Skip to main content

Self-paced Robust Deep Face Recognition with Label Noise

  • Conference paper
  • First Online:
Advances in Knowledge Discovery and Data Mining (PAKDD 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11441))

Included in the following conference series:

Abstract

Deep face recognition has achieved rapid development but still suffers from occlusions, illumination and pose variations, especially for face identification. The success of deep learning models in face recognition lies in large-scale high quality face data with accurate labels. However, in real-world applications, the collected data may be mixed with severe label noise, which significantly degrades the generalization ability of deep models. To alleviate the impact of label noise on face recognition, inspired by curriculum learning, we propose a self-paced deep learning model (SPDL) by introducing a negative \(l_1\)-norm regularizer for face recognition with label noise. During training, SPDL automatically evaluates the cleanness of samples in each batch and chooses cleaner samples for training while abandons the noisy samples. To demonstrate the effectiveness of SPDL, we use deep convolution neural network architectures for the task of robust face recognition. Experimental results show that our SPDL achieves superior performance on LFW, MegaFace and YTF when there are different levels of label noise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bengio, Y., Louradour, J., Collobert, R., Weston, J.: Curriculum learning. In: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 41–48. ACM (2009)

    Google Scholar 

  2. Brodley, C.E., Friedl, M.A., et al.: Identifying and eliminating mislabeled training instances. In: Proceedings of the National Conference on Artificial Intelligence, pp. 799–805 (1996)

    Google Scholar 

  3. Deng, J., Guo, J., Zafeiriou, S.: ArcFace: additive angular margin loss for deep face recognition. arXiv preprint arXiv:1801.07698 (2018)

  4. Gao, W., Wang, L., Li, Y.F., Zhou, Z.H.: Risk minimization in the presence of label noise. In: AAAI, pp. 1575–1581 (2016)

    Google Scholar 

  5. Guo, Y., Zhang, L., Hu, Y., He, X., Gao, J.: MS-Celeb-1M: a dataset and benchmark for large-scale face recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 87–102. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_6

    Chapter  Google Scholar 

  6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  7. Huang, G.B., Jain, V., Learned-Miller, E.: Unsupervised joint alignment of complex images. In: ICCV (2007)

    Google Scholar 

  8. Huang, W., Gu, J.J., Ma, X., Li, Y.: Self-paced model learning for robust visual tracking. J. Electron. Imaging 26(1), 013016 (2017)

    Article  Google Scholar 

  9. Jia, Y., et al.: Caffe: convolutional architecture for fast feature embedding. arXiv preprint arXiv:1408.5093 (2014)

  10. Jiang, L., Meng, D., Zhao, Q., Shan, S., Hauptmann, A.G.: Self-paced curriculum learning. In: AAAI, vol. 2, p. 6 (2015)

    Google Scholar 

  11. Jiang, L., Zhou, Z., Leung, T., Li, L.J., Fei-Fei, L.: MentorNet: learning data-driven curriculum for very deep neural networks on corrupted labels. In: International Conference on Machine Learning, pp. 2309–2318 (2018)

    Google Scholar 

  12. Kemelmacher-Shlizerman, I., Seitz, S.M., Miller, D., Brossard, E.: The MegaFace benchmark: 1 million faces for recognition at scale. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4873–4882 (2016)

    Google Scholar 

  13. Lapedriza, A., Pirsiavash, H., Bylinskii, Z., Torralba, A.: Are all training examples equally valuable? arXiv preprint arXiv:1311.6510 (2013)

  14. Lee, Y.J., Grauman, K.: Learning the easy things first: self-paced visual category discovery. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1721–1728. IEEE (2011)

    Google Scholar 

  15. Li, C., Wei, F., Yan, J., Zhang, X., Liu, Q., Zha, H.: A self-paced regularization framework for multilabel learning. IEEE Trans. Neural Netw. Learn. Syst. 29(6), 2660–2666 (2018)

    Article  MathSciNet  Google Scholar 

  16. Ng, H.W., Winkler, S.: A data-driven approach to cleaning large face datasets. In: 2014 IEEE International Conference on Image Processing (ICIP), pp. 343–347. IEEE (2014)

    Google Scholar 

  17. Patrini, G., Nielsen, F., Nock, R., Carioni, M.: Loss factorization, weakly supervised learning and label noise robustness. In: International Conference on Machine Learning, pp. 708–717 (2016)

    Google Scholar 

  18. Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face recognition and clustering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 815–823 (2015)

    Google Scholar 

  19. Wang, H., Wang, Q., Gao, M., Li, P., Zuo, W.: Multi-scale location-aware kernel representation for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1248–1257 (2018)

    Google Scholar 

  20. Wang, H., et al.: CosFace: large margin cosine loss for deep face recognition. arXiv preprint arXiv:1801.09414 (2018)

  21. Wolf, L., Hassner, T., Maoz, I.: Face recognition in unconstrained videos with matched background similarity. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 529–534. IEEE (2011)

    Google Scholar 

  22. Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5987–5995. IEEE (2017)

    Google Scholar 

  23. Yi, D., Lei, Z., Liao, S., Li, S.Z.: Learning face representation from scratch. arXiv preprint arXiv:1411.7923 (2014)

  24. Zhang, J., Sheng, V.S., Li, T., Wu, X.: Improving crowdsourced label quality using noise correction. IEEE Trans. Neural Netw. Learn. Syst. 29(5), 1675–1688 (2018)

    Article  MathSciNet  Google Scholar 

  25. Zhang, Y., Wang, L., Qi, J., Wang, D., Feng, M., Lu, H.: Structured siamese network for real-time visual tracking. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11213, pp. 355–370. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01240-3_22

    Chapter  Google Scholar 

  26. Zhou, S., et al.: Deep self-paced learning for person re-identification. Pattern Recogn. 76, 739–751 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grants 61502332, 61876127 and 61732011, Natural Science Foundation of Tianjin Under Grants 17JCZDJC30800.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinghua Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhu, P., Ma, W., Hu, Q. (2019). Self-paced Robust Deep Face Recognition with Label Noise. In: Yang, Q., Zhou, ZH., Gong, Z., Zhang, ML., Huang, SJ. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2019. Lecture Notes in Computer Science(), vol 11441. Springer, Cham. https://doi.org/10.1007/978-3-030-16142-2_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16142-2_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16141-5

  • Online ISBN: 978-3-030-16142-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics