Skip to main content

Moving to the Light: The Evolution of Photosynthesis

  • Chapter
  • First Online:
Biological Innovations that Built the World

Abstract

Photosynthesis enabled early life to severe its ancestral dependence on geochemistry. The paleogeochemical record suggests that photosynthetic life colonized the planet photic zone as early as 3.4 GYA. Photosynthesis evolved in the Bacteria domain, and initially utilized compounds of geochemical origin such as ferrous iron or hydrogen as sources of electrons, without producing oxygen. Several variants of anoxygenic photosynthesis are present in extant bacteria. The cyanobacteria evolved oxygenic photosynthesis, a pathway that deploys two types of photosystem working in series to sum the energy of two photons for each electron transported from water to carbon dioxide. Multiple sources of evidence suggest that the cyanobacteria and oxygenic photosynthesis appeared at least 2.7 GYA, viz. 300 MY before the stable oxygenation of the planet. Endosymbiosis horizontally transferred oxygenic photosynthesis to the eukaryotes. Major similarities in the molecular architecture of photosystems in extant bacterial lineages point to a monophyletic origin of the core photosynthetic machine, followed by horizontal transfer among distantly related taxa, duplication and neo-functionalization. The Archaea lack photosynthesis but independently evolved a phototrophic pathway based on rhodopsins. Among a diversity of metabolic pathways for inorganic carbon fixation, the RubisCO-based Calvin, Benson and Bassham cycle is by far predominant.

Last night, after a day in the garden, I asked Robin to explain (again) photosynthesis to me. I can’t take in this business of eating light and turning it into stem and thorn and flower…

(Mary Rose O’Reilley, The barn at the end of the world: the apprenticeship of a quaker, buddhist shepherd)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen JF et al (2011) A structural phylogenetic map for chloroplast photosynthesis. Trends Plant Sci 16:645–655

    Article  CAS  PubMed  Google Scholar 

  • Anbar AD et al (2007) A whiff of oxygen before the great oxidation event? Science 317:1903–1906

    Article  CAS  PubMed  Google Scholar 

  • Barber J (2012) Photosystem II: the water-splitting enzyme of photosynthesis. Cold Spring Harb Symp Quant Biol 77:295–306. https://doi.org/10.1101/sqb.2012.77.014472

    Article  CAS  PubMed  Google Scholar 

  • Beatty JT et al (2005) An obligately photosynthetic bacterial anaerobe from a deep-sea hydrothermal vent. Proc Natl Acad Sci U S A 102:9306–9310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Béjà O et al (2000) Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. Science 289:1902–1906

    Article  PubMed  Google Scholar 

  • Béjà O et al (2001) Proteorhodopsin phototrophy in the ocean. Nature 411:786–789

    Article  PubMed  Google Scholar 

  • Bekker A et al (2010) Iron formation: the sedimentary product of a complex interplay among mantle, tectonic, oceanic, and biospheric processes. Econ Geol 105:467–508

    Article  CAS  Google Scholar 

  • Blankenship RE (2010) Early evolution of photosynthesis. Plant Physiol 154:434–438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bosak T et al (2009) Morphological record of oxygenic photosynthesis in conical stromatolites. Proc Natl Acad Sci U S A 106:10939–10943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brasier M et al (2006) A fresh look at the fossil evidence for early Archaean cellular life. Philos Trans R Soc B 361:887–902

    Article  CAS  Google Scholar 

  • Brocks JJ et al (2003) A reconstruction of Archean biological diversity based on molecular fossils from the 2.78 to 2.45 billion-year-old Mount Bruce Supergroup, Hamersley Basin, Western Australia. Geochim Cosmochim Acta 67:4321–4335

    Article  CAS  Google Scholar 

  • Bryant DA (2007) Candidatus Chloracidobacterium thermophilum: an aerobic phototrophic acidobacterium. Science 317:523–526

    Article  CAS  PubMed  Google Scholar 

  • Bryant DA, Frigaard N-U (2006) Prokaryotic photosynthesis and phototrophy illuminated. Trends Microbiol 14:488–496

    Article  CAS  PubMed  Google Scholar 

  • Buick R (2008) When did oxygenic photosynthesis evolve? Philos Trans R Soc B 363:2731–2743

    Article  CAS  Google Scholar 

  • Butterfield NJ (2015) Proterozoic photosynthesis – a critical review. Palaeontology 58:95–972. https://doi.org/10.1111/pala.12211

    Article  Google Scholar 

  • Crowe S et al (2013) Atmospheric oxygenation three billion years ago. Nature 501:535–538

    Article  CAS  PubMed  Google Scholar 

  • David LA, Alm EJ (2011) Rapid evolutionary innovation during an Archaean genetic expansion. Nature 469:93–96

    Article  CAS  PubMed  Google Scholar 

  • Dismukes GC et al (2001) The origin of atmospheric oxygen on Earth: the innovation of oxygenic photosynthesis. Proc Natl Acad Sci U S A 98:2170–2175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • French KL et al (2015) Reappraisal of hydrocarbon biomarkers in Archean rocks. Proc Natl Acad Sci U S A 112:5915–5920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuchs G (2011) Alternative pathways of carbon dioxide fixation: insights into the early evolution of life? Annu Rev Microbiol 65:631–658

    Article  CAS  PubMed  Google Scholar 

  • Gupta RS (2012) Origin and spread of photosynthesis based upon conserved sequence features in key bacteriochlorophyll biosynthesis proteins. Mol Biol Evol 29:3397–3412

    Article  CAS  PubMed  Google Scholar 

  • Gutteridge S, Pierce J (2006) A unified theory for the basis of the limitations of the primary reaction of photosynthetic CO2 fixation: was Dr. Pangloss right? Proc Natl Acad Sci U S A 103:7203–7204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hohmann-Marriott MF, Blankenship RE (2011) Evolution of photosynthesis. Annu Rev Plant Biol 62:515–548

    Article  CAS  PubMed  Google Scholar 

  • Hoshino Y et al (2015) Hydrocarbons preserved in a ~2.7 Ga outcrop sample from the Fortescue Group, Pilbara Craton, Western Australia. Geobiology 13:99–111

    Article  CAS  PubMed  Google Scholar 

  • Kirschvink JL, Kopp RE (2008) Paleoproterozoic ice houses and the evolution of oxygen-mediating enzymes: the case for a late origin of photosystem II. Philos Trans R Soc B 363:2755–2765

    Article  CAS  Google Scholar 

  • Li W, Beard BL, Johnson CM (2015) Biologically recycled continental iron is a major component in banded iron formations. Proc Natl Acad Sci U S A 112:8193–8198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lyons TW, Reinhard CT, Planavsky NJ (2014) The rise of oxygen in Earth’s early ocean and atmosphere. Nature 506:307–315

    Article  CAS  PubMed  Google Scholar 

  • Mukhopadhyay J et al (2014) Oxygenation of the Archean atmosphere: new paleosol constraints from eastern India. Geology 42:923–926

    Article  CAS  Google Scholar 

  • Muller E et al (2017) Primary sulfur isotope signatures preserved in high-grade Archean barite deposits of the Sargur Group, Dharwar Craton, India. Precambrian Res 295:38–47

    Article  CAS  Google Scholar 

  • Nelson N, Junge W (2015) Structure and energy transfer in photosystems of oxygenic photosynthesis. Annu Rev Biochem 84:659–683

    Article  CAS  PubMed  Google Scholar 

  • Nisbet EG et al (2007) The age of Rubisco: the evolution of oxygenic photosynthesis. Geobiology 5:311–335

    Article  CAS  Google Scholar 

  • Ohtomo Y et al (2013) Evidence for biogenic graphite in early Archean Isua metasedimentary rocks. Nat Geosci 7:25–28

    Article  Google Scholar 

  • Olson JM (2006) Photosynthesis in the Archaean era. Photosynth Res 88:109–117

    Article  CAS  PubMed  Google Scholar 

  • Perez N et al (2013) The potential for photosynthesis in hydrothermal vents: a new avenue for life in the Universe? Astrophys Space Sci 346:327–331

    Article  CAS  Google Scholar 

  • Planavsky NJ et al (2014) Evidence for oxygenic photosynthesis half a billion years before the Great Oxidation Event. Nat Geosci 7:283–286

    Article  CAS  Google Scholar 

  • Rasmussen B et al (2008) Reassessing the first appearance of eukaryotes and cyanobacteria. Nature 455:1101–1104

    Article  CAS  PubMed  Google Scholar 

  • Raven JA, Cockell CS, De La Rocha CL (2008) The evolution of inorganic carbon concentrating mechanisms in photosynthesis. Philos Trans R Soc B 363:2641–2650

    Article  CAS  Google Scholar 

  • Raymond J et al (2003) Evolution of photosynthetic prokaryotes: a maximum-likelihood mapping approach. Philos Trans R Soc B 358:223–230

    Article  Google Scholar 

  • Renzaglia KS et al (2007) Bryophyte phylogeny: advancing the molecular and morphological frontiers. Bryologist 110:179–213

    Article  Google Scholar 

  • Řezanka T et al (2010) Hopanoids in bacteria and cyanobacteria – their role in cellular biochemistry and physiology, analysis and occurrence. Mini-Rev Org Chem 7:300–313

    Article  Google Scholar 

  • Ricci JN, Michel AJ, Newman DK (2015) Phylogenetic analysis of HpnP reveals the origin of 2-methylhopanoid production in Alphaproteobacteria. Geobiology 13:267–277

    Article  CAS  PubMed  Google Scholar 

  • Rosing MT (1999) 13C-depleted carbon microparticles in 3700 Ma sea-floor sedimentary rocks from West Greenland. Science 283:674–676

    Article  CAS  PubMed  Google Scholar 

  • Rothschild LJ (2008) The evolution of photosynthesis…again. Philos Trans R Soc B 363:2787–2801

    Article  CAS  Google Scholar 

  • Schirrmeister BE et al (2013) Evolution of multicellularity coincided with increased diversification of cyanobacteria and the Great Oxidation Event. Proc Natl Acad Sci U S A 110:1791–1796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schirrmeister BE, Gugger M, Donoghue PCJ (2015) Cyanobacteria and the Great Oxidation Event: evidence from genes and fossils. Palaeontology 58:769–785

    Article  PubMed  PubMed Central  Google Scholar 

  • Schopf JW (2006) Fossil evidence of Archean life. Philos Trans R Soc B 361:869–885

    Article  CAS  Google Scholar 

  • Schopf JW et al (2017) An anaerobic ∼3400 Ma shallow-water microbial consortium: presumptive evidence of Earth’s Paleoarchean anoxic atmosphere. Precambrian Res 299:309–318

    Article  CAS  Google Scholar 

  • Sugitani K et al (2015) Early evolution of large micro-organisms with cytological complexity revealed by microanalyses of 3.4 Ga organic-walled microfossils. Geobiology 13:507–521

    Article  CAS  PubMed  Google Scholar 

  • Tabita FR (2009) The hydroxypropionate pathway of CO2 fixation: fait accompli. Proc Natl Acad Sci 106:21015–21016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tabita FR et al (2008) Phylogenetic and evolutionary relationships of RubisCO and the RubisCO-like proteins and the functional lessons provided by diverse molecular forms. Philos Trans R Soc B 363:2629–2640

    Article  CAS  Google Scholar 

  • Tcherkez GGB, Farquhar GD, Andrews TJ (2006) Despite slow catalysis and confused substrate specificity, all ribulose bisphosphate carboxylases may be nearly perfectly optimized. Proc Natl Acad Sci U S A 103:7246–7251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vermaas WFJ (2002) Photosynthesis and respiration in cyanobacteria. Encycl Life Sci. https://doi.org/10.1038/npg.els.0001670

  • Waldbauer JR et al (2009) Late Archean molecular fossils from the Transvaal Supergroup record the antiquity of microbial diversity and aerobiosis. Precambrian Res 169:28–47

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ligrone, R. (2019). Moving to the Light: The Evolution of Photosynthesis. In: Biological Innovations that Built the World. Springer, Cham. https://doi.org/10.1007/978-3-030-16057-9_4

Download citation

Publish with us

Policies and ethics