)

    Article  Google Scholar 

  • S. Shinada, J.M.D. Mendinueta, R.S. Luís, N. Wada: Operation of a 12.8 Tbit/s DWDM polarization division multiplexing 16-QAM optical packet switching node after 50-km of fiber transmission. In: Eur. Conf. Opt. Commun. (2014), https://doi.org/10.1109/ECOC.2014.6964190

    Chapter  Google Scholar 

  • C. Ou, K. Zhu, H. Zang, L.H. Sahasrabuddhe, B. Mukherjee: Traffic grooming for survivable WDM networks-shared protection, IEEE J. Sel. Areas Commun. 21(9), 1367–1383 (2003)

    Article  Google Scholar 

  • M. Liu, M. Tornatore, B. Mukherjee: Survivable traffic grooming in elastic optical networks – Shared protection, J. Lghtwave Technol. 31(6), 903–909 (2013)

    Article  Google Scholar 

  • L.H. Sahasrabuddhe, B. Mukherjee: Light-trees: Optical multicasting for improved performance in wavelength-routed networks, IEEE Commun. Mag. 37(2), 67–73 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rudra Dutta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Dutta, R., Harai, H. (2020). Traffic Grooming. In: Mukherjee, B., Tomkos, I., Tornatore, M., Winzer, P., Zhao, Y. (eds) Springer Handbook of Optical Networks. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-16250-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16250-4_14

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16249-8

  • Online ISBN: 978-3-030-16250-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics