Advertisement

A Superdirective and Reconfigurable Array Antennas for Internet of Vehicles (IoV)

Conference paper
  • 278 Downloads
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 275)

Abstract

This paper presents a prototype design of antenna for Internet of Vehicle (IoV). Presented antennas is an array of 4 quarter-wavelength monopoles set in form of lozenge and on an infinite ground plan confused to vehicle’s roof. Monopoles are 2 by 2 linearly associated and are excited properly in magnitude and phase. Uzkov’s theory is first used to calculated appropriate excitation coefficients and after that Non-Foster circuit theory for determining an impedance-matched with a \( Z_{load} \). Ansys HFSS is used for simulations and results show a good bandwidth and particulary a superdirectivity in order of 8.2 dB reconfigurable in a desired and useful direction.

Keywords

Superdirectivity End-fire Impedance active IoV 

References

  1. 1.
    Harrington, R.F.: On the gain and beamwidth of directional antennas. IRE Trans. IEEE Antennas Propag. 6, 219–225 (1958)CrossRefGoogle Scholar
  2. 2.
    Uzkov, A.I.: An approach to the problem of optimum directive antennae design. Comptes Rendus (Doklady) de l’Academie des Sciences de l’URSS 53, 35–38 (1946)Google Scholar
  3. 3.
    Altshuler, E.E., O’Donnell, T.H., Yaghjian, A.D.: A superdirective array using very small genetic antennas. Digest, URSI General Assembly, Maestricht (2002)Google Scholar
  4. 4.
    O’Donnell, T.H., Yaghjian, A.D.: Electrically small superdirective arrays using parasitic elements. In: Proceedings of the International Symposium Antennas Propagation, Albuquerque NM, pp. 3111–3114 (2006)Google Scholar
  5. 5.
    Altshuler, E.E., O’Donnell, T.H., Yaghjian, A.D., Best, S.R.: A monopole superdirective array. IEEE Trans. Antennas Propag. 53, 2653–2661 (2005)CrossRefGoogle Scholar
  6. 6.
    Altshuler, E.E., ODonnell, T.H., Yaghjian, A.D.: Electrically smallsupergain end-fire arrays. Radio Sci. 43, 1–13 (2008)Google Scholar
  7. 7.
    Best, S.R.: An efficient impedance matched 2-element superdirective array. In: Digest National Radio Science Meeting, p. 462, July 2005Google Scholar
  8. 8.
    Best, S.R.: The performance properties of electrically small resonant multiple-arm folded wire antennas. IEEE Antennas Propag. Mag. 47, 13–27 (2005)CrossRefGoogle Scholar
  9. 9.
    Abdullah, H., Ala, S., Sylvain, C., Pigeon, M., Mahdjoubi, K.: A design methodology for electrically small superdirective antenna arrays. In: IEEE Antennas and Propagation Conference (LAPC), 2014 Loughborough (2014)Google Scholar
  10. 10.
    Abdullah, H., Ala, S., Sylvain, C.: A design methodology for impedance-matched Electrically Small parasitic superdirective arrays. In: 2015 IEEE International Symposium Antennas and Propagation & USNC/URSI National Radio Science Meeting, pp. 1852–1853 (2015)Google Scholar
  11. 11.
    Abdullah, H.: Contribution to the study of directive or wide-band miniature antennas with non-Foster circuits (2016)Google Scholar
  12. 12.
    Yaru, N.: A note on super-gain antenna arrays. Proc. IRE 39, 1081–1085 (1951)CrossRefGoogle Scholar
  13. 13.
    Lim, S., Ling, H.: Design of a closely spaced, folded Yagi antenna. IEEE Antennas Wireless Propagat. Letts. 5, 302–305 (2006)CrossRefGoogle Scholar
  14. 14.
    Haviland, R.P.: Supergain antennas: possibilities and problems. IEEE Antennas Propagat. Mag. 37, 13–26 (1995)CrossRefGoogle Scholar

Copyright information

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019

Authors and Affiliations

  1. 1.Laboratoire d’Informatique, Réseaux et Télécoms (LIRT)Ecole Supérieure Polytechnique (ESP)DakarSenegal
  2. 2.Laboratoire d’Imagerie Médical et Bio-Informatique (LIMBI)Ecole Supérieure Polytechnique (ESP)DakarSenegal

Personalised recommendations