Advertisement

QoS Strategies for Wireless Multimedia Sensor Networks in the Context of IoT

  • Muwonge S. Bernard
  • Tingrui PeiEmail author
  • Zhetao Li
  • Keqin Li
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 275)

Abstract

Wireless multimedia sensor network (WMSN) can collect not only scalar sensor data, but also multi-dimensional sensor data. It is regarded as the foundation of IoT (Internet of Things). A lot of Quality of Service (QoS) indicators (e.g. energy-efficiency, real-time, reliability and so on) are used to evaluate data collection. This paper presents different QoS strategies for WMSNs in the Context of IoT from the network layer, transport layer and cross-layer. As for QoS Strategies at the network layer, many routing protocols are introduced, and their characteristics are compared. This paper also discusses congestion control protocols, error recovery protocols and priority-based protocols at transport layer. Cross-layer QoS strategies play an important role for system optimization. Three cross-layer strategies are discussed. For each layer’s strategies, the challenges and opportunities are compared. Finally, the potential future directions of QoS strategies are discussed for research and application.

Keywords

Wireless multimedia sensor networks Internet of Things Internet of Multimedia Things Media access control Quality of service Cross-layer Time division multiple access Code division multiple access 

Notes

Acknowledgement

This work was funded by The National Natural Science Foundation of China (No. 61672447, No. 61711540306).

The authors hereby declare no conflict of interest as regards the publication of this work.

References

  1. 1.
    Shen, H., Bai, G.: Routing in wireless multimedia sensor networks: a survey and challenges ahead. J. Netw. Comput. Appl. 71, 30–49 (2016)CrossRefGoogle Scholar
  2. 2.
    Akyildiz, B.I.F., Melodia, T., Chowdhury, K.R.: Wireless multimedia sensor networks: applications and testbeds. Proc. IEEE 96(10), 1588–1605 (2008)CrossRefGoogle Scholar
  3. 3.
    Ang, L., Seng, K.P., Chew, L.W., Yeong, L.S., Chia, W.C.: Wireless Multimedia Sensor Networks on Reconfigurable Hardware. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-38203-1CrossRefGoogle Scholar
  4. 4.
    Alvi, S.A., Afzal, B., Shah, G.A., Atzori, L., Mahmood, W.: Internet of multimedia things: Vision and challenges. Ad Hoc Netw. 33, 87–111 (2015)CrossRefGoogle Scholar
  5. 5.
    Wang, Q., et al.: Multimedia IoT systems and applications, no. 2 (2017)Google Scholar
  6. 6.
    Madani, S.A., Hassan, Q.F., Khan, A.U.R. (eds.): Internet of Things: Challenges, Advances, and Applications. CRC Press Taylor & Francis Group: A Chapman & Hall Group, Boca Raton (2018)Google Scholar
  7. 7.
    Curry, E.: Towards a generalized approach for deep neural network based event processing for the internet of multimedia things. IEEE Access 6, 25573–25587 (2018)CrossRefGoogle Scholar
  8. 8.
    Jridi, M., Chapel, T., Dorez, V., Bougeant, L., Le Botlan, A.: SoC-based edge computing gateway in the context of the internet of multimedia things: experimental platform. J. Low Power Electron. Appl. 8, 1 (2018)CrossRefGoogle Scholar
  9. 9.
    Noura, H., Chehab, A., Sleem, L., Rapha, M.N.: One round cipher algorithm for multimedia IoT devices. Multimed. Tools Appl. 77, 18383–18413 (2018)CrossRefGoogle Scholar
  10. 10.
    Balan, T., Robu, D., Sandu, F.: Multihoming for mobile internet of multimedia things. Mob. Inf. Syst. 2017, 16 (2017)Google Scholar
  11. 11.
    Dhand, G., Tyagi, S.S.: Survey on data-centric protocols of WSN. Int. J. Appl. Innov. Eng. Manage. (IJAIEM) 2(2), 279–284 (2013)Google Scholar
  12. 12.
    Karthikeyan, K., Kavitha, M.: comparative analysis of data centric routing protocols for wireless sensor networks. Int. J. Sci. Res. Publ. 3(1), 1–6 (2013)Google Scholar
  13. 13.
    Kulik, J., Heinzelman, W., Balakrishnan, H.: Negotiation-based protocols for disseminating information in wireless sensor networks. Wirel. Netw. 8(2–3), 169–185 (2002)CrossRefGoogle Scholar
  14. 14.
    Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor networks: a survey. Comput. Netw. 38(4), 393–422 (2002)CrossRefGoogle Scholar
  15. 15.
    Akkaya, K., Younis, M.: An energy-aware QoS routing protocol for wireless sensor networks. In: Proceedings of the International Conference on Distributed Computing Systems Workshops 2003, pp. 710–715 (2003)Google Scholar
  16. 16.
    Waware, S., Sarwade, N., Gangurde, P.: A review of power efficient hierarchical routing protocols in wireless sensor networks. Int. J. Eng. Res. Appl. (IJERA) 2(2), 1096–1102 (2012)Google Scholar
  17. 17.
    Ram, D.B., Shah, G.S.: Analysis of different hierarchical routing protocols of wireless sensor network. IJRET 3(2), 616–620 (2014)CrossRefGoogle Scholar
  18. 18.
    Kaur, P., Katiyar, M.: The energy-efficient hierarchical routing protocols for WSN: a review. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 2(11), 194–199 (2012)Google Scholar
  19. 19.
    Al-Karaki, J.N., Kamal, A.E.: Wireless sensor networks routing techniques in wireless sensor networks: a survey. IEEE Wirel. Commun. 11, 6–28 (2004)CrossRefGoogle Scholar
  20. 20.
    Rama, G.V., Srikanth, L.V.: Location-based routing protocol in wireless sensor network-a survey. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 5(4), 663–667 (2015)Google Scholar
  21. 21.
    Kuhn, F., Wattenhofer, R., Zollinger, A.: Worst-case optimal and average-case efficient geometric ad-hoc routing. In: Proceedings of the 4th ACM International Symposium on Mobile Ad Hoc Networking & Computing - MobiHoc 2003, pp. 267–278 (2003)Google Scholar
  22. 22.
    Masdari, M., Tanabi, M.: Multipath routing protocols in wireless sensor networks: a survey and analysis. Int. J. Futur. Gener. Commun. Netw. 6(6), 181–192 (2013)CrossRefGoogle Scholar
  23. 23.
    Chaudhari, P., Rathod, H., Budhhadev, B.: Comparative Study of multipath-based routing techniques for wireless sensor network. In: Proceedings published by International Journal of Computer Applications®(IJCA) International Conference on Computer Communication and Networks CSI-COMNET-2011, pp. 50–53 (2011)Google Scholar
  24. 24.
    Shin, K.-Y., Song, J., Kim, J., Yu, M., Mah, P.S.: REAR: reliable energy aware routing protocol for wireless sensor networks. In: The 9th International Conference on Advanced Communication Technology, pp. 525–530 (2007)Google Scholar
  25. 25.
    Ben-Othman, J., Yahya, B.: Energy efficient and QoS based routing protocol for wireless sensor networks. J. Parallel Distrib. Comput. 70(8), 849–857 (2010)CrossRefGoogle Scholar
  26. 26.
    Lou, W.: An efficient N-to-1 multipath routing protocol in wireless sensor networks. Computer Engineering, pp. 665–672 (2005)Google Scholar
  27. 27.
    Krishna, K.K., Augustine, R.: A survey on mobility based routing protocols in wireless sensor networks. Int. J. Comput. Appl. 135(5), 434–438 (2016)Google Scholar
  28. 28.
    Yadav, R., Kumar, A., Kumar, R.: a survey - heterogenity and mobility based routing protocol in WSN, pp. 320–328 (2015)Google Scholar
  29. 29.
    Lofty, S., Padmavati: A survey on mobility based protocols in WSNs. In: Proceedings of the International Conference on Computer Communication Manufacturing, pp. 12–15 (2014)Google Scholar
  30. 30.
    Sun, Y., Ma, H., Liu, L., Zheng, Y.: ASAR: an ant-based service-aware routing algorithm for multimedia sensor networks. Front. Electr. Electron. Eng. China 3(1), 25–33 (2008)CrossRefGoogle Scholar
  31. 31.
    Almalkawi, I.T., Zapata, M.G., Al-Karaki, J.N., Morillo-Pozo, J.: Wireless multimedia sensor networks: current trends and future directions. Sensors 10(7), 6662–6717 (2010)CrossRefGoogle Scholar
  32. 32.
    Shu, L., Zhang, Y., Yang, L.T., Wang, Y., Hauswirth, M., Xiong, N.: TPGF: geographic routing in wireless multimedia sensor networks. Telecommun. Syst. 44(1–2), 79–95 (2010)CrossRefGoogle Scholar
  33. 33.
    Karp, B., Kung, H.: GPSR: greedy perimeter stateless routing for wireless networks. In: ACM MobiCom, pp. 243–254 (2000)Google Scholar
  34. 34.
    Rahman, M.A., GhasemAghaei, R., El Saddik, A., Gueaieb, W.: M-IAR: biologically inspired routing protocol for wireless multimedia sensor networks. In: 2008 IEEE Instrumentation and Measurement Technology Conference, pp. 1823–1827 (2008)Google Scholar
  35. 35.
    Darabi, S., Yazdani, N., Fatemi, O.: Multimedia-aware MMSPEED: a routing solution for video transmission in WMSN. In: 2008 2nd International Symposium on Advanced Networks and Telecommunication Systems, ANTS 2008, October 2014 (2008)Google Scholar
  36. 36.
    Felemban, E., Lee, C.G., Ekici, E.: MMSPEED: multipath Multi-SPEED protocol for QoS guarantee of reliability and timeliness in wireless sensor networks. IEEE Trans. Mob. Comput. 5(6), 738–753 (2006)CrossRefGoogle Scholar
  37. 37.
    He, T., Stankovic, J.A., Lu, C., Abdelzaher, T.F.: A spatiotemporal communication protocol for wireless sensor networks, pp. 1–13 (2005)Google Scholar
  38. 38.
    Khan, A.U.R., Madani, S.A., Hayat, K., Khan, S.U.: Clustering-based power-controlled routing for mobile wireless sensor networks. Int. J. Commun Syst 25, 529–542 (2011)CrossRefGoogle Scholar
  39. 39.
    Madani, S., Ali, S.: Distributed Grid based Robust Clustering Protocol for Mobile Sensor Networks. Int. Arab J. Inf. Technol. 8(3), 414–421 (2011)Google Scholar
  40. 40.
    Wang, C., Sohraby, K., Li, B., Daneshmand, M., Hu, Y.: A survey of transport protocols for wireless sensor networks. IEEE Netw. 20(3), 34–40 (2006)CrossRefGoogle Scholar
  41. 41.
    Chowdhury, I.S., Lahiry, J., Hasan, S.F.: Performance analysis of datagram congestion control protocol (DCCP). In: 12th International Conference on Computers and Information Technology, ICCIT 2009, vol. 3, no. 5, pp. 454–459 (2009)Google Scholar
  42. 42.
    Kohler, E., Floyd, S.: Datagram congestion control protocol (DCCP) overview, pp. 1–9, July 2003. http://www.icir.org/kohler/dcp/summary.pdf
  43. 43.
    Bhujbal, P., Nagaraj, U.: Study of various congestion-control protocols in network. Int. Res. J. Eng. Technol. (IRJET) 5(3), 3890–3894 (2014)Google Scholar
  44. 44.
    Xia, Y., Subramanian, L., Stoica, I., Kalyanaraman, S.: One more bit is enough. IEEE/ACM Trans. Netw. 16(6), 1281–1294 (2005). SigcommGoogle Scholar
  45. 45.
    Li, X., Yousefi’zadeh, H.: MPCP: multi packet congestion-control protocol. ACM SIGCOMM Comput. Commun. Rev. 39(5), 5–11 (2009)CrossRefGoogle Scholar
  46. 46.
    Kurose, J.F., Ross, K.W.: Computer Networking A Top-Down Approach Featuring the Internet, vol. 1, p. 712. Pearson Education, India (2005)Google Scholar
  47. 47.
    Agarwal, R., Popovici, E., De Feo, O., O’Flynn, B.: Energy driven choice of error recovery protocols in embedded sensor network systems. In: Proceedings of the 2007 International Conference on Sensor Technologies and Applications, SENSORCOMM 2007, pp. 560–565 (2007)Google Scholar
  48. 48.
    Wan, C.-Y., Campbell, A.T., Krishnamurthy, L.: PSFQ: a reliable transport protocol for wireless sensor networks. In: Proceedings of the 1st ACM International Workshop on Wireless Sensor Networks and Applications, WSNA 2002 (2002)Google Scholar
  49. 49.
    Jones, J., Atiquzzaman, M.: Transport protocols for wireless sensor networks: state-of-the-art and future directions. Int. J. Distrib. Sens. Netw. 3(1), 119–133 (2007)CrossRefGoogle Scholar
  50. 50.
    Stann, F., Heidemann, J.: RMST: reliable data transport in sensor networks. In: Proceedings of the 1st IEEE International Workshop on Sensor Network Protocols and Applications, SNPA 2003, pp. 102–112 (2003)Google Scholar
  51. 51.
    Intanagonwiwat, C., Govindan, R., Estrin, D.: Directed diffusion : a scalable and robust communication. In: Proceedings of the 6th Annual International Conference on Mobile Computing and Networking (MobiCom 2000), pp. 56–67 (2000)Google Scholar
  52. 52.
    Wang, C., Li, B., Sohraby, K., Daneshmand, M., Hu, Y.: Upstream congestion control in wireless sensor networks through cross-layer optimization. IEEE J. Sel. Areas Commun. 25(4), 786–795 (2007)CrossRefGoogle Scholar
  53. 53.
    Yaghmaee, M.H., Adjeroh, D.: A new priority based congestion control protocol for wireless multimedia sensor networks. In: IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks (2008)Google Scholar
  54. 54.
    Zhang, X., Guo, L.: An energy-balanced cooperative MAC protocol in MANETs. In: 2011 International Conference on Advanced Information Technology, vol. 20, pp. 44–49 (2011)Google Scholar
  55. 55.
    Rao, S., Shama, K.: Cross layer protocol for multimedia transmission in wireless network. Int. J. Comput. Sci. Eng. Surv. 3(3), 15–28 (2012)CrossRefGoogle Scholar
  56. 56.
    Han, L., Park, S., Kang, S., In, H.P.: An adaptive cross-layer FEC mechanism for video transmission over 802.11 WLANs. In: KSII International Conference on Internet, pp. 209–215, December 2009Google Scholar
  57. 57.
    Liu, F., Korakis, T., Tao, Z., Panwar, S.: A MAC-PHY cross-layer protocol for wireless ad-hoc networks, pp. 1792–1797 (2008)Google Scholar
  58. 58.
    Shan, H., Cheng, H.T., Zhuang, W.: Cross-layer cooperative MAC protocol in distributed wireless networks. IEEE Trans. Wirel. Commun. 10(8), 2603–2615 (2011)CrossRefGoogle Scholar
  59. 59.
    Guo, J., Sun, L., Wang, R.: A Cross-layer and multipath based video transmission scheme for wireless multimedia sensor networks. J. Netw. 7(9), 1334–1340 (2012)Google Scholar
  60. 60.
    Melodia, T., Akyildiz, I.F.: Cross-layer QoS-aware communication for ultra wide band wireless multimedia sensor networks. IEEE J. Sel. Areas Commun. 28(5), 653–663 (2010)CrossRefGoogle Scholar
  61. 61.
    Ksentini, A., Naimi, M., Guéroui, A.: Toward an improvement of H.264 video transmission over IEEE 802.11e through a cross-layer architecture. IEEE Commun. Mag. 44(1), 107–114 (2006)CrossRefGoogle Scholar
  62. 62.
    AlAmri, A., Abdullah, M.: Cross-layer quality of service protocols for wireless multimedia sensor networks. In: Proceedings of the International Conference on Communication, Management and Information Technology, ICCMIT 2016, pp. 649–658 (2017)Google Scholar
  63. 63.
    Sun, G., Qi, J., Zang, Z., Xu, Q.: A reliable multipath routing algorithm with related congestion control scheme in wireless multimedia sensor networks. In: 2011 3rd International Conference on Computer Research and Development, vol. 4, pp. 229–233 (2011)Google Scholar

Copyright information

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019

Authors and Affiliations

  • Muwonge S. Bernard
    • 1
    • 2
  • Tingrui Pei
    • 1
    • 4
    Email author
  • Zhetao Li
    • 1
  • Keqin Li
    • 3
  1. 1.College of Information EngineeringXiangtan UniversityXiangtanChina
  2. 2.Department of Networks, College of Computing and Information SciencesMakerere UniversityKampalaUganda
  3. 3.Department of Computer ScienceState University of New YorkNew PaltzUSA
  4. 4.Key Laboratory of Hunan Province for Internet of Things and Information SecurityXiangtanChina

Personalised recommendations