Advertisement

Multi Agent-Based Addresses Geocoding for More Efficient Home Delivery Service in Developing Countries

  • Al Mansour KebeEmail author
  • Roger M. Faye
  • Claude Lishou
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 275)

Abstract

In this study, we present an original method that enhance geocoding system in poorly mapped areas thanks to multi-agent system. In contrast with industrialized countries, many developing countries lack formal postal address systems assignments and usage, making the operation of translating text-based addresses to absolute spatial coordinates, known as geocoding, a big challenge. We recreated a standard of address as it is perceived and used by local people, a kind of non-official national address standard since there is no official one in these areas. Then, we designed a multi agent system in which agents are assigned different tasks of geocoding process and can perform negotiation to achieve global objective: find the best possible match or approximation of a location based on current knowledge. A verification of the usefulness of the proposed approach is made in comparison with Google geocoding API which shows that the proposed approach has great potential to geocode addresses considering local context semantic issues.

Keywords

Geocoding Multi agent Text mining Knowledge discovery Address standard 

References

  1. 1.
    Goldberg, D.W.: A Geocoding Best Practices Guide. North American Association of Central Cancer Registries (2008)Google Scholar
  2. 2.
    Karimi, H.A., Sharker, M.H., Roongpiboonsopit, D.: Geocoding recommender: an algorithm to recommend optimal online geocoding services for applications. Trans. GIS 15(6), 869 (2011)CrossRefGoogle Scholar
  3. 3.
    Hutchinson, M.J.: Developing an agent-based framework for intelligent geocoding. Curtin University of Technology (2010)Google Scholar
  4. 4.
    Coetzee, S., et al.: Towards an international address standard. In: 10th International Conference for Spatial Data Infrastructure (2008)Google Scholar
  5. 5.
    Wei, R., Zhang, X., Ding, L., Ma, H., Li, Q.: A knowledge-based agent prototype for Chinese address geocoding. In: Geoinformatics 2008 and Joint Conference on GIS and Built Environment: Advanced Spatial Data Models and Analyses, p. 71,461D. International Society for Optics and Photonics (2009)Google Scholar
  6. 6.
    Tian, Q., Ren, F., Hu, T., Liu, J., Li, R., Du, Q.: Using an optimized Chinese address matching method to develop a geocoding service: a case study of Shenzhen. ISPRS Int. J. Geo Inf. 5(5), 65 (2016)CrossRefGoogle Scholar
  7. 7.
    Gao, D., Li, Q.: Preliminary results of a Chinese address segmentation algorithm based on self-organizing neural network. In: Geoinformatics 2007, p. 67,530U. International Society for Optics and Photonics (2007)Google Scholar
  8. 8.
    Fang, L., Yu, Z.Y., Zhao, X.: The design of a unified addressing schema and the matching mode of China. In: 2010 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 3987–3990. IEEE (2010)Google Scholar
  9. 9.
    Ugrina, I., Zigo, M.: Searching for semantically correct postal addresses on the Croatian web. In: Central European Conference on Information and Intelligent Systems, p. 276. Faculty of Organization and Informatics Varazdin (2014)Google Scholar
  10. 10.
    Zhang, W., Gelernter, J.: Geocoding location expressions in twitter messages: a preference learning method. J. Spat. Inf. Sci. 2014(9), 37 (2014)Google Scholar
  11. 11.
    Cetl, V., Kliment, T., Jogun, T.: A comparison of address geocoding techniques–case study of the city of Zagreb. Surv. Rev., 1–10 (2016)Google Scholar
  12. 12.
    Yildirim, V., Yomralioglu, T., Nisanci, R., Inan, H.: Turkish street addressing system and geocoding challenges. Proc. Inst. Civ. Eng. 167(2), 99 (2014)CrossRefGoogle Scholar
  13. 13.
    Davis Jr., C.A., de Alencar, R.O.: Evaluation of the quality of an online geocoding resource in the context of a large Brazilian city. Trans. GIS 15(6), 851 (2011)Google Scholar
  14. 14.
    Christen, P., Churches, T., Willmore, A., et al.: A probabilistic geocoding system based on a national address file. In: Proceedings of the 3rd Australasian Data Mining Conference, Cairns (2004)Google Scholar
  15. 15.
    Coetzee, S., Cooper, A.K.: What is an address in South Africa? S. Afr. J. Sci. 103(11–12), 449 (2007)Google Scholar
  16. 16.
    Malaainine, M.E.I., Rhinane, H., Baidder, L., Lechgar, H.: Omt-g modeling and cloud implementation of a reference database of addressing in Morocco. J. Geogr. Inf. Syst. (2013)Google Scholar
  17. 17.
    de Armas Garcia, C.J., Gutierrez, A.A.C.: Deployment of a national geocoding service: Cuban experience. URISA J. 25(1), 53 (2013)Google Scholar
  18. 18.
    Chatterjee, A., Anjaria, J., Roy, S., Ganguli, A., Seal, K.: SAGEL: smart address geocoding engine for supply-chain logistics. In: Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, p. 42. ACM (2016)Google Scholar
  19. 19.
    Burns, S., Miranda-Moreno, L., Stipancic, J., Saunier, N., Ismail, K.: Accessible and practical geocoding method for traffic collision record mapping: Quebec, Canada, case study. Transp. Res. Rec. J. Transp. Res. Board 2460, 39 (2014)CrossRefGoogle Scholar
  20. 20.
    Ahlers, D., Boll, S.: On the accuracy of online geocoders. Geoinformatik 2009 (2009)Google Scholar
  21. 21.
    Davis, C.A., Fonseca, F.T.: Assessing the certainty of locations produced by an address geocoding system. Geoinformatica 11(1), 103 (2007)CrossRefGoogle Scholar
  22. 22.
    Karimipour, F., Alinaghi, N., Weiser, P., Frank, A.U.: Cognitive engineering for spatial in-formation processes: from user interfaces to model-driven design (2015)Google Scholar
  23. 23.
    Coetzee, S., Rademeyer, M.: Testing the spatial adjacency match of the Intiendo address matching tool for geocoding of addresses with misleading suburb or place names. In: Proceedings International Cartography Conference, pp. 15–21 (2009)Google Scholar
  24. 24.
    Hutchinson, M.J., Veenendaal, B.: An agent-based framework for intelligent geocoding. Appl. Geomat. 5(1), 33 (2013)CrossRefGoogle Scholar
  25. 25.
    Irwin, M.: Mapping missing maps (2014). https://www.mapbox.com/blog/mapping-missing-maps/, Accessed 20 Jan 2017
  26. 26.
    Graham, S.A.: String Searching Algorithms. World Scientific Publishing Co. Pte Ltd. (1994)Google Scholar
  27. 27.
    Kravari, K., Bassiliades, N.: A survey of agent platforms. J. Artif. Soc. Soc. Simul. 18(1), 11 (2015)CrossRefGoogle Scholar
  28. 28.
    Documentation sur la plateforme GAMA (2016). https://github.com/gama-platform/gama/wiki, Accessed 4 Dec 2016

Copyright information

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019

Authors and Affiliations

  • Al Mansour Kebe
    • 1
    Email author
  • Roger M. Faye
    • 2
  • Claude Lishou
    • 1
  1. 1.Ecole Superieure PolytechniqueUniversite Cheikh Anta DiopDakarSenegal
  2. 2.Université Amadou Mahtar MBOWDiamniadioSenegal

Personalised recommendations