Skip to main content

A Timer-Augmented Cost Function for Load Balanced DSMC

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11333))

Abstract

Due to a hard dependency between time steps, large-scale simulations of gas using the Direct Simulation Monte Carlo (DSMC) method proceed at the pace of the slowest processor. Scalability is therefore achievable only by ensuring that the work done each time step is as evenly apportioned among the processors as possible. Furthermore, as the simulated system evolves, the load shifts, and thus this load-balancing typically needs to be performed multiple times over the course of a simulation. Common methods generally use either crude performance models or processor-level timers. We combine both to create a timer-augmented cost function which both converges quickly and yields well-balanced processor decompositions. When compared to a particle-based performance model alone, our method achieves 2\(\times \) speedup at steady-state on up to 1024 processors for a test case consisting of a Mach 9 argon jet impacting a solid wall.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The names of the methods are our own labels for them.

References

  1. Berger, M.J., Bokhari, S.H.: A partitioning strategy for nonuniform problems on multiprocessors. IEEE Trans. Comput. 5, 570–580 (1987)

    Article  Google Scholar 

  2. Bird, G.A.: The DSMC Method. CreateSpace Independent Publishing Platform, Scotts Valley (2013)

    Google Scholar 

  3. Bird, G.A.: Molecular Gas Dynamics. NASA STI/Recon Technical Report A 76 (1976)

    Google Scholar 

  4. Boyd, I.D., Schwartzentruber, T.E.: Nonequilibrium Gas Dynamics and Molecular Simulation. Cambridge University Press, Cambridge (2017)

    Book  Google Scholar 

  5. Ivanov, M., Markelov, G., Taylor, S., Watts, J.: Parallel DSMC strategies for 3D computations. North-Holland, Amsterdam (1997). https://doi.org/10.1016/B978-044482327-4/50128-5, http://www.sciencedirect.com/science/article/pii/B9780444823274501285

  6. Jülich Supercomputing Centre: JURECA: general-purpose supercomputer at Jülich supercomputing centre. J. Large-Scale Res. Facil. 2(A62) (2016). https://doi.org/10.17815/jlsrf-2-121, http://dx.doi.org/10.17815/jlsrf-2-121

  7. Karniadakis, G.E., Beskok, A., Aluru, N.: Microflows and Nanoflows: Fundamentals and Simulation, vol. 29. Springer, New York (2006). https://doi.org/10.1007/0-387-28676-4

    Book  MATH  Google Scholar 

  8. McDoniel, W.J., Goldstein, D.B., Varghese, P.L., Trafton, L.M.: Three-dimensional simulation of gas and dust in Io’s Pele plume. Icarus 257, 251–274 (2015). https://doi.org/10.1016/j.icarus.2015.03.019. http://www.sciencedirect.com/science/article/pii/S0019103515001190

    Article  Google Scholar 

  9. McDoniel, W.J., Goldstein, D.B., Varghese, P.L., Trafton, L.M.: The interaction of Io’s plumes and sublimation atmosphere. Icarus 294, 81–97 (2017). https://doi.org/10.1016/j.icarus.2017.04.021. http://www.sciencedirect.com/science/article/pii/S0019103517303068

    Article  Google Scholar 

  10. Moss, J.N., Bird, G.A.: Direct simulation of transitional flow for hypersonic re-entry conditions. Therm. Desi. Aeroassisted Orbital Transf. Veh. 96, 338–360 (1985)

    Google Scholar 

  11. Nance, R.P., Wilmoth, R.G., Moon, B., Hassan, H., Saltz, J.: Parallel DSMC solution of three-dimensional flow over a finite flat plate. NASA Technical report (1994)

    Google Scholar 

  12. Olson, S.E., Christlieb, A.J., Fatemi, F.K.: PID feedback for load-balanced parallel gridless DSMC. Comput. Phys. Commun. 181(12), 2063–2071 (2010). https://doi.org/10.1016/j.cpc.2010.06.045. http://www.sciencedirect.com/science/article/pii/S0010465510002985

    Article  MATH  Google Scholar 

  13. Taylor, S., Watts, J.R., Rieffel, M.A., Palmer, M.E.: The concurrent graph: basic technology for irregular problems. IEEE Parallel Distrib. Technol.: Syst. Appl. 4(2), 15–25 (1996)

    Article  Google Scholar 

  14. Weinberg, M.D.: Direct simulation monte carlo for astrophysical flows-II. Ram-pressure dynamics. Mon. Not. R. Astron. Soc. 438(4), 3007–3023 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William McDoniel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

McDoniel, W., Bientinesi, P. (2019). A Timer-Augmented Cost Function for Load Balanced DSMC. In: Senger, H., et al. High Performance Computing for Computational Science – VECPAR 2018. VECPAR 2018. Lecture Notes in Computer Science(), vol 11333. Springer, Cham. https://doi.org/10.1007/978-3-030-15996-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-15996-2_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-15995-5

  • Online ISBN: 978-3-030-15996-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics