Skip to main content

An Efficient Heuristic for Pooled Repair Shop Designs

  • Conference paper
  • First Online:
  • 280 Accesses

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 966))

Abstract

An effective spare part supply system planning is essential to achieve a high capital asset availability. We investigate the design problem of a repair shop in a single echelon repairable multi-item spare parts supply system. The repair shop usually consists of several servers with different skill sets. Once a failure occurs in the system, the failed part is queued to be served by a suitable server that has the required skill. We model the repair shop as a collection of independent sub-systems, where each sub-system is responsible for repairing certain types of failed parts. The procedure of partitioning a repair shop into sub-systems is known as pooling, and the repair shop formed by the union of independent sub-systems is called a pooled repair shop. Identifying the best partition is a challenging combinatorial optimization problem. In this direction, we formulate the problem as a stochastic nonlinear integer programming model and propose a sequential solution heuristic to find the best-pooled design by considering inventory allocation and capacity level designation of the repair shop. We conduct numerical experiments to quantify the value of the pooled repair shop designs. Our analysis shows that pooled designs can yield cost reductions by 25% to 45% compared to full flexible and dedicated designs. The proposed heuristic also achieves a lower average total system cost than that generated by a Genetic Algorithm (GA)-based solution algorithm.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. IATA’s Maintenance Cost Task Force: Airline maintenance cost: executive commentary (2015). https://www.iata.org/whatwedo/workgroups/Documents/MCTF/AMC-Exec-Comment-FY14.pdf. Accessed 30 Aug 2017

  2. Keizer, M.C.O., Teunter, R.H., Veldman, J.: Clustering condition-based maintenance for systems with redundancy and economic dependencies. Eur. J. Oper. Res. 251(2), 531–540 (2016)

    MathSciNet  MATH  Google Scholar 

  3. López-Santana, E., Akhavan-Tabatabaei, R., Dieulle, L., Labadie, N., Medaglia, A.L.: On the combined maintenance and routing optimization problem. Reliab. Eng. Syst. Saf. 145, 199–214 (2016)

    Google Scholar 

  4. Duffuaa, S.O.: Mathematical models in maintenance planning and scheduling. In: Ben-Daya, M., Duffuaa, S.O., Raouf, A. (eds.) Maintenance, Modeling and Optimization, pp. 39–53. Springer, Boston (2000). https://doi.org/10.1007/978-1-4615-4329-9_2

    Google Scholar 

  5. Sherbrooke, C.C.: Metric: a multi-echelon technique for recoverable item control. Oper. Res. 16(1), 122–141 (1968)

    Google Scholar 

  6. Sherbrooke, C.C.: Optimal Inventory Modeling of Systems: Multi-echelon Techniques, vol. 72. Springer, New York (2004). https://doi.org/10.1007/b109856

    MATH  Google Scholar 

  7. Basten, R., Van Houtum, G.: System-oriented inventory models for spare parts. Surv. Oper. Res. Manag. Sci. 19(1), 34–55 (2014)

    MathSciNet  Google Scholar 

  8. Arts, J.: A multi-item approach to repairable stocking and expediting in a fluctuating demand environment. Eur. J. Oper. Res. 256(1), 102–115 (2017)

    MathSciNet  MATH  Google Scholar 

  9. Diaz, A., Fu, M.C.: Models for multi-echelon repairable item inventory systems with limited repair capacity. Eur. J. Oper. Res. 97(3), 480–492 (1997)

    MATH  Google Scholar 

  10. Rappold, J.A., Van Roo, B.D.: Designing multi-echelon service parts networks with finite repair capacity. Eur. J. Oper. Res. 199(3), 781–792 (2009)

    MathSciNet  MATH  Google Scholar 

  11. Sleptchenko, A., Van der Heijden, M., Van Harten, A.: Trade-off between inventory and repair capacity in spare part networks. J. Oper. Res. Soc. 54(3), 263–272 (2003)

    MATH  Google Scholar 

  12. Srivathsan, S., Viswanathan, S.: A queueing-based optimization model for planning inventory of repaired components in a service center. Comput. Ind. Eng. 106, 373–385 (2017)

    Google Scholar 

  13. Sleptchenko, A., Van der Heijden, M., Van Harten, A.: Effects of finite repair capacity in multi-echelon, multi-indenture service part supply systems. Int. J. Prod. Econ. 79(3), 209–230 (2002)

    Google Scholar 

  14. de Smidt-Destombes, K.S., van der Heijden, M.C., van Harten, A.: Joint optimisation of spare part inventory, maintenance frequency and repair capacity for k-out-of-n systems. Int. J. Prod. Econ. 118(1), 260–268 (2009)

    Google Scholar 

  15. de Smidt-Destombes, K.S., van der Heijden, M.C., van Harten, A.: Availability of k-out-of-n systems under block replacement sharing limited spares and repair capacity. Int. J. Prod. Econ. 107(2), 404–421 (2007)

    Google Scholar 

  16. de Smidt-Destombes, K.S., van der Heijden, M.C., Van Harten, A.: On the interaction between maintenance, spare part inventories and repair capacity for a k-out-of-n system with wear-out. Eur. J. Oper. Res. 174(1), 182–200 (2006)

    MATH  Google Scholar 

  17. de Smidt-Destombes, K.S., van der Heijden, M.C., van Harten, A.: On the availability of a k-out-of-n system given limited spares and repair capacity under a condition based maintenance strategy. Reliab. Eng. Syst. Saf. 83(3), 287–300 (2004)

    Google Scholar 

  18. Lau, H.C., Song, H.: Multi-echelon repairable item inventory system with limited repair capacity under nonstationary demands. Int. J. Inventory Res. 1(1), 67–92 (2008)

    Google Scholar 

  19. Yoon, H., Jung, S., Lee, S.: The effect analysis of multi-echelon inventory models considering demand rate uncertainty and limited maintenance capacity. Int. J. Oper. Res. 24(1), 38–58 (2015)

    MathSciNet  MATH  Google Scholar 

  20. Tracht, K., Funke, L., Schneider, D.: Varying repair capacity in a repairable item system. Procedia CIRP 17, 446–450 (2014)

    Google Scholar 

  21. Driessen, M.A., Rustenburg, J.W., van Houtum, G.J., Wiers, V.C.S.: Connecting inventory and repair shop control for repairable items. In: Zijm, H., Klumpp, M., Clausen, U., Hompel, M. (eds.) Logistics and Supply Chain Innovation, pp. 199–221. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-22288-2_12

    Google Scholar 

  22. Jordan, W.C., Graves, S.C.: Principles on the benefits of manufacturing process flexibility. Manage. Sci. 41(4), 577–594 (1995)

    MATH  Google Scholar 

  23. Jordan, W.C., Inman, R.R., Blumenfeld, D.E.: Chained cross-training of workers for robust performance. IIE Trans. 36(10), 953–967 (2004)

    MATH  Google Scholar 

  24. Bassamboo, A., Randhawa, R.S., Mieghem, J.A.V.: A little flexibility is all you need: on the asymptotic value of flexible capacity in parallel queuing systems. Oper. Res. 60(6), 1423–1435 (2012)

    MathSciNet  MATH  Google Scholar 

  25. Brusco, M.J., Johns, T.R.: Staffing a multiskilled workforce with varying levels of productivity: an analysis of cross-training policies*. Decis. Sci. 29(2), 499–515 (1998)

    Google Scholar 

  26. Brusco, M.J.: An exact algorithm for a workforce allocation problem with application to an analysis of cross-training policies. IIE Trans. 40(5), 495–508 (2008)

    Google Scholar 

  27. Chou, M.C., Chua, G.A., Teo, C.P., Zheng, H.: Design for process flexibility: efficiency of the long chain and sparse structure. Oper. Res. 58(1), 43–58 (2010)

    MathSciNet  MATH  Google Scholar 

  28. Pinker, E.J., Shumsky, R.A.: The efficiency-quality trade-off of cross-trained workers. Manuf. Serv. Oper. Manag. 2(1), 32–48 (2000)

    Google Scholar 

  29. Tsitsiklis, J.N., Xu, K., et al.: On the power of (even a little) resource pooling. Stoch. Syst. 2(1), 1–66 (2012)

    MathSciNet  MATH  Google Scholar 

  30. Andradóttir, S., Ayhan, H., Down, D.G.: Design principles for flexible systems. Prod. Oper. Manag. 22(5), 1144–1156 (2013)

    Google Scholar 

  31. Qin, R., Nembhard, D.A., Barnes II, W.L.: Workforce flexibility in operations management. Surv. Oper. Res. Manag. Sci. 20(1), 19–33 (2015)

    MathSciNet  Google Scholar 

  32. Hopp, W.J., Tekin, E., Van Oyen, M.P.: Benefits of skill chaining in serial production lines with cross-trained workers. Manage. Sci. 50(1), 83–98 (2004)

    Google Scholar 

  33. Liu, C., Yang, N., Li, W., Lian, J., Evans, S., Yin, Y.: Training and assignment of multi-skilled workers for implementing seru production systems. Int. J. Adv. Manuf. Technol. 69(5–8), 937–959 (2013)

    Google Scholar 

  34. Sayın, S., Karabatı, S.: Assigning cross-trained workers to departments: a two-stage optimization model to maximize utility and skill improvement. Eur. J. Oper. Res. 176(3), 1643–1658 (2007)

    MATH  Google Scholar 

  35. Hopp, W.J., Oyen, M.P.: Agile workforce evaluation: a framework for cross-training and coordination. IIE Trans. 36(10), 919–940 (2004)

    Google Scholar 

  36. Li, Q., Gong, J., Fung, R.Y., Tang, J.: Multi-objective optimal cross-training configuration models for an assembly cell using non-dominated sorting genetic algorithm-II. Int. J. Comput. Integr. Manuf. 25(11), 981–995 (2012)

    Google Scholar 

  37. Inman, R.R., Jordan, W.C., Blumenfeld, D.E.: Chained cross-training of assembly line workers. Int. J. Prod. Res. 42(10), 1899–1910 (2004)

    MATH  Google Scholar 

  38. Tiwari, M., Roy, D.: Application of an evolutionary fuzzy system for the estimation of workforce deployment and cross-training in an assembly environment. Int. J. Prod. Res. 40(18), 4651–4674 (2002)

    MATH  Google Scholar 

  39. Vairaktarakis, G., Winch, J.K.: Worker cross-training in paced assembly lines. Manuf. Serv. Oper. Manag. 1(2), 112–131 (1999)

    Google Scholar 

  40. Slomp, J., Bokhorst, J.A., Molleman, E.: Cross-training in a cellular manufacturing environment. Comput. Ind. Eng. 48(3), 609–624 (2005)

    Google Scholar 

  41. Iravani, S.M., Van Oyen, M.P., Sims, K.T.: Structural flexibility: a new perspective on the design of manufacturing and service operations. Manage. Sci. 51(2), 151–166 (2005)

    MATH  Google Scholar 

  42. Bokhorst, J.A., Slomp, J., Molleman, E.: Development and evaluation of cross-training policies for manufacturing teams. IIE Trans. 36(10), 969–984 (2004)

    Google Scholar 

  43. Schneider, M., Grahl, J., Francas, D., Vigo, D.: A problem-adjusted genetic algorithm for flexibility design. Int. J. Prod. Econ. 141(1), 56–65 (2013)

    Google Scholar 

  44. Wallace, R.B., Whitt, W.: A staffing algorithm for call centers with skill-based routing. Manuf. Serv. Oper. Manag. 7(4), 276–294 (2005)

    Google Scholar 

  45. Ahghari, M., Balcioĝlu, B.: Benefits of cross-training in a skill-based routing contact center with priority queues and impatient customers. IIE Trans. 41(6), 524–536 (2009)

    Google Scholar 

  46. Legros, B., Jouini, O., Dallery, Y.: A flexible architecture for call centers with skill-based routing. Int. J. Prod. Econ. 159, 192–207 (2015)

    Google Scholar 

  47. Tekin, E., Hopp, W.J., Van Oyen, M.P.: Pooling strategies for call center agent cross-training. IIE Trans. 41(6), 546–561 (2009)

    Google Scholar 

  48. Harper, P.R., Powell, N., Williams, J.E.: Modelling the size and skill-mix of hospital nursing teams. J. Oper. Res. Soc. 61(5), 768–779 (2010)

    MATH  Google Scholar 

  49. Li, L.L.X., King, B.E.: A healthcare staff decision model considering the effects of staff cross-training. Health Care Manag. Sci. 2(1), 53–61 (1999)

    Google Scholar 

  50. Simmons, D.: The effect of non-linear delay costs on workforce mix. J. Oper. Res. Soc. 64(11), 1622–1629 (2013)

    Google Scholar 

  51. Agnihothri, S.R., Mishra, A.K.: Cross-training decisions in field services with three job types and server-job mismatch. Decis. Sci. 35(2), 239–257 (2004)

    Google Scholar 

  52. Agnihothri, S., Mishra, A., Simmons, D.: Workforce cross-training decisions in field service systems with two job types. J. Oper. Res. Soc. 54, 410–418 (2003)

    MATH  Google Scholar 

  53. Colen, P., Lambrecht, M.: Cross-training policies in field services. Int. J. Prod. Econ. 138(1), 76–88 (2012)

    Google Scholar 

  54. Iravani, S.M., Krishnamurthy, V.: Workforce agility in repair and maintenance environments. Manuf. Serv. Oper. Manag. 9(2), 168–184 (2007)

    Google Scholar 

  55. De Bruecker, P., Van den Bergh, J., Beliën, J., Demeulemeester, E.: Workforce planning incorporating skills: state of the art. Eur. J. Oper. Res. 243(1), 1–16 (2015)

    MathSciNet  MATH  Google Scholar 

  56. Sleptchenko, A., Turan, H.H., Pokharel, S., ElMekkawy, T.Y.: Cross training policies for repair shops with spare part inventories. Int. J. Prod. Econ. (2018). https://doi.org/10.1016/j.ijpe.2017.12.018

  57. Turan, H.H., Pokharel, S., Sleptchenko, A., ElMekkawy, T.Y.: Integrated optimization for stock levels and cross-training schemes with simulation-based genetic algorithm. In: International Conference on Computational Science and Computational Intelligence, pp. 1158–1163 (2016)

    Google Scholar 

  58. Sleptchenko, A., Elmekkawy, T.Y., Turan, H.H., Pokharel, S.: Simulation based particle swarm optimization of cross-training policies in spare parts supply systems. In: The Ninth International Conference on Advanced Computational Intelligence (ICACI 2017), pp. 60–65 (2017)

    Google Scholar 

  59. Al-Khatib, M., Turan, H.H., Sleptchenko, A.: Optimal skill assignment with modular architecture in spare parts supply systems. In: 4th International Conference on Industrial Engineering and Applications (ICIEA), pp. 136–140. IEEE (2017)

    Google Scholar 

  60. Turan, H.H., Sleptchenko, A., Pokharel, S., ElMekkawy, T.Y.: A clustering-based repair shop design for repairable spare part supply systems. Comput. Ind. Eng. 125, 232–244 (2018)

    Google Scholar 

  61. Turan, H.H., Pokharel, S., Sleptchenko, A., ElMekkawy, T.Y., Al-Khatib, M.: A pooling strategy for flexible repair shop designs. In: Proceedings of the 7th International Conference on Operations Research and Enterprise Systems, pp. 272–278 (2018)

    Google Scholar 

  62. Van Harten, A., Sleptchenko, A.: On Markovian multi-class, multi-server queueing. Queueing Syst. 43(4), 307–328 (2003)

    MathSciNet  MATH  Google Scholar 

  63. Altiok, T.: On the phase-type approximations of general distributions. IIE Trans. 17(2), 110–116 (1985)

    Google Scholar 

  64. Van Der Heijden, M., Van Harten, A., Sleptchenko, A.: Approximations for Markovian multi-class queues with preemptive priorities. Oper. Res. Lett. 32(3), 273–282 (2004)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

This research was made possible by the NPRP award [NPRP 7-308-2-128] from the Qatar National Research Fund (a member of The Qatar Foundation). The statements made herein are solely the responsibility of the author[s].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaligram Pokharel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Turan, H.H., Pokharel, S., ElMekkawy, T.Y., Sleptchenko, A., Al-Khatib, M. (2019). An Efficient Heuristic for Pooled Repair Shop Designs. In: Parlier, G., Liberatore, F., Demange, M. (eds) Operations Research and Enterprise Systems. ICORES 2018. Communications in Computer and Information Science, vol 966. Springer, Cham. https://doi.org/10.1007/978-3-030-16035-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16035-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16034-0

  • Online ISBN: 978-3-030-16035-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics