Advertisement

Classification and Prediction of Arrhythmias from Electrocardiograms Patterns Based on Empirical Mode Decomposition and Neural Network

  • Abdoul-Dalibou AbdouEmail author
  • Ndeye Fatou Ngom
  • Oumar Niang
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 275)

Abstract

Diagnosis of heart disease rests essentially on the analysis of the statistical, morphological, temporal, or frequency properties of ECG. Data analytical techniques are often needed for the identification, the extraction of relevant information, the discovery of meaningful patterns and new threads of knowledge from biomedical data. However for cardio-vascular diseases, despite the rapid increase in the collection of methods proposed, research communities still have difficulties in delivering applications for clinical practice. In this paper we propose hybrid model to advance the understanding of arrhythmias from electrocardiograms patterns. Adaptive analysis based on empirical Mode Decomposition (EMD) is first carried out to perform signal denoising and the detection of main events presented in the electrocardiograms (Ecg). Then, binary classification is performed using Neural Network model. However in this work, the Ecg R-peak detection method, the classification algorithm are improved and the chart flow include a predictive step. Indeed, the classification outputs are used to perform prediction of cardiac rhythm pattern. The proposed model is illustrated using the MIT-BIH database, compared to other methods and discussed. The obtained results are very promising.

Keywords

ECG classification Neural networks Predictive models Empirical mode decomposition Arrhythmia 

References

  1. 1.
    Abdou, A.D., Ngom, N.F., Sidibé, S., Niang, O., Thioune, A., Ndiaye, C.H.T.C.: Neural networks for biomedical signals classification based on empirical mode decomposition and principal component analysis. In: Kebe, C.M.F., Gueye, A., Ndiaye, A. (eds.) InterSol/CNRIA -2017. LNICST, vol. 204, pp. 267–278. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-72965-7_25CrossRefGoogle Scholar
  2. 2.
    Atibi, M., Bennis A., Boussaa M., Atouf, I.: ECG image classification in real time based on the haar-like features and artificial neural networks. In: The International Conference on Advanced Wireless, Information, and Communication Technologies (AWICT 2015), vol. 73, pp. 32–39 (2015)Google Scholar
  3. 3.
    Bovenzi, A.: The on-line detection of anomalies in mission-criticial software system, April 2013Google Scholar
  4. 4.
    Zhang, Y., Hong, D., Zhao, D.: The entropy and PCA based anomaly prediction in data streams. In: 20th International Conference on Knowledge Based and Intelligent Information and Engineering Systems, vol. 96, pp. 139–146 (2016)Google Scholar
  5. 5.
    Gupta, S., Phung, D., Nguyen, T., Venkatesh, S.: Learning latent activities from social signals with hierarchical Dirichlet processesGoogle Scholar
  6. 6.
    Ramanujam, E., Padmavathi, S.: Naïve bayes classifier for ECG abnormalities using multivariate maximal time series motif. Procedia Comput. Sci. 47, 222–228 (2015)CrossRefGoogle Scholar
  7. 7.
    Dubois, R.: Application des nouvelles méthodes d’apprentissage à la détection précoce d’anomalies cardiaques en électrocardiographie (2004)Google Scholar
  8. 8.
    Gaudoin, O.: Principes et methodes statistiques, p. 145Google Scholar
  9. 9.
    Desnos, M., Gay, J., Benoit, P.: l’électrocardiograme: 460 tracés commentés et figures, pp. 30–32 (1990)Google Scholar
  10. 10.
    Jin, F., Sugavaneswaran, L., Krishnan, S., Chauhan, V.S.: Quantification of fragmented qrs complex using intrinsic time-scale decomposition. Biomed. Signal Process. Control 31, 513–523 (2017)CrossRefGoogle Scholar
  11. 11.
    Moya, J.M., Ayala, J.L., Pagan, J., Risco-Martín, J.L.: Modeling methodology for the accurate and prompt prediction of symptomatic events in chronic diseases. J. Biomed. Inform. 62, 136–147 (2016)CrossRefGoogle Scholar
  12. 12.
    Rish, I., Brodie, M., Ma, S.: Optimizing probe selection for fault localization, in operations et management. In: 12th International Workshop on Distributed System, pp. 88–98 (2001)Google Scholar
  13. 13.
    Rish, I., et al.: Adaptive diagnosis in distributed systems. IEEE Trans. Neural Networks 16(5), 1088–1109 (2005)CrossRefGoogle Scholar
  14. 14.
    Markazi, A.H.D., Anaraki, A.K., Nazarahari, M., Namin, S.G.: A multi-wavelet optimization approach using similarity measures for electrocardiogram signal classification. Biomed. Signal Process. Control 20, 142–151 (2015)CrossRefGoogle Scholar
  15. 15.
    Moody, G.B., Mark, R.G.: The impact of the MIT-BIH arrhythmia database. IEE Eng. Med. Biol. 20, 45–50 (2001)CrossRefGoogle Scholar
  16. 16.
    Niang, O., Thioune, A., Delechelle, E., Lemoine, J.: Spectral intrinsic decomposition method for adaptative signal representation. ISRN Signal Process. 9, 3 (2012)zbMATHGoogle Scholar
  17. 17.
    Kloft, M., Gornitz, N., Braun, M.: Hidden Markov anomaly detectionGoogle Scholar
  18. 18.
    Pal, S., Mitra, M.: Empirical mode decomposition based on ECG enhencement and QRS detection. Comput. Biol. Med. 42, 83–92 (2012)CrossRefGoogle Scholar
  19. 19.
    Rodriguez, R., Mexicano, A., Bila, J., Cervantes, S., Ponce, R.: Feature extraction of electrocardiogram signals by aplying adaptative threshold and principal component analysis. J. Appl. Res. Technol. 13, 261–269 (2015)CrossRefGoogle Scholar
  20. 20.
    Slimane, Z.H., Nait Ali, A.: QRS complex detection using empirical mode decomposition. Digit. Signal Process. 20, 1221–1228 (2010)CrossRefGoogle Scholar
  21. 21.
    Purdy, S., Agha, Z., Ahmad, S., Lavin, A.: Unsupervised real-time anomaly detection for streaming data. Neurocomputing 262, 134–147 (2017)CrossRefGoogle Scholar
  22. 22.
    Zhang, H.: An improved QRS wave group detection algorithm and matlab implementation. Phys. Procedia 25, 1010–1016 (2012)CrossRefGoogle Scholar

Copyright information

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019

Authors and Affiliations

  • Abdoul-Dalibou Abdou
    • 1
    Email author
  • Ndeye Fatou Ngom
    • 2
  • Oumar Niang
    • 2
  1. 1.LTISI-EPTUniverté de ThiesThiesSenegal
  2. 2.Laboratoire Traitement de l’Inforrmation et Systémes Intelligents (LTISI)Ecole Polytechnique de Thies (EPT)ThiesSenegal

Personalised recommendations