Curious2018 pp 41-45 | Cite as

Integrating Modern Immunology into Medicine

  • Mark M. DavisEmail author
  • Robert M. DiFazio


The field of immunology is undergoing a seismic shift, from a predominant focus on inbred mice, and relatively poorly predictive models of human diseases, to new paradigms and methods to analyze human diseases directly. Thus, it should become a much more significant factor in medical practice, where it is currently not considered seriously outside of a few specialities such as oncology and rheumatology.


  1. 1.
    von Herrath M, Nepom GT. Animal models of human type 1 diabetes. Nat Immunol. 2009;10(2):129–32.CrossRefGoogle Scholar
  2. 2.
    Mak IW, Evaniew N, Ghert M. Lost in translation: animal models and clinical trials in cancer treatment. Am J Transl Res. 2014;6(2):114–8.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Page DB, et al. Immune modulation in cancer with antibodies. Annu Rev Med. 2014;65:185–202.CrossRefGoogle Scholar
  4. 4.
    Wagar LE, DiFazio RM, Davis MM. Advanced model systems and tools for basic and translational human immunology. Genome Med. 2018;10(1):73.CrossRefGoogle Scholar
  5. 5.
    Furman D, Davis MM. New approaches to understanding the immune response to vaccination and infection. Vaccine. 2015;33(40):5271–81.CrossRefGoogle Scholar
  6. 6.
    Brodin P, Davis MM. Human immune system variation. Nat Rev Immunol. 2017;17(1):21–9.CrossRefGoogle Scholar
  7. 7.
    Davis MM, Tato CM, Furman D. Systems immunology: just getting started. Nat Immunol. 2017;18(7):725–32.CrossRefGoogle Scholar
  8. 8.
    Wrammert J, et al. Rapid cloning of high-affinity human monoclonal antibodies against influenza virus. Nature. 2008;453(7195):667–71.CrossRefGoogle Scholar
  9. 9.
    Han A, et al. Dietary gluten triggers concomitant activation of CD4+ and CD8+ alphabeta T cells and gammadelta T cells in celiac disease. Proc Natl Acad Sci USA. 2013;110(32):13073–8.CrossRefGoogle Scholar
  10. 10.
    Brinkmann V, et al. Fingolimod (FTY720): discovery and development of an oral drug to treat multiple sclerosis. Nat Rev Drug Discov. 2010;9(11):883–97.CrossRefGoogle Scholar
  11. 11.
    Roy Chowdhury R, et al. A multi-cohort study of the immune factors associated with M. tuberculosis infection outcomes. Nature, 2018;560(7720):644–48.CrossRefGoogle Scholar
  12. 12.
    Sweeney TE, et al. A comprehensive time-course-based multicohort analysis of sepsis and sterile inflammation reveals a robust diagnostic gene set. Sci Transl Med. 2015;7(287):287ra71.CrossRefGoogle Scholar
  13. 13.
    Team, HCSP, Consortium HI. Multicohort analysis reveals baseline transcriptional predictors of influenza vaccination responses. Sci Immunol. 2017;2(14).Google Scholar
  14. 14.
    Verso ML. The evolution of blood-counting techniques. Med Hist. 1964;8:149–58.CrossRefGoogle Scholar
  15. 15.
    Newell EW, et al. Cytometry by time-of-flight shows combinatorial cytokine expression and virus-specific cell niches within a continuum of CD8+ T cell phenotypes. Immunity. 2012;36(1):142–52.CrossRefGoogle Scholar
  16. 16.
    Shen-Orr SS, et al. Defective signaling in the JAK-STAT pathway tracks with chronic inflammation and cardiovascular risk in aging humans. Cell Syst. 2016;3(4):374–84 e4.CrossRefGoogle Scholar
  17. 17.
    Furman D, et al. Expression of specific inflammasome gene modules stratifies older individuals into two extreme clinical and immunological states. Nat Med. 2017;23(2):174–84.CrossRefGoogle Scholar
  18. 18.
    Irvine DJ, et al. Direct observation of ligand recognition by T cells. Nature. 2002;419(6909):845–9.CrossRefGoogle Scholar
  19. 19.
    Huang J, et al. A single peptide-major histocompatibility complex ligand triggers digital cytokine secretion in CD4(+) T cells. Immunity. 2013;39(5):846–57.CrossRefGoogle Scholar
  20. 20.
    Hulett HR, et al. Cell sorting: automated separation of mammalian cells as a function of intracellular fluorescence. Science. 1969;166(3906):747–9.CrossRefGoogle Scholar
  21. 21.
    Bendall SC, et al. Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science. 2011;332(6030):687–96.CrossRefGoogle Scholar
  22. 22.
    Newell EW, et al. Combinatorial tetramer staining and mass cytometry analysis facilitate T-cell epitope mapping and characterization. Nat Biotechnol. 2013;31(7):623–9.CrossRefGoogle Scholar
  23. 23.
    Horowitz A, et al. Genetic and environmental determinants of human NK cell diversity revealed by mass cytometry. Sci Transl Med. 2013;5(208):208ra145.CrossRefGoogle Scholar
  24. 24.
    Bendall SC, et al. Single-cell trajectory detection uncovers progression and regulatory coordination in human B cell development. Cell. 2014;157(3):714–25.CrossRefGoogle Scholar
  25. 25.
    Sade-Feldman M, et al. Defining T cell states associated with response to checkpoint immunotherapy in melanoma. Cell. 2018;175(4):998–1013 e20.CrossRefGoogle Scholar
  26. 26.
    Azizi E, et al. Single-cell map of diverse immune phenotypes in the breast tumor microenvironment. Cell. 2018;174(5):1293–1308 e36.CrossRefGoogle Scholar
  27. 27.
    Han A, et al. Linking T-cell receptor sequence to functional phenotype at the single-cell level. Nat Biotechnol. 2014;32(7):684–92.CrossRefGoogle Scholar
  28. 28.
    Robinson WH. Sequencing the functional antibody repertoire–diagnostic and therapeutic discovery. Nat Rev Rheumatol. 2015;11(3):171–82.CrossRefGoogle Scholar
  29. 29.
    Birnbaum ME, et al. Deconstructing the peptide-MHC specificity of T cell recognition. Cell. 2014;157(5):1073–87.CrossRefGoogle Scholar
  30. 30.
    Gee MH, et al. Antigen identification for orphan T cell receptors expressed on tumor-infiltrating lymphocytes. Cell. 2018;172(3):549–63 e16.CrossRefGoogle Scholar
  31. 31.
    Glanville J, et al. Identifying specificity groups in the T cell receptor repertoire. Nature. 2017;547(7661):94–8.CrossRefGoogle Scholar
  32. 32.
    Dash P, et al. Quantifiable predictive features define epitope-specific T cell receptor repertoires. Nature. 2017;547(7661):89–93.CrossRefGoogle Scholar
  33. 33.
    Aghaeepour N, et al. An immune clock of human pregnancy. Sci Immunol. 2017;2(15).CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute for Immunity, Transplantation and InfectionStanfordUSA
  2. 2.Stanford University School of MedicineHoward Hughes Medical InstituteStanfordUSA

Personalised recommendations