Skip to main content

Microorganisms in Fermentation

  • Chapter
  • First Online:
Essentials in Fermentation Technology

Part of the book series: Learning Materials in Biosciences ((LMB))

Abstract

Microorganisms [bacteria, fungi (yeasts and mold)] have been adopted successfully in a wide range of industries, from food and beverage processing industries to pharmaceutical operations. Additionally, microorganisms offer tremendous unexploited potential for value- added products such as amino acids, nucleotides and nucleosides, vitamins, organic acids, alcohols, exopolysaccharides, antibiotics, antitumor agents, etc., through various fermentation processes and parameters. This chapter reviews the involvement of various groups of microorganisms in fermentation. The measurement of microbial biomass, growth and kinetics, and factors affecting fermentation processes are also explained. The roles of microorganisms (bacteria and yeasts) involved in fermentation processes [solid-state fermentation (SSF) and submerged fermentation (SmF)] mostly related in processing industries are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amna T, Puri SC, Verma V, Sharma JP, Khajuria RK, Musarrat J, Spiteller M, Qazi GN. Bioreactor studies on the endophytic fungus Entrophospora infrequens for the production of an anticancer alkaloid camptothecin. Can J Microbiol. 2016;52:189–96.

    Article  Google Scholar 

  2. Anastassiadis S, Aivasidis A, Wandrey C. Citric acid production by Candida strains under intracellular nitrogen limitation. Appl Microbiol Biotechnol. 2012;60:81–7.

    Google Scholar 

  3. Asahi S, Izawa M, Doi M. Effects of homoserine dehydrogenase deficiency on production of cytidine by mutants of Bacillus subtilis. Biosci Biotech Biochem. 2016;60:353–4.

    Article  Google Scholar 

  4. Babu KR, Satyanarayana T. Production of bacterial enzymes by solid state fermentation. J Sci Ind Res. 1996;55:464–7.

    CAS  Google Scholar 

  5. Barragán LP, Figueroa JJB, Durán LR, González CA, Hennigs C. Fermentative production methods. In: Biotransformation of agricultural waste and by-products. Netherlands: Elsevier; 2016. p. 189–217.

    Chapter  Google Scholar 

  6. Behera SS, Ray RC. Solid state fermentation for production of microbial cellulases: recent advances and improvement strategies. Int J Biol Macromol. 2016;86:656–69.

    Article  CAS  PubMed  Google Scholar 

  7. Behera SS, Ray RC, Zdolec N. Lactobacillus plantarum with functional properties: an approach to increase safety and shelf-life of fermented foods. BioMed Res Int. 2018;2018:9361614. https://doi.org/10.1155/2018/9361614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bohmer N, Lutz-Wahl S, Fischer L. Recombinant production of hyperthermostable CelB from Pyrococcus furiosus in Lactobacillus sp. Appl Microbiol Biotechnol. 2012;96:903–12.

    Article  CAS  PubMed  Google Scholar 

  9. Burkovski A, Kramer R. Bacterial amino acid transport proteins: occurrence, functions, and significance for biotechnological applications. Appl Microbiol Biotechnol. 2002;58:265–74.

    Article  CAS  PubMed  Google Scholar 

  10. Demain AL. Fungal secondary metabolism: regulation and functions. In: Sutton B, editor. A century of mycology. Cambridge, UK: Cambridge University Press; 2016. p. 233–54.

    Google Scholar 

  11. Demain AL, Fang A. Emerging concepts of secondary metabolism in actinomycetes. Actinomyceto. 2015;9:98–117.

    Article  Google Scholar 

  12. Deppenmeier U, Hoffmeister M, Prust C. Biochemistry and biotechnological applications of Gluconobacter strains. Appl Microbiol Biotechnol. 2002;60:233–42.

    Article  CAS  PubMed  Google Scholar 

  13. Desgranges C, Vergoignan C, Georges M, Durand A. Biomass estimation in solid state fermentation I. Manual biochemical methods. Appl Microbiol Biotechnol. 1991;35(2):200–5.

    CAS  Google Scholar 

  14. Fukaya M, Tayama K, Tamaki T, Tagami H, Okumura H, Kawamura Y, Beppu T. Cloning of the membrane bound Aldehyde dehydrogenase gene of Acetobacter polyoxogenes and improvement of acetic acid production by use of the cloned gene. Appl Environ Microbiol. 2009;55:171–6.

    Article  Google Scholar 

  15. Gest H. The discovery of microorganisms by Robert Hooke and Antoni van Leeuwenhoek, Fellows of The Royal Society. Notes Rec R Soc Lond. 2004;58(2):187–201.

    Article  PubMed  Google Scholar 

  16. Grunert O, Reheul D, Van Labeke MC, Perneel M, Hernandez-Sanabria E, Vlaeminck SE, Boon N. Growing media constituents determine the microbial nitrogen conversions in organic growing media for horticulture. MicrobBiotechnol. 2016;9:389–99.

    CAS  Google Scholar 

  17. Harmsen HJM, Kubicek–Pranz EM, Rohr M, Visser J, Kubicek CP. Regulation of phosphofructokinase from the citric acid accumulating fungus Aspergillus niger. Appl Microbiol Biotechnol. 2012;37:784–8.

    Google Scholar 

  18. Holzapfel W. Use of starter cultures in fermentation on a household scale. Food Control. 1997;8:241–58.

    Article  Google Scholar 

  19. Ingram LO, Conway E, Clark DP, Sewell GW, Preston JF. Genetic engineering of ethanol production in Escherichia coli. Appl Environ Microbiol. 2017;53:2420–5.

    Article  Google Scholar 

  20. Jernejc K, Cimerma A, Perdih A. Comparison of different methods for protein determination in Aspergillus niger mycelium. Appl Microbiol Biotechnol. 1986;23:445–8.

    Article  CAS  Google Scholar 

  21. Jiang SJ, Yang YY, Wang HQ. Optimization of clavulanic acid fermentation. Chi J Antibiot. 2004;6:335–7.

    Google Scholar 

  22. Joutsjoki V, Luoma S, Tamminen M, Kilpi M, Johansen E, Palva A. Recombinant Lactococcus starters as a potential source of additional peptidolytic activity in cheese ripening. J Appl Microbiol. 2002;92:1159–66.

    Article  CAS  PubMed  Google Scholar 

  23. Kar S, Ray RC. Partial characterization and optimization of extracellular thermostable Ca2+ inhibited α-- amylase production by Streptomyces erumpens MTCC 7317. J Sci Ind Res India. 2008;67:58–64.

    CAS  Google Scholar 

  24. Kar S, Ray RC. Optimization of thermostable α- amylase production by Streptomyces erumpens MTCC 7317 in solid state fermentation using cassava fibrous residue. Braz Arch Biol Technol. 2010;53:301–9.

    Article  CAS  Google Scholar 

  25. Kar S, Ray RC. Purification, characterization and application of thermostable exo-polygalacturonase from Streptomyces erumpens MTCC 7317. J Food Biochem. 2011;35:133–42.

    Article  CAS  Google Scholar 

  26. Kar S, Ray RC, Mohapatra UB. Alpha-amylase production by Streptomyces erumpens in solid state fermentation using response surface methodology. Polish J Microbiol. 2008;57:289–96.

    CAS  Google Scholar 

  27. Kubicek CP, Rohr M. Citric acid fermentation. CRC Crit Rev Biotechnol. 2016;3:331–73.

    Article  Google Scholar 

  28. Lee JK, Song JY, Kim SY. Controlling substrate concentration in fedbatch Candida magnoliae culture increases mannitol production. Biotechnol Prog. 2013;19:768–75.

    Article  CAS  Google Scholar 

  29. Li Y, Chen J, Lun SY, Rui XS. Efficient pyruvate production by a multi-vitamin. Int J Sci Tech. 2011;12:229–35.

    Google Scholar 

  30. Liu S. Bioprocess engineering: kinetics, sustainability, and reactor design. San Diego: Elsevier; 2016.

    Google Scholar 

  31. Masuda M, Takahashi K, Sakurai N, Yanagiya K, Komatsubara S, Tosa T. Further improvement of Biotin production by a recombinant strain of Serratia marcescens. Process Biochem. 2015;30:553–62.

    Google Scholar 

  32. Mienda BS, Idi A, Umar A. Microbiological features of solid state fermentation and its applications-An overview. Res Biotechnol. 2011;2:465–89.

    Google Scholar 

  33. Miyagawa K, Kimura H, Nakahama K, Kikuchi M, Doi M, Akiyama S, Nakao Y. Cloning of the Bacillus subtilis IMP dehydrogenase gene and its application to increased production of guanosine. Biotechnol. 2016;4:225–8.

    Google Scholar 

  34. Monod J. The growth of bacterial cultures. Annu Rev Microbiol. 1949;3:371–94.

    Article  CAS  Google Scholar 

  35. Nakayama K, Suzuki T, Sato Z, Kinoshita S. Production of nucleic acid - related substances by fermentative processes. J Gen Appl Microbiol. 2014;10:133–42.

    Article  Google Scholar 

  36. Navarre WW, Schneewind O. Surface proteins of gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol Mol Biol Rev. 1999;63:174–229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Omura S, Crump A. The life and times of Ivermectin - A success story. Nat Rev Microbiol. 2014;2:984–9.

    Article  CAS  Google Scholar 

  38. Petkovic H, Cullum J, Hranueli D, Hunter IS, Peric Concha N, Pigac J, Thamchaipenet A, Vujaklija D, Long PF. Genetics of Streptomyces rimosus, the oxytetracycline producer. Microbiol Mol Biol Rev. 2006;70:704–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Prajapati JB, Nair BM. The history of fermented foods. In: Farnworth ER, editor. Fermented functional foods. Boca Raton, New York, London, Washington DC: CRC Press; 2003. p. 1–25.

    Google Scholar 

  40. Rao DG. Introduction to biochemical engineering. New Delhi: Tata McGraw-Hill Education; 2010.

    Google Scholar 

  41. Ray RC, Joshi VK. Fermented foods;: past, present and future scenario. In: Ray RC, Montet D, editors. Microorganisms and fermentation of traditional foods. Boca Raton, Florida: CRC Press; 2014. p. 1–36.

    Chapter  Google Scholar 

  42. Robitaille G, Tremblay A, Moineau S, St-Gelais D, Vadeboncoeur C, Britten M. Fat-free yogurt made using a galactose-positive exopolysaccharide-producing recombinant strain of Streptococcus thermophilus. J Dairy Sci. 2009;92:477–82.

    Article  CAS  PubMed  Google Scholar 

  43. Saito Y, Ishii Y, Hayashi H, Imao Y, Akashi T, Yoshikawa K, Noguchi Y, Soeda S, Yoshida M, Niwa M, Hosoda J, Shimomura K. Cloning of genes coding for L - sorbose and L - sorbosone dehydrogenases from Gluconobacter oxydans and microbial production of 2-keto-L-gulonate, a precursor of L - Ascorbic acid, in a recombinant G. oxydans strain. Appl Environ Microbiol. 2017;63:454–60.

    Article  Google Scholar 

  44. Santer M. Joseph Lister: first use of a bacterium as a ‘model organism’ to illustrate the cause of infectious disease of humans. Notes Rec R Soc Lond. 2010;64:59–65.

    Article  PubMed  Google Scholar 

  45. Sauer M, Porro D, Mattanovich D, Branduardi P. Microbial production of organic acids: expanding the markets. Trends Biotechnol. 2008;26(2):100–8.

    Article  CAS  PubMed  Google Scholar 

  46. Sengun IY, Karabiyikli S. Importance of acetic acid bacteria in food industry. Food Control. 2011;22:647–56.

    Article  CAS  Google Scholar 

  47. Seufferheld MJ, Kim KM, Whitfield J, Valerio A, Caetano-Anollés G. Evolution of vacuolar proton pyrophosphatase domains and volutin granules: clues into the early evolutionary origin of the acidocalcisome. Biol Direct. 2011;6:50–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Shuler ML, Kargi F. Bioprocess engineering: basic concepts. 2nd ed. Upper SaddleRiver: Prentice Hall; 2002.

    Google Scholar 

  49. Spalla C, Grein A, Garofano L, Ferni G. Microbial production of Vitamin B12. In: Vandamme EJ, editor. Biotechnology of vitamins, pigments and growth factors. New York: Elsevier Appl. Sci; 2009. p. 257–84.

    Google Scholar 

  50. Stabb EV, Jacobson LM, Handelsman J. Zwittermicin A-producing strains of Bacillus cereus from diverse soils. Appl Environ Microbiol. 2014;60:4404–12.

    Article  Google Scholar 

  51. Stahmann KP. Vitamins. In: Osiewacz HD, editor. The Mycota X. Industrial applications. Berlin: Springer; 2002. p. 231–46.

    Chapter  Google Scholar 

  52. Stanbury PF, Whitaker A, Hall SJ. Principles of fermentation technology. Netherlands: Elsevier; 2013.

    Google Scholar 

  53. Strobel GA, Hess WM, Ford E, Sidhu RS, Yang X. Taxol from fungal endophytes and the issue of biodiversity. J Ind Microbiol. 2016;17:417–23.

    Google Scholar 

  54. Taherzadeh MJ, Adler L, Liden G. Strategies for enhancing fermentative production of Glycerol - A review. Enzyme Microb Technol. 2012;31:53–66.

    Article  Google Scholar 

  55. Terebiznik MR, Pilosof AMR. Biomass estimation in solid state fermentation by modeling dry matter weight loss. Biotechnol Tech. 1999;13(3):215–9.

    Article  CAS  Google Scholar 

  56. Thakur SA, Nemade SN, Sharanappa A. Solid state fermentation of overheated soybean meal (Waste) for production of Protease using Aspergillusoryzae. Int J Res Sci Eng Tech. 2015;50:228–35.

    Google Scholar 

  57. Thomas L, Larroche C, Pandey A. Current developments in solid-state fermentation. Biochem Eng J. 2013;81:146–61.

    Article  CAS  Google Scholar 

  58. Vogel RF, Hammes WP, Habermeyer M, Engel KH, Knorr D, Eisenbrand G. Microbial food cultures–opinion of the Senate Commission on Food Safety (SKLM) of the German Research Foundation (DFG). Mol Nutr Food Res. 2011;55:654–62.

    Article  CAS  PubMed  Google Scholar 

  59. Waksman SA, Woodruff HB. Actinomyces antibioticus, a new soil organism antagonistic to pathogenic and non-pathogenic bacteria. J Bacteriol. 1941;42:231–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wang ZX, Zhuge J, Fang H, Prior BA. Glycerol production by microbial fermentation: a review. Biotechnol Adv. 2011;19:201–23.

    Article  Google Scholar 

  61. Willke T, Verlop KD. Biotechnological production of Itaconic acid. Appl Microbiol Biotechnol. 2011;56:289–95.

    Article  Google Scholar 

  62. Xiao JZ, Takahashi S, Nishimoto M, Odamaki T, Yaeshima T, Iwatsuki K, Kitaoka M. Distribution of in vitro fermentation ability of lacto-N-biose I, a major building block of human milk oligosaccharides, in Bifidobacteria strain. Appl Environ Microbiol. 2010;76:54–9.

    Article  CAS  PubMed  Google Scholar 

  63. Zakaria Z, Chong SF, Zahari AR, Fauzi NA, Shayuti SAM. Growth kinetic of fresh and freeze-dried Pleurotus sajor-caju (Oyster Mushroom) mycelium for preservation study. Key Eng Mat. 2014;594:196–202.

    Google Scholar 

  64. Zeikus JG, Jain MK, Elankovan P. Biotechnology of Succinic acid production and markets for derived industrial products. Appl Microbiol Biotechnol. 2009;51:545–52.

    Article  Google Scholar 

  65. Znad H, Markos J, Bales V. Production of gluconic acid from glucose by Aspergillus niger: growth and non-growth conditions. Process Biochem. 2014;39:1341–5.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Behera, S.S., Ray, R.C., Das, U., Panda, S.K., Saranraj, P. (2019). Microorganisms in Fermentation. In: Berenjian, A. (eds) Essentials in Fermentation Technology. Learning Materials in Biosciences. Springer, Cham. https://doi.org/10.1007/978-3-030-16230-6_1

Download citation

Publish with us

Policies and ethics