Visualising Air Pollution Datasets with Real-Time Game Engines

  • Uli MeyerEmail author
  • Jonathan Becker
  • Jessica Broscheit
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 932)


Visualising Volunteered Geographic Information (VGI), including air pollution data, can be used as an explorative tool in the context of workshops and maker labs. This requires a technology that has a low entry-level, but provides a powerful interactive prototyping framework. We describe the potential of real-time computer game engines as visualisation tools for interdisciplinary cooperation between non-experts and experts. We discuss how properties of air pollution, including invisibility, pervasiveness and its ability to permeate organisms, can be visualised with particle systems, and outline two use cases for different output devices, including AR and VR.


Visualisation Air pollution Real-time engine Game engine Particle system Augmented reality Virtual reality 


  1. 1.
    Beritano, S.: Visualisations that really work (2016).
  2. 2.
    Broscheit, J., Draheim, S., von Luck, K.: How will we breathe tomorrow? In: EVA Copenhagen 2018 - Politics of the Machines, Art and After (2018).
  3. 3.
    Carbonvisuals: Carbonvisuals website.
  4. 4.
    Chen, C.: Information Visualisation and Virtual Environments. Springer Science & Business Media, London (2013)Google Scholar
  5. 5.
    Dougherty, J.P.: Information technology fluency at a liberal arts college: experience with implementation and assessment. J. Comput. Sci. Coll. 18(3), 166–174 (2003)Google Scholar
  6. 6.
    Friendly, M.: A brief history of data visualization. In: Handbook of Data Visualization, pp. 15–56. Springer (2008)Google Scholar
  7. 7.
    GeoscienceAustralia: Data visualisation with the ‘ oculus rift’ dk2.
  8. 8.
    Hsu, Y.C., Dille, P., Cross, J., Dias, B., Sargent, R., Nourbakhsh, I.: Community-empowered air quality monitoring system. In: Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, pp. 1607–1619. ACM (2017)Google Scholar
  9. 9.
    Kaidi, Z.: Data visualization. Retrieved 8(22), 2010 (2000)Google Scholar
  10. 10.
    Kim, S., Paulos, E.: inAir: measuring and visualizing indoor air quality. In: Proceedings of the 11th International Conference on Ubiquitous Computing, pp. 81–84. ACM (2009)Google Scholar
  11. 11.
    Kirk, A.: Data visualisation: a handbook for data driven design. Sage (2016)Google Scholar
  12. 12.
  13. 13.
    Lewis, M., Jacobson, J.: Game engines. Commun. ACM 45(1), 27 (2002)Google Scholar
  14. 14.
    Lobser, D.: Cosmic sugar (vr experience).
  15. 15.
    Lu, W., Ai, T., Zhang, X., He, Y.: An interactive web mapping visualization of urban air quality monitoring data of China. Atmosphere 8(8), 148 (2017)CrossRefGoogle Scholar
  16. 16.
    Marks, S., Estevez, J.E., Connor, A.M.: Towards the holodeck: fully immersive virtual reality visualisation of scientific and engineering data. In: Proceedings of the 29th International Conference on Image and Vision Computing New Zealand, pp. 42–47. ACM (2014)Google Scholar
  17. 17.
  18. 18.
    RandomInternational: Rain Installation: Barbican Centre London.
  19. 19.
    San José, R., Pérez, J.L., González-Barras, R.M.: 3D visualisation of air quality data. In: Proceedings of the 11th International Conference “Reliability and Statistics in Transportation and Communication”, Riga (2011)Google Scholar
  20. 20.
    Stone, R.: Serious games: virtual reality’s second coming? Virtual Reality 13(1), 1–2 (2009)MathSciNetCrossRefGoogle Scholar
  21. 21.
    WeVR: The blue (vr experience).

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Uli Meyer
    • 1
    • 2
    Email author
  • Jonathan Becker
    • 1
    • 2
  • Jessica Broscheit
    • 1
    • 2
  1. 1.CSTIHamburgGermany
  2. 2.Hamburg University of Applied SciencesHamburgGermany

Personalised recommendations