Advertisement

The Quest for White Spaces in the Democratic Republic of Congo

  • Isaac KamibaEmail author
  • Patrick Kasonga
  • Hope Mauwa
  • Antoine Bagula
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 275)

Abstract

At a time when the opportunistic access to white spaces is a big opportunity for boosting innovation in broadband Internet services, many countries of the developing world are still lagging behind. In the Democratic Republic of Congo (DRC), for example, the TV White Space concept has not yet been tabulated in the operational plan of the national regulator, thus leaving a void in terms of white space discovery and usage. While many studies are still conducted to discover white spaces in several countries of the developing world, most developed countries such as the UK and USA have moved beyond the stage of testing and experimentation to embark on real white space deployments. This paper revisits the issue of spectrum sensing to identify white spaces in the UHF analog broadcast spectrum band ranging from 470 MHz to 862 MHz in the DRC. The experimental results collected from the cities of Lubumbashi and Kinshasa reveal significant white spaces in the frequency band. They provide a proof-of-concept that the national regulator could use as a starting point towards the migration to the digital terrestrial television. The experimental framework can also be used by different telecommunication operators and researchers as a guideline for white spaces identification.

Keywords

TVWS White spaces Opportunistic access’s Spectrum sensing 

References

  1. 1.
    ETSI EN 301 598: White Space Devices (WSD); Wirless access system operating in the 470 MHz to 790 MHz TV broacasting band (2014)Google Scholar
  2. 2.
    Bagula, A.: Hybrid traffic engineering: the least path interference algorithm. In: Proceedings of the SAICSIT 2004, pp. 89–96. ACM, October 2004. ISBN 1-58113-982-9Google Scholar
  3. 3.
    Bagula, A., Abidoye, A.P., Lusilao Zodi, G.-A.: Service-aware clustering: an energy-efficient model for the internet-of-things. Sensors 16(1), 9 (2016)CrossRefGoogle Scholar
  4. 4.
    Chavula, J., Feamster, N., Bagula, A., Suleman, H.: Quantifying the effects of circuitous routes on the latency of intra-Africa internet traffic: a study of research and education networks. In: Nungu, A., Pehrson, B., Sansa-Otim, J. (eds.) AFRICOMM 2014. LNICSSITE, vol. 147, pp. 64–73. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-16886-9_7CrossRefGoogle Scholar
  5. 5.
    Chiaraviglio, L., et al.: Bringing 5G in rural and low-income areas: is it feasible? IEEE Commun. Stand. Mag. 1(3), 50–57 (2017)CrossRefGoogle Scholar
  6. 6.
    Dynamic Spectrum Alliance (DSA): Règles de modèles des espaces blancs (2015). http://dynamicspectrumalliance.org
  7. 7.
    Gilpin, L.: White Space, the Next Internet Disruption: 10 Things to Know (2014). http://www.techrepublic.com
  8. 8.
    Han, Y., Ekici, E., Kremo, H., Altintas, O.: A survey of MAC issues for TV white space access. Ad Hoc Netw. 27, 195–218 (2015)CrossRefGoogle Scholar
  9. 9.
    Holland, O., Bogucka, H., Medeisis, A.: Opportunistic Spectrum Sharing and White Space Access: The Practical Reality. Wiley, Hoboken (2015)CrossRefGoogle Scholar
  10. 10.
    Karbab, E.M., Djenouri, D., Boulkaboul, S., Bagula, A.: Car park management with networked wireless sensors and active RFID. In: The Proceedings of the IEEE International Conference on Electro/Information Technology. IEEE (2015)Google Scholar
  11. 11.
    Masinde, M., Bagula, A.: Framework for predicting droughts in developing countries using sensor networks and mobile phones. In: Proceedings of SAICSIT 2010. ACM, October 2010Google Scholar
  12. 12.
    Masinde, M., Bagula, A., Muthama, N.J.: The role of ICTs in downscaling and up-scaling integrated weather forecasts for farmers in sub-Saharan Africa. In: Proceedings of ICTD 2012, Atlanta, GA, USA, 12–15 March 2012, pp. 122–129. ACM (2012)Google Scholar
  13. 13.
    Oh, S.W., Ma, Y., Tao, M.-H., Peh, E.: TV White Space: The First Step Towards Better Utilization of Frequency Spectrum. IEEE (2016)Google Scholar
  14. 14.
    Rainone, M., Zennaro, M., Pietrosemoli, E.: RFTrack: a tool for efficient spectrum usage advocacy in developing countries. In: Proceedings of the Eighth International Conference on Information and Communication Technologies and Development, p. 34. ACM (2016)Google Scholar
  15. 15.
    Shellhammer, S.J., Sadek, A.K., Zhang,W.: Technical challenges for cognitive radio in the TV white space spectrum. In: Information Theory and Applications Workshop, pp. 323–333. IEEE (2009)Google Scholar
  16. 16.
    UIT: Actes finals dee la Conférence régionale des radiocommunications chargée de planifier le service de radiodiffusion numérique de Terre dans certaines parties des Régions 1 et 3, dans les bandes de fréquences 174–230 MHz et 470–862 MHz (CRR-06), Genève (2006)Google Scholar
  17. 17.
    Webb, W.: Dynamic “White Space” Spectrum Access. New methods to access radio spectrum using dynamic sharing (2013)Google Scholar

Copyright information

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019

Authors and Affiliations

  • Isaac Kamiba
    • 1
    Email author
  • Patrick Kasonga
    • 1
  • Hope Mauwa
    • 2
  • Antoine Bagula
    • 2
  1. 1.ESIS SalamaLubumbashiDemocratic Republic of the Congo
  2. 2.University of the Western CapeCape TownSouth Africa

Personalised recommendations