Curious2018 pp 95-103 | Cite as

From Diagnosing Diseases to Predicting Diseases

  • Rudi BallingEmail author
  • Jorge Goncalves
  • Stefano Magni
  • Laurent Mombaerts
  • Alice Oldano
  • Alexander Skupin


Chronic diseases can be considered as perturbations of complex adaptive systems. Transitions from healthy states to chronic diseases are often characterized by sudden and unexpected onset of diseases. These critical transitions or catastrophic shifts have been studied in theoretical and applied physics, ecology, social science, economics and recently also in biomedical applications. If we could understand the underlying mechanisms and the dynamics of critical transitions involved in the development of diseases, we would be better equipped to predict and eventually prevent them from arising. The current paper gives an overview of the potential application of the concept of critical transitions to biomedical applications.


  1. 1.
    Jones DS, Podolsky SH, Greene JA. The Burden of Disease and the Changing Task of Medicine. N Engl J Med. 2012. Scholar
  2. 2.
    World Health Organization (WHO). Global Burden of Diseases. 2017.Google Scholar
  3. 3.
    Voskuil J. How difficult is the validation of clinical biomarkers? F1000Research. 2015;101(MAY):1–10. Scholar
  4. 4.
    Engel J, Pitkanen A, Loeb JA, et al. Epilepsy biomarkers. Epilepsia. 2013;54(SUPPL.4):61–69. Scholar
  5. 5.
    Hijazi Z, Oldgren J, Siegbahn A, Granger CB, Wallentin L. Biomarkers in atrial fibrillation: A clinical review. Eur Heart J. 2013;34(20):1475–80. Scholar
  6. 6.
    Tu Y, Rappel W-J. Adaptation in living systems. Annu Rev Condens Matter Phys. 2018. Scholar
  7. 7.
    Bascompte J. Disentangling the web of life. Science (80-) 2009. Scholar
  8. 8.
    Rinaldi S, Scheffer M. Geometric analysis of ecological models with slow and fast processes. Ecosystems. 2000. Scholar
  9. 9.
    Ising E. Beitrag zur Theorie des Ferromagnetismus. Zeitschrift für Phys. 1925. Scholar
  10. 10.
    Onsager L. Crystal statistics. I. A two-dimensional model with an order-disorder transition. Phys Rev. 1944. Scholar
  11. 11.
    Smug D, Ashwin PA. Generalized 2D-dynamical mean-field ising model with a rich set of bifurcations (inspired and applied to financial crises). 2018;28(4). Scholar
  12. 12.
    Karin O, Swisa A, Glaser B, Dor Y, Alon U. Dynamical compensation in physiological circuits LINEAR INTEGRAL FEEDBACK. 2018:1–7.Google Scholar
  13. 13.
    Zhou JX, Aliyu DSM, Aurell E, Huang S. Quasi-potential landscape in complex multi-stable systems. J R Soc Interface. 2012. Scholar
  14. 14.
    Dai L, Vorselen D, Korolev KS, Gore J. Generic indicators for loss of resilience before a tipping point leading to population collapse. Science (80-). 2012. Scholar
  15. 15.
    Drake JM, Griffen BD. Early warning signals of extinction in deteriorating environments. Nature. 2010. Scholar
  16. 16.
    Hirota M, Holmgren M, Van Nes EH, Scheffer M. Global resilience of tropical forest and savanna to critical transitions. Science. 2011;334(6053):232–5. Scholar
  17. 17.
    Kéfi S, Rietkerk M, Alados CL, et al. Spatial vegetation patterns and imminent desertification in Mediterranean arid ecosystems. Nature. 2007. Scholar
  18. 18.
    Rietkerk M, Dekker SC, De Ruiter PC, Van De Koppel J. Self-organized patchiness and catastrophic shifts in ecosystems. Science (80-). 2004. Scholar
  19. 19.
    Scheffer M, Carpenter S, Foley JA, Folke C, Walker B. Catastrophic shifts in ecosystems. 2001;413(October).Google Scholar
  20. 20.
    Scheffer M, Carpenter SR. Catastrophic regime shifts in ecosystems: Linking theory to observation. Trends Ecol Evol. 2003. Scholar
  21. 21.
    Veraart AJ, Faassen EJ, Dakos V, Van Nes EH, Lürling M, Scheffer M. Recovery rates reflect distance to a tipping point in a living system. Nature. 2012. Scholar
  22. 22.
    Ashwin P, Wieczorek S, Vitolo R, Cox P. Tipping points in open systems: bifurcation, noise-induced and rate-dependent examples in the climate system. Philos Trans R Soc A Math Phys Eng Sci. 2012. Scholar
  23. 23.
    Strogatz SH, Shafer DS. Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering. Westview Press. 1994. Scholar
  24. 24.
    Chang W-C, Kudlacek J, Hlinka J, et al. Loss of neuronal network resilience precedes seizures and determines the ictogenic nature of interictal synaptic perturbations. Nat Neurosci. 2018;21(12):1742–52. Scholar
  25. 25.
    Jirsa VK, Stacey WC, Quilichini PP, Ivanov AI, Bernard C. On the nature of seizure dynamics. 2014:2210–30. Scholar
  26. 26.
    Scheffer M, Bascompte J, Brock WA, et al. Early-warning signals for critical transitions. Nature. 2009. Scholar
  27. 27.
    Scheffer M, Carpenter SR, Lenton TM, et al. Anticipating critical transitions. Science (80-). 2012. Scholar
  28. 28.
    Lenton TM. Early warning of climate tipping points. Nat Clim Chang. 2011. Scholar
  29. 29.
    Dakos V, Carpenter SR, Brock WA, et al. Methods for detecting early warnings of critical transitions in time series illustrated using simulated ecological data. PLoS One. 2012. Scholar
  30. 30.
    Meisel C, Klaus A, Kuehn C, Plenz D. Critical slowing down governs the transition to neuron spiking. 2015:1–20. Scholar
  31. 31.
    Kramer MA, Truccolo W, Eden UT, et al. Human seizures self-terminate across spatial scales via a critical transition. Proc Natl Acad Sci. 2012;109(51):21116–21. Scholar
  32. 32.
    Wang R, Dearing JA, Langdon PG, et al. Transition to a eutrophic lake state. Nature. 2012;492(7429):419–22. Scholar
  33. 33.
    Trefois C, Antony PMA, Goncalves J, Skupin A, Balling R. Critical transitions in chronic disease: transferring concepts from ecology to systems medicine. Curr Opin Biotechnol. 2015. Scholar
  34. 34.
    Dahlem MA, Kurths J, Ferrari MD, Aihara K, Scheffer M, May A. Understanding migraine using dynamic network biomarkers. Cephalalgia. 2015. Scholar
  35. 35.
    Olde Rikkert MG, Dakos V, Buchman TG, et al. Slowing down of recovery as generic risk marker for acute severity transitions in chronic diseases. Crit Care Med. 2016.Google Scholar
  36. 36.
    Quail T, Shrier A, Glass L. Predicting the onset of period-doubling bifurcations in noisy cardiac systems. Proc Natl Acad Sci. 2015. Scholar
  37. 37.
    Huang S, Ernberg I, Kauffman S. Cancer attractors: A systems view of tumors from a gene network dynamics and developmental perspective. Semin Cell Dev Biol. 2009. Scholar
  38. 38.
    Elowitz MB, Levine AJ, Siggia ED, Swain PS. Stochastic gene expression in a single cell. Science (80-). 2002. Scholar
  39. 39.
    Remacle F, Kravchenko-balasha N, Levitzki A, Levine RD. Information-heoretic analysis of phenotype changes in early stages of carcinogenesis. 2010;107(22). Scholar
  40. 40.
    Zadran S, Remacle F, Levine R. Surprisal analysis of glioblastoma multiform (GBM) MicroRNA dynamics unveils tumor specific phenotype. PLoS One. 2014. Scholar
  41. 41.
    Kravchenko-Balasha N, Johnson H, White FM, Heath JR, Levine RD. A thermodynamic-based interpretation of protein expression heterogeneity in different glioblastoma multiforme tumors identifies tumor-specific unbalanced processes. J Phys Chem B. 2016. Scholar
  42. 42.
    Chen L, Liu R, Liu ZP, Li M, Aihara K. Detecting early-warning signals for sudden deterioration of complex diseases by dynamical network biomarkers. Sci Rep. 2012. Scholar
  43. 43.
    Liu R, Li M, Liu ZP, Wu J, Chen L, Aihara K. Identifying critical transitions and their leading biomolecular networks in complex diseases. Sci Rep. 2012.
  44. 44.
    Yang B, Li M, Tang W, et al. Dynamic network biomarker indicates pulmonary metastasis at the tipping point of hepatocellular carcinoma. Nat Commun. 2018.
  45. 45.
    Li M, Zeng T, Liu R, Chen L. Detecting tissue-specific early warning signals for complex diseases based on dynamical network biomarkers: study of type 2 diabetes by cross-tissue analysis. Brief Bioinform. 2014. Scholar
  46. 46.
    Liu X, Chang X, Liu R, Yu X, Chen L, Aihara K. Quantifying critical states of complex diseases using single-sample dynamic network biomarkers. PLoS Comput Biol. 2017. Scholar
  47. 47.
    Mojtahedi M, Skupin A, Zhou J, et al. cell fate decision as high-dimensional critical state transition. PLoS Biol. 2016. Scholar
  48. 48.
    Jin B, Liu R, Hao S, et al. Defining and characterizing the critical transition state prior to the type 2 diabetes disease. PLoS One. 2017. Scholar
  49. 49.
    Boettiger C, Hastings A. Quantifying limits to detection of early warning for critical transitions. J R Soc Interface. 2012. Scholar
  50. 50.
    Rocha JC, Peterson G, Bodin Ö, Levin SA. Cascading regime shifts within and across scales. 2018;1383(December):1–20. Scholar
  51. 51.
    Brock WA, Carpenter SR. Early warnings of regime shift when the ecosystem structure is unknown. PLoS One. 2012. Scholar
  52. 52.
    Drijfhout S, Bathiany S, Beaulieu C et al. Catalogue of abrupt shifts in Intergovernmental Panel on Climate Change climate models. Proc Natl Acad Sci. 2015. Scholar
  53. 53.
    Muñoz MA. Colloquium: criticality and dynamical scaling in living systems. Rev Mod Phys. 2018. Scholar
  54. 54.
    Pearl J. Causality. Cambridge university press;2009.Google Scholar
  55. 55.
    Pearl J. The book of why: the new science of cause and effect. Basic Books;2018.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Rudi Balling
    • 1
    • 2
    Email author
  • Jorge Goncalves
    • 1
  • Stefano Magni
    • 1
  • Laurent Mombaerts
    • 1
  • Alice Oldano
    • 1
  • Alexander Skupin
    • 1
  1. 1.Luxembourg Centre for Systems Biomedicine (LCSB)University of LuxembourgBelvauxLuxembourg
  2. 2.Scripps Translational Science InstituteLa JollaUSA

Personalised recommendations