A Superdirective and Reconfigurable Array Antennas for Internet of Vehicles (IoV)

Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 275)


This paper presents a prototype design of antenna for Internet of Vehicle (IoV). Presented antennas is an array of 4 quarter-wavelength monopoles set in form of lozenge and on an infinite ground plan confused to vehicle’s roof. Monopoles are 2 by 2 linearly associated and are excited properly in magnitude and phase. Uzkov’s theory is first used to calculated appropriate excitation coefficients and after that Non-Foster circuit theory for determining an impedance-matched with a \( Z_{load} \). Ansys HFSS is used for simulations and results show a good bandwidth and particulary a superdirectivity in order of 8.2 dB reconfigurable in a desired and useful direction.


Superdirectivity End-fire Impedance active IoV 


  1. 1.
    Harrington, R.F.: On the gain and beamwidth of directional antennas. IRE Trans. IEEE Antennas Propag. 6, 219–225 (1958)CrossRefGoogle Scholar
  2. 2.
    Uzkov, A.I.: An approach to the problem of optimum directive antennae design. Comptes Rendus (Doklady) de l’Academie des Sciences de l’URSS 53, 35–38 (1946)Google Scholar
  3. 3.
    Altshuler, E.E., O’Donnell, T.H., Yaghjian, A.D.: A superdirective array using very small genetic antennas. Digest, URSI General Assembly, Maestricht (2002)Google Scholar
  4. 4.
    O’Donnell, T.H., Yaghjian, A.D.: Electrically small superdirective arrays using parasitic elements. In: Proceedings of the International Symposium Antennas Propagation, Albuquerque NM, pp. 3111–3114 (2006)Google Scholar
  5. 5.
    Altshuler, E.E., O’Donnell, T.H., Yaghjian, A.D., Best, S.R.: A monopole superdirective array. IEEE Trans. Antennas Propag. 53, 2653–2661 (2005)CrossRefGoogle Scholar
  6. 6.
    Altshuler, E.E., ODonnell, T.H., Yaghjian, A.D.: Electrically smallsupergain end-fire arrays. Radio Sci. 43, 1–13 (2008)Google Scholar
  7. 7.
    Best, S.R.: An efficient impedance matched 2-element superdirective array. In: Digest National Radio Science Meeting, p. 462, July 2005Google Scholar
  8. 8.
    Best, S.R.: The performance properties of electrically small resonant multiple-arm folded wire antennas. IEEE Antennas Propag. Mag. 47, 13–27 (2005)CrossRefGoogle Scholar
  9. 9.
    Abdullah, H., Ala, S., Sylvain, C., Pigeon, M., Mahdjoubi, K.: A design methodology for electrically small superdirective antenna arrays. In: IEEE Antennas and Propagation Conference (LAPC), 2014 Loughborough (2014)Google Scholar
  10. 10.
    Abdullah, H., Ala, S., Sylvain, C.: A design methodology for impedance-matched Electrically Small parasitic superdirective arrays. In: 2015 IEEE International Symposium Antennas and Propagation & USNC/URSI National Radio Science Meeting, pp. 1852–1853 (2015)Google Scholar
  11. 11.
    Abdullah, H.: Contribution to the study of directive or wide-band miniature antennas with non-Foster circuits (2016)Google Scholar
  12. 12.
    Yaru, N.: A note on super-gain antenna arrays. Proc. IRE 39, 1081–1085 (1951)CrossRefGoogle Scholar
  13. 13.
    Lim, S., Ling, H.: Design of a closely spaced, folded Yagi antenna. IEEE Antennas Wireless Propagat. Letts. 5, 302–305 (2006)CrossRefGoogle Scholar
  14. 14.
    Haviland, R.P.: Supergain antennas: possibilities and problems. IEEE Antennas Propagat. Mag. 37, 13–26 (1995)CrossRefGoogle Scholar

Copyright information

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019

Authors and Affiliations

  1. 1.Laboratoire d’Informatique, Réseaux et Télécoms (LIRT)Ecole Supérieure Polytechnique (ESP)DakarSenegal
  2. 2.Laboratoire d’Imagerie Médical et Bio-Informatique (LIMBI)Ecole Supérieure Polytechnique (ESP)DakarSenegal

Personalised recommendations