Nutrition, Immunity, and Autoimmune Diseases



Autoimmunity happens when the immune system recognizes autoantigens as foreign harmful agents. It is a multifactorial condition predominantly resulting from autoreactive B cells and T cells. Inflammatory processes and excessive cytokine production are mainly involved in the pathogenesis of autoimmune disease. Many factors including environmental and genetic factors play role in autoimmune diseases. There is a myriad of elements related to autoimmunity including cross-reactivity with autoantigens, defect in tolerance, and lymphoproliferative dysregulation. There are two types of autoimmune diseases. Tissue-specific and systemic autoimmune disorders happen through the host immune reaction against a specific antigen in a particular tissue and/or multiple organs and tissues, respectively. In tissue-specific autoimmune diseases, both T cells and B cells are engaged in recognition of self-antigens. Autoimmune thyroiditis, type 1 diabetes, multiple sclerosis, inflammatory bowel disease, and autoimmune liver diseases are examples of this type of autoimmunity. Systemic autoimmune diseases are characterized by the production of autoreactive antibodies against different autoantigens including nuclear components, cell surface molecules, and intracellular matrix proteins. Systemic lupus erythematosus, Sjögren’s syndrome, and rheumatoid arthritis are examples of systemic autoimmune disorders. Recent research found that nutrition and dietary factors are important for the development of autoimmunity. A healthy diet can help the immune system to better control discrimination of self from nonself. However, the exact effects of nutrients on the initiation of an autoimmune condition are not clear. Although there is no specific diet for the treatment of autoimmune diseases, there are nutrients known to influence functioning of the immune system. Some can affect T-cell proliferation and Th1 activation that are involved in the development of autoimmunity. An anti-inflammatory diet limited in pro-inflammatory compounds can be used to control autoimmunity. Nutrients can prevent inflammation through restriction of the production of pro-inflammatory cytokines including IFN-γ and through promotion of regulatory T-cell function.


Autoimmunity Immunity Nutrition Vitamin D 


  1. 1.
    Burnet FM. A modification of Jerne’s theory of antibody production using the concept of clonal selection. Aust J Sci. 1957;20(3):67–9.Google Scholar
  2. 2.
    Rose NR. Autoimmune diseases: tracing the shared threads. Hosp Pract. 1997;32(4):147–54.CrossRefGoogle Scholar
  3. 3.
    Ray S, Sonthalia N, Kundu S, Ganguly S. Autoimmune disorders: an overview of molecular and cellular basis in today’s perspective. J Clin Cell Immunol. 2012;S10:003.Google Scholar
  4. 4.
    Vojdani A. Antibodies as predictors of complex autoimmune diseases. Int J Immunopathol Pharmacol. 2008;21(2):267–78.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Hayter SM, Cook MC. Updated assessment of the prevalence, spectrum and case definition of autoimmune disease. Autoimmun Rev. 2012;11(10):754–65.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Klein SL. The effects of hormones on sex differences in infection: from genes to behavior. Neurosci Biobehav Rev. 2000;24(6):627–38.CrossRefGoogle Scholar
  7. 7.
    Campbell AW. Autoimmunity and the gut. Autoimmune Dis. 2014;2014:1.CrossRefGoogle Scholar
  8. 8.
    Rose N. An immunology primer. Proceedings from sex differences in immunology and autoimmunity, vol. 8. Boston: Society for Women’s Health Research; 2001. p. 7–9.Google Scholar
  9. 9.
    Mangan PR, Harrington LE, O’quinn DB, Helms WS, Bullard DC, Elson CO, et al. Transforming growth factor-β induces development of the TH17 lineage. Nature. 2006;441(7090):231–4.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Lerner A, Jeremias P, Matthias T. The world incidence and prevalence of autoimmune diseases is increasing. Int J Celiac Dis. 2015;3(4):151–5.CrossRefGoogle Scholar
  11. 11.
    Rook GA. Hygiene hypothesis and autoimmune diseases. Clin Rev Allergy Immunol. 2012;42(1):5–15.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Manzel A, Muller DN, Hafler DA, Erdman SE, Linker RA, Kleinewietfeld M. Role of “Western diet” in inflammatory autoimmune diseases. Curr Allergy Asthma Rep. 2014;14(1):404.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Nossal G. A purgative mastery. Nature. 2001;412(6848):685–6.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Barrett JC, Clayton DG, Concannon P, Akolkar B, Cooper JD, Erlich HA, et al. Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes. Nat Genet. 2009;41(6):703–7.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Criswell LA, Pfeiffer KA, Lum RF, Gonzales B, Novitzke J, Kern M, et al. Analysis of families in the multiple autoimmune disease genetics consortium (MADGC) collection: the PTPN22 620W allele associates with multiple autoimmune phenotypes. Am J Hum Genet. 2005;76(4):561–71.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Tomer Y. Unraveling the genetic susceptibility to autoimmune thyroid diseases: CTLA-4 takes the stage. Thyroid: official journal of the American Thyroid Association. 2001;11(2):167–9. Scholar
  17. 17.
    Klein J, Sato A. The HLA system. N Engl J Med. 2000;343(10):702–9.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Davidson A, Diamond B. Autoimmune diseases. N Engl J Med. 2001;345(5):340–50.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Mackay IR. Tolerance and autoimmunity. West J Med. 2001;174(2):118–23.PubMedCentralCrossRefGoogle Scholar
  20. 20.
    Rose N, Mackay I. Molecular mimicry: a critical look at exemplary instances in human diseases. Cell Mol Life Sci. 2000;57(4):542–51.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Rose NR, editor. The role of infection in the pathogenesis of autoimmune disease. Semin Immunol. 1998;10(1):5–13: Elsevier.Google Scholar
  22. 22.
    Mitchell TC, Hildeman D, Kedl RM, Teague TK, Schaefer BC, White J, et al. Immunological adjuvants promote activated T cell survival via induction of Bcl-3. Nat Immunol. 2001;2(5):397–402.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Bernal A, Proft T, Fraser JD, Posnett DN. Superantigens in human disease. J Clin Immunol. 1999;19(3):149–57.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Rose NR. Insights into mechanisms of autoimmune disease based on clinical findings. In: Autoimmune reactions. Totowa: Humana Press; 1999. p. 5–17.CrossRefGoogle Scholar
  25. 25.
    Tsokos GC. Systemic lupus erythematosus. N Engl J Med. 2011;365(22):2110–21.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    von Muhlen CA, Tan EM. Autoantibodies in the diagnosis of systemic rheumatic diseases. Semin Arthritis Rheum. 1995;24(5):323–58.CrossRefGoogle Scholar
  27. 27.
    Huang W, Connor E, Rosa TD, Muir A, Schatz D, Silverstein J, et al. Although DR3-DQB1∗0201 may be associated with multiple component diseases of the autoimmune polyglandular syndromes, the human leukocyte antigen DR4-DQB1∗0302 haplotype is implicated only in beta-cell autoimmunity. J Clin Endocrinol Metab. 1996;81(7):2559–63.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Lesage S, Goodnow CC. Organ-specific autoimmune disease: a deficiency of tolerogenic stimulation. J Exp Med. 2001;194(5):f31–f6.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Swank RL, Lerstad O, Strøm A, Backer J. Multiple sclerosis in rural Norway: its geographic and occupational incidence in relation to nutrition. N Engl J Med. 1952;246(19):721–8.CrossRefGoogle Scholar
  30. 30.
    Ouchi N, Parker JL, Lugus JJ, Walsh K. Adipokines in inflammation and metabolic disease. Nat Rev Immunol. 2011;11(2):85.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    De Rosa V, Procaccini C, La Cava A, Chieffi P, Nicoletti GF, Fontana S, et al. Leptin neutralization interferes with pathogenic T cell autoreactivity in autoimmune encephalomyelitis. J Clin Investig. 2006;116(2):447.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Winer S, Paltser G, Chan Y, Tsui H, Engleman E, Winer D, et al. Obesity predisposes to Th17 bias. Eur J Immunol. 2009;39(9):2629–35.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Brown AC. Lupus erythematosus and nutrition: a review of the literature. J Ren Nutr. 2000;10(4):170–83.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Sinigaglia L, Varenna M, Binelli L, Zucchi F, Ghiringhella D, Gallazzi M, et al. Determinants of bone mass in systemic lupus erythematosus: a cross sectional study on premenopausal women. J Rheumatol. 1999;26(6):1280–4.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Cojocaru M, Cojocaru IM, Silosi I. Multiple autoimmune syndrome. Maedica. 2010;5(2):132–4.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Nerup J, Mandrup-Poulsen T, Mølvig J, Helqvist S, Wogensen L, Egeberg J. Mechanisms of pancreatic beta-cell destruction in type I diabetes. Diabetes Care. 1988;11:16–23.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Delgado-Aros S, Locke GR, Camilleri M, Talley NJ, Fett S, Zinsmeister AR, et al. Obesity is associated with increased risk of gastrointestinal symptoms: a population-based study. Am J Gastroenterol. 2004;99(9):1801–6.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Campillo B, Bories PN, Leluan M, Pornin B, Devanlay M, Fouet P. Short-term changes in energy metabolism after 1 month of a regular oral diet in severely malnourished cirrhotic patients. Metabolism. 1995;44(6):765–70.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Atarashi K, Tanoue T, Shima T, Imaoka A, Kuwahara T, Momose Y, et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science. 2011;331(6015):337–41.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Morgan XC, Tickle TL, Sokol H, Gevers D, Devaney KL, Ward DV, et al. Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol. 2012;13(9):R79.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012;490(7418):55–60.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Simopoulos AP. Omega-3 fatty acids in inflammation and autoimmune diseases. J Am Coll Nutr. 2002;21(6):495–505.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Medawar P, Hunt R, Mertin J. An influence of diet on transplantation immunity. Proc R Soc Lond B Biol Sci. 1979;206(1164):265–80.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Harbige LS. Dietary n-6 and n-3 fatty acids in immunity and autoimmune disease. Proc Nutr Soc. 1998;57(4):555–62.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Fernandes G, Chandrasekar B, Luan X, Troyer DA. Modulation of antioxidant enzymes and programmed cell death by n-3 fatty acids. Lipids. 1996;31(1):S91–S6.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Homsy J, Morrow W, Levy J. Nutrition and autoimmunity: a review. Clin Exp Immunol. 1986;65(3):473.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Patavino T, Brady DM. Natural medicine and nutritional therapy as an alternative treatment in systemic lupus erythematosus. Altern Med Rev. 2001;6(5):460–71.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Wietmarschen H, van der Greef J. Metabolite space of rheumatoid arthritis. Br J Med Med Res. 2012;2:469.CrossRefGoogle Scholar
  49. 49.
    Grabowski G, Grant JP. Nutritional support in patients with systemic scleroderma. JPEN J Parenter Enteral Nutr. 1989;13(2):147–51.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Rosen A, Casciola-Rosen L. Autoantigens in systemic autoimmunity: critical partner in pathogenesis. J Intern Med. 2009;265(6):625–31.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Petriello MC, Newsome B, Hennig B. Influence of nutrition in PCB-induced vascular inflammation. Environ Sci Pollut Res Int. 2014;21(10):6410–8.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Bates D, Fawcett P, Shaw D, Weightman D. Trail of polyunsaturated fatty acids in non-relapsing multiple sclerosis. Br Med J. 1977;2(6092):932.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Andersen V, Olsen A, Carbonnel F, Tjønneland A, Vogel U. Diet and risk of inflammatory bowel disease. Dig Liver Dis. 2012;44(3):185–94.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Noriega BS, Sanchez-Gonzalez MA, Salyakina D, Coffman J. Understanding the impact of omega-3 rich diet on the gut microbiota. Case Rep Med. 2016;2016:1.CrossRefGoogle Scholar
  55. 55.
    Hudert CA, Weylandt KH, Lu Y, Wang J, Hong S, Dignass A, et al. Transgenic mice rich in endogenous omega-3 fatty acids are protected from colitis. Proc Natl Acad Sci. 2006;103(30):11276–81.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Phipps RP, Stein SH, Roper RL. A new view of prostaglandin E regulation of the immune response. Immunol Today. 1991;12(10):349–52.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Harbige L, Yeatman N, Amor S, Crawford M. Prevention of experimental autoimmune encephalomyelitis in Lewis rats by a novel fungal source of γ-linolenic acid. Br J Nutr. 1995;74(5):701–15.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Meade CJ, Mertin J, Sheena J, Hunt R. Reduction by linoleic acid of the severity of experimental allergic encephalomyelitis in the guinea pig. J Neurol Sci. 1978;35(2):291–308.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Vojdani A. A potential link between environmental triggers and autoimmunity. Autoimmune Dis. 2014;2014:1–18.Google Scholar
  60. 60.
    Shetty PS. Nutrition, immunity and infection. Wallingford: CABI; 2010.CrossRefGoogle Scholar
  61. 61.
    Makela R, Makila H, Peltomaa R. Dietary therapy in patients with inflammatory arthritis. Altern Ther Health Med. 2017;23(1):34–9.PubMedPubMedCentralGoogle Scholar
  62. 62.
    Verdu EF, Galipeau HJ, Jabri B. Novel players in coeliac disease pathogenesis: role of the gut microbiota. Nat Rev Gastroenterol Hepatol. 2015;12(9):497–506.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Jiskra J, Limanova Z, Vanickova Z, Kocna P. IgA and IgG antigliadin, IgA anti-tissue transglutaminase and antiendomysial antibodies in patients with autoimmune thyroid diseases and their relationship to thyroidal replacement therapy. Physiol Res. 2003;52(1):79–88.PubMedPubMedCentralGoogle Scholar
  64. 64.
    Catassi C, Guerrieri A, Bartolotta E, Coppa G, Giorgi P. Antigliadin antibodies at onset of diabetes in children. Lancet. 1987;330(8551):158.CrossRefGoogle Scholar
  65. 65.
    Sukkar SG, Rossi E. Oxidative stress and nutritional prevention in autoimmune rheumatic diseases. Autoimmun Rev. 2004;3(3):199–206.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Araujo V, Arnal C, Boronat M, Ruiz E, Dominguez C. Oxidant—antioxidant imbalance in blood of children with juvenile rheumatoid arthritis. Biofactors. 1998;8(1–2):155–9.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Comstock G, Burke A, Hoffman S, Helzlsouer K, Bendich A, Masi A, et al. Serum concentrations of α tocopherol, β carotene, and retinol preceding the diagnosis of rheumatoid arthritis and systemic lupus erythematosus. Ann Rheum Dis. 1997;56(5):323–5.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Edmonds S, Winyard P, Guo R, Kidd B, Merry P, Langrish-Smith A, et al. Putative analgesic activity of repeated oral doses of vitamin E in the treatment of rheumatoid arthritis. Results of a prospective placebo controlled double blind trial. Ann Rheum Dis. 1997;56(11):649–55.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Mirvish SS. Effects of vitamins C and E on N-nitroso compound formation, carcinogenesis, and cancer. Cancer. 1986;58(S8):1842–50.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Gärtner R, Gasnier BC, Dietrich JW, Krebs B, Angstwurm MW. Selenium supplementation in patients with autoimmune thyroiditis decreases thyroid peroxidase antibodies concentrations. J Clin Endocrinol Metabol. 2002;87(4):1687–91.CrossRefGoogle Scholar
  71. 71.
    Contempre B, Duale N, Dumont JE, Ngo B, Diplock A, Vanderpas J. Effect of selenium supplementation on thyroid hormone metabolism in an iodine and selenium deficient population. Clin Endocrinol. 1992;36(6):579–83.CrossRefGoogle Scholar
  72. 72.
    Contempre B, Le Moine O, Dumont JE, Denef J-F, Many M-C. Selenium deficiency and thyroid fibrosis. A key role for macrophages and transforming growth factor β (TGF-β). Mol Cell Endocrinol. 1996;124(1):7–15.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Klack K, Bonfa E, Borba Neto EF. Diet and nutritional aspects in systemic lupus erythematosus. Rev Bras Reumatol. 2012;52(3):384–408.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Tamer G, Arik S, Tamer I, Coksert D. Relative vitamin D insufficiency in Hashimoto’s thyroiditis. Thyroid. 2011;21(8):891–6.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Jyotsna VP, Sahoo A, Singh AK, Sreenivas V, Gupta N. Bone mineral density in patients of graves disease pre-& post-treatment in a predominantly vitamin D deficient population. Indian J Med Res. 2012;135(1):36.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Drocourt L, Ourlin J-C, Pascussi J-M, Maurel P, Vilarem M-J. Expression of cyp3a4, cyp2b6, andcyp2c9 is regulated by the vitamin d receptor pathway in primary human hepatocytes. J Biol Chem. 2002;277(28):25125–32.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Jeffery LE, Burke F, Mura M, Zheng Y, Qureshi OS, Hewison M, et al. 1, 25-Dihydroxyvitamin D3 and IL-2 combine to inhibit T cell production of inflammatory cytokines and promote development of regulatory T cells expressing CTLA-4 and FoxP3. J Immunol. 2009;183(9):5458–67.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Virtanen SM, Knip M. Nutritional risk predictors of β cell autoimmunity and type 1 diabetes at a young age. Am J Clin Nutr. 2003;78(6):1053–67.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Klack K, De Carvalho J. Dietetic issues in antiphospholipid syndrome. Rheumatol Int. 2013;33(3):823–4.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Dean S. Medical nutrition therapy for thyroid and related disorders. In: Krause’s food, nutrition, & diet therapy. 13th ed. Philadelphia: Saunders; 2008. p. 711–24.Google Scholar
  81. 81.
    Barkoukis H, Fiedler KM, Lerner E. A combined high-fiber, low-glycemic index diet normalizes glucose tolerance and reduces hyperglycemia and hyperinsulinemia in adults with hepatic cirrhosis. J Acad Nutr Diet. 2002;102(10):1503.Google Scholar
  82. 82.
    Kleinewietfeld M, Manzel A, Titze J, Kvakan H, Yosef N, Linker RA, et al. Sodium chloride drives autoimmune disease by the induction of pathogenic TH17 cells. Nature. 2013;496(7446):518–22.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Wu C, Yosef N, Thalhamer T, Zhu C, Xiao S, Kishi Y, et al. Induction of pathogenic TH17 cells by inducible salt-sensing kinase SGK1. Nature. 2013;496(7446):513–7.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Helgason T, Jonasson M. Evidence for a food additive as a cause of ketosis-prone diabetes. Lancet. 1981;318(8249):716–20.CrossRefGoogle Scholar
  85. 85.
    Hald S, Schioldan AG, Moore ME, Dige A, Lærke HN, Agnholt J, et al. Effects of arabinoxylan and resistant starch on intestinal microbiota and short-chain fatty acids in subjects with metabolic syndrome: a randomised crossover study. PLoS One. 2016;11(7):e0159223.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Lerner A, Matthias T. Changes in intestinal tight junction permeability associated with industrial food additives explain the rising incidence of autoimmune disease. Autoimmun Rev. 2015;14(6):479–89.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Wu SV, Hui H. Treat your bug right. Front Physiol. 2011;2:9.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Matsuzaki T, Takagi A, Ikemura H, Matsuguchi T, Yokokura T. Intestinal microflora: probiotics and autoimmunity. J Nutr. 2007;137(3):798S–802S.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Barnes MJ, Powrie F. Regulatory T cells reinforce intestinal homeostasis. Immunity. 2009;31(3):401–11.CrossRefGoogle Scholar
  90. 90.
    Rescigno M, Di Sabatino A. Dendritic cells in intestinal homeostasis and disease. J Clin Invest. 2009;119(9):2441.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Gensollen T, Iyer SS, Kasper DL, Blumberg RS. How colonization by microbiota in early life shapes the immune system. Science. 2016;352(6285):539–44.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Ríos-Covián D, Ruas-Madiedo P, Margolles A, Gueimonde M, de los Reyes-Gavilán CG, Salazar N. Intestinal short chain fatty acids and their link with diet and human health. Front Microbiol. 2016;7:185.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Upadhyaya B, McCormack L, Fardin-Kia AR, Juenemann R, Nichenametla S, Clapper J, et al. Impact of dietary resistant starch type 4 on human gut microbiota and immunometabolic functions. Sci Rep. 2016;6:28797.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares UniversityTehranIran
  2. 2.Dietetics and Nutrition Experts Team (DiNET), Universal Scientific Education and Research Network (USERN)TehranIran
  3. 3.Giti-Tajhiz Company, Department of Immunology and ImmunodiagnosticsTehranIran
  4. 4.Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical SciencesTehranIran
  5. 5.Department of Immunology, School of Medicine, Tehran University of Medical SciencesTehranIran
  6. 6.Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN),TehranIran

Personalised recommendations