Skip to main content

Phanerozoic Mass Extinctions and Indian Stratigraphic Records

  • Chapter
  • First Online:
Geodynamics of the Indian Plate

Part of the book series: Springer Geology ((SPRINGERGEOL))

  • 1643 Accesses

  • 1 Citation

Abstract

The paper discusses important changes in faunal and floral diversity during the Phanerozoic Eon. These are represented by the ‘big five’ mass extinctions, viz. end-Ordovician, Frasnian-Famennian boundary of the Devonian Period, Permian-Triassic boundary, Triassic-Jurassic boundary, and the Cretaceous-Palaeogene boundary. Major biological and geological events and geochemical anomalies associated with these mass extinction boundaries and potential causes for the extinctions such as bolide impact, volcanism, sea level changes, ocean anoxia, and methane hydrate release are discussed in detail. Though the causes for these mass extinction events are still being debated, wider acceptance for glaciation-related climatic changes at the end of the Ordovician and climatic perturbation with ocean anoxia at the end of Devonian exists. The remaining three mass extinctions, i.e., at the end of Permian, end of Triassic, and end of Cretaceous coincide with volcanic eruptions of large igneous provinces. The end Cretaceous extinction also coincides with the impact of an asteroid at Chicxulub in Mexico. In recent years, the eruption of Siberian Traps of Russia and related climatic perturbations were considered as the major cause for the Permian-Triassic boundary extinction. Likewise, the eruption of the Central Atlantic Magmatic Province was linked to the Triassic-Jurassic boundary mass extinction. The Deccan volcanism and bolide impact at Chicxulub, may have equally contributed to the demise of a large number of species at the end of Cretaceous. The Indian stratigraphic record for these mass extinction events is poorly documented for the end-Ordovician, end-Devonian, and end-Triassic events. The best studied section for the Permian-Triassic boundary is the Guryul Ravine section in Jammu and Kashmir where the transition from the Permian to Triassic is well preserved and the boundary is precisely delineated based on conodonts, negative δ13C isotope excursion, geochemical signatures, and change in depositional environments. Although extensive work has been carried out on the Cretaceous-Palaeogene boundary sections in the Deccan volcanic province, no precisely delineated boundary clay horizon has been demarcated so far. All the outcrop sections of the Deccan intertrappean sections preserve either Maastrichtian part of the Cretaceous or Early Palaeocene P1a or P1b zones. The subsurface ONGC well sections also reveal K/Pg boundary transition but no precise boundary layer. However, the marine K/Pg boundary section of Um Sohryngkew River preserves the K/Pg boundary layer as attested by the faunal changes and iridium anomaly.

There are millions of different species of animals and plants on earth—possibly as many as forty million. But somewhere between five and fifty billion species have existed at one time or another. Thus, only about one in a thousand species is still alive—a truly lousy survival record: 99.9% failure!

David Raup

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abramovich S, Keller G (2003) Planktic foraminiferal response to latest Maastrichtian abrupt warm event: a case study from mid-latitude DSDP Site 525. Mar Micropaleontol 48:225–249

    Article  Google Scholar 

  • Acharyya SK, Lahiri TC (1991) Cretaceous palaeogeography of the Indian subcontinent: a review. Cretac Res 12:3–26

    Article  Google Scholar 

  • Aldridge RJ, Smith MP (1993) Conodonta. In: Benton MJ (ed) The fossil record, vol 2. Chapman & Hall, London, pp 563–572

    Google Scholar 

  • Algeo TJ, Scheckler SE (1998) Terrestrial–marine teleconnections in the Devonian: links between the evolution of land plants, weathering processes, and marine anoxic events. Philos Trans R Soc B Biol Sci 353:113–128

    Article  Google Scholar 

  • Algeo TJ, Scheckler SE (2010) Land plant evolution and weathering rate changes in the Devonian. J Earth Sci 21:75–78

    Article  Google Scholar 

  • Algeo TJ, Chen ZQ, Fraiser ML, Twitchett RJ (2011) Terrestrial–marine teleconnections in the collapse and rebuilding of Early Triassic marine ecosystems. Palaeogeography, Palaeoclimatology, Palaeoecology 308(1–2):1–11

    Google Scholar 

  • Algeo TJ, Hannigan R, Rowe H, Brookfield M, Baud A, Krystyn L, Ellwood BB (2007) Sequencing events across the Permian-Triassic boundary, Guryul Ravine (Kashmir, India). Palaeogeogr Palaeoclimatol Palaeoecol 252(1–2):328–346

    Article  Google Scholar 

  • Algeo TJ, Marenco PJ, Saltzman MR (2016) Co-evolution of oceans, climate, and the biosphere during the ‘Ordovician Revolution’: a review. Palaeogeogr Palaeoclimatol Palaeoecol 458:1–11

    Article  Google Scholar 

  • Alroy J (2010) Fair sampling of taxonomic richness and unbiased estimation of origination and extinction rates. In: Alroy J, Hunt G (eds) Quantitative methods in paleobiology, vol 16. The Paleontological Society, Knoxville, TN, pp 55–80

    Google Scholar 

  • Alroy J et al (2008) Phanerozoic trends in the global diversity of marine invertebrates. Science 321:97–100

    Article  Google Scholar 

  • Alvarez LW, Alvarez W, Asaro F, Michel HV (1980) Extraterrestrial cause for the Cretaceous-Tertiary extinctions. Science 208:1095–1108

    Article  Google Scholar 

  • Ameta SS, Gaur RK (1980) New fossil find from the Muth Quartzite, Lahaul and Spiti district, Himachal Pradesh, India. Bull Indian Geologists Assoc 13(1):73–76

    Google Scholar 

  • Archibald JD (1996) Dinosaur extinction and the end of an era: what the fossils say. Columbia University Press, New York. 240p

    Google Scholar 

  • Archibald JD, Clemens WA, Padian K, Rowe T, MacLeod N, Barrett PM, Gale A, Holroyd P, Sues HD, Arens NC, Horner JR, Wilson GP, Goodwin MB, Brochu CA, Lofgren DL (2010) Cretaceous extinctions: multiple causes. Science 328:973

    Article  Google Scholar 

  • Averbuch O, Tribovillard N, Devleeschouwer X, Riquier L, Mistiaen B, Van Vliet-Lanoe B (2005) Mountain building-enhanced continental weathering and organic carbon burial as major causes for climatic cooling at the Frasnian–Famennian boundary (c. 376 Ma)? Terra Nova 17:25–34

    Article  Google Scholar 

  • Bajpai S (1996) Iridium anomaly in Anjar intertrappean beds and the K/T boundary. Mem Geol Soc India 31:313–319

    Google Scholar 

  • Bajpai S, Prasad GVR (2000) Cretaceous age for Ir-rich Deccan intertrappean deposits: palaeontological evidence from Anjar, western India. J Geol Soc Lond 157:257–260

    Article  Google Scholar 

  • Baksi AK (2005) Comment on “40Ar/39Ar dating of the Rajahmundry Traps, eastern India and their relations to the Deccan Traps” by Knight et al. (2003) [Earth Planet Sci Lett 208:85–99]. Earth Planet Sci Lett 239:368–373

    Article  Google Scholar 

  • Baksi AK, Byerly GR, Chan L, Farrar E (1994) Intracanyon flows in the Deccan province, India? Case history of the Rajahmundry Traps. Geology 22:605–608

    Article  Google Scholar 

  • Bambach RK, Knoll AH, Wang SC (2004) Origination, extinction, and mass depletions of marine diversity. Paleobiology 30:522–542

    Article  Google Scholar 

  • Banerjee J (1997) Floral changes across the Permian-Triassic Boundary in Damodar in Auranga valleys. Palaeobotanist 46(12):97–100

    Google Scholar 

  • Banerji J, Bose MN (1977) Some Lower Triassic plant remains from Asansol region. India Palaeobotanist 24:202–210

    Google Scholar 

  • Bardet N (1994) Extinction events among Mesozoic marine reptiles. Hist Biol 7:313–324

    Article  Google Scholar 

  • Barnes CR, Zhang S (1999) Pattern of conodont extinction and recovery across the Ordovician-Silurian boundary interval. Acta Univ Carol Geol 43:211–212

    Google Scholar 

  • Bassi UK (1988) Orthis aff. rustica from the Devonian quartzarenite of the Muth Formation, Khimku La (Kinnaur), Himachal Himalaya. Curr Sci 37(6):329–331

    Google Scholar 

  • Baud A, Holser WT, Magaritz M (1989) Permian–Triassic of the Tethys: carbon isotope studies. Geol Rundsch 78:649–677

    Article  Google Scholar 

  • Becker RT, House MR (1994) International Devonian goniatite zonation, Emsian to Givetian, with new records from Morocco. Cour Forschungsinst Senck 169:79e135

    Google Scholar 

  • Becker L, Poreda RJ, Hunt AG, Bunch TE, Rampino M (2001) Impact event at the Permian-Triassic boundary: evidence from extraterrestrial noble gases in fullerenes. Science 291:1530–1533

    Article  Google Scholar 

  • Becker L, Poreda RJ, Basu AR, Pope KO, Harrison TM, Nicholson C, Iasky R (2004) Bedout: a possible end-Permian impact crater offshore of northwestern Australia. Science 304(5676):1469–1476

    Article  Google Scholar 

  • Becker RT, Gradstein FM, Hammer O (2012) The Devonian period. In: Gradstein FM, Ogg J, Schmitz M, Ogg G (eds) The geologic time scale 2012. Elsevier, Oxford, UK, pp 559–601

    Chapter  Google Scholar 

  • Benton MJ (1991) What really happened in the Late Triassic? Hist Biol 5:263–278

    Article  Google Scholar 

  • Benton MJ (1995) Diversification and extinction in the history of life. Science 268:52–58

    Article  Google Scholar 

  • Benton MJ, Twitchett RJ (2003) How to kill (almost) all life: the end-Permian extinction Event. Trends Ecol Evol 18:358–365

    Article  Google Scholar 

  • Benton MJ, Tverdokhlebov VP, Surkov MV (2004) Ecosystem remodelling among vertebrates at the Permian–Triassic boundary in Russian. Nature 432:97–100

    Article  Google Scholar 

  • Bhandari N, Shukla PN, Pandey J (1987) Iridium enrichment at Cretaceous/Tertiary boundary in Meghalaya. Curr Sci 56(19):1003–1005

    Google Scholar 

  • Bhandari N, Shukla PN, Azmi RJ (1992) Positive Europium anomaly at the Permo-Triassic Boundary, Spiti, India. Geophys Res Lett 19:1531–1534

    Article  Google Scholar 

  • Bhandari N, Shukla PN, Castognoli CG (1993) Geochemistry of some K/T sections in India. Palaeogeogr Palaeoclimatol Palaeoecol 104:199–211

    Article  Google Scholar 

  • Bhandari N, Gupta M, Pandey J, Shukla PN (1994) Chemical profiles in K/T boundary section of Meghalaya, India: cometary, asteroidal or volcanic. Chem Geol 113:45–60

    Article  Google Scholar 

  • Bhandari N, Shukla PN, Ghevariya ZG, Sundaram SM (1995) Impact did not trigger Deccan Volcanism: evidence from Anjar K-T boundary intertrappean sediments. Geophys Res Lett 22:433–436

    Article  Google Scholar 

  • Bhandari N, Shukla PN, Ghevariya ZG, Sundaram SM (1996) K-T boundary layer in Deccan intertrappeans at Anjar, Kutch. In: Ryder G, Fastovsky D, Gartner S (eds) The cretaceous–tertiary event and other catastrophes in earth history, Geological Society of America, Special Paper, vol 307. Geological Society of America, Boulder, CO, pp 417–424

    Google Scholar 

  • Bhargava ON (1997) Geological account of the Tethyan rocks in the Spiti Valley: their comparison with Tethyan successions in other parts of the Himalaya. Wadia Institute of Himalayan Geology, Dehra Dun

    Google Scholar 

  • Bhargava ON (2008) An updated introduction to the Spiti geology. J Palaeontol Soc India 53(2):113–129

    Google Scholar 

  • Bhargava ON, Bassi UK (1998) Geology of Spiti-Kinnaur, Himachal Himalaya. Mem Geol Surv India 124:210

    Google Scholar 

  • Bhatt DK, Arora RK (1984) Otoceras bed of Himalaya and Permian-Triassic boundary - assessment and elucidation with conodont data. J Geol Soc India 25:720–727

    Google Scholar 

  • Black BA, Elkins-Tanton LT, Rowe MC, Ukstins-Peate I (2012) Magnitude and consequences of volatile release from the Siberian Traps. Earth Planet Sci Lett 317–318:363–373

    Article  Google Scholar 

  • Blackburn TJ, Olsen PE, Bowring SA, McLean NM, Kent DV, Puffer J, McHone G, Rasbury ET, Et-Touhami M (2013) Zircon U-Pb geochronology links the end-Triassic extinction with the Central Atlantic Magmatic Province. Science 340:941–945

    Article  Google Scholar 

  • Bond DPG, Grasby SE (2017) On the causes of mass extinctions. Palaeogeogr Palaeoclimatol Palaeoecol 478:3–29

    Article  Google Scholar 

  • Bond DPG, Wignall PB (2008) The role of sea-level change and marine anoxia in the Frasnian-Famennian (Late Devonian) mass extinction. Palaeogeogr Palaeoclimatol Palaeoecol 263:107–118

    Article  Google Scholar 

  • Bowring SA, Erwin DH, Jin YG, Martin MW, Davidek K, Wang W (1998) U/Pb zircon geochronology and tempo of the end-Permian mass extinction. Science 1998(280):1039–1045

    Article  Google Scholar 

  • Brand U (1989) Global climatic changes during the Devonian-Mississippian: stable isotope biogeochemistry of brachiopods. Palaeogeogr Palaeoclimatol Palaeoecol 75:311–329

    Article  Google Scholar 

  • Brenchley PJ, Marshall JD, Underwood CJ (2001) Do all mass extinctions represent an evolution crisis? Evidence from the Late Ordovician. Geol J 36(3–4):329–340

    Article  Google Scholar 

  • Brookfield ME, Twitchett RJ, Goodings C (2003) Palaeoenvironments of the Permian–Triassic transition sections in Kashmir, India. Palaeogeogr Palaeoclimatol Palaeoecol 198:353–371

    Article  Google Scholar 

  • Brookfield ME, Shellnutt JG, Qi L, Hannigan R, Bhat GM, Wignall PB (2010) Platinum element group variations at the Permo-Triassic boundary in Kashmir and British Columbia and their significance. Chem Geol 272:12–19

    Article  Google Scholar 

  • Brookfield ME, Algeo TJ, Hannigan R, Williams J, Bhat GM (2013) Shaken and stirred: seismites and tsunamites at the Permian-Triassic boundary, Guryul Ravine, Kashmir, India. PALAIOS 28:568–582

    Article  Google Scholar 

  • Cappetta H, Duffin C, Zidek J (1993) Chondrichthyes. In: Benton MJ (ed) The fossil record 2. Chapman & Hall, London, pp 593–609

    Google Scholar 

  • Chatterjee S, Scotese CR, Bajpai S (2017) The restless Indian plate and its epic voyage from Gondwana to Asia: its tectonic, paleoclimatic, and paleobiogeographic evolution, Geological Society of America, Special Paper, vol 529. Geological Society of America, Boulder, CO, pp 1–147

    Google Scholar 

  • Chen ZQ, Benton MJ (2012) The timing and pattern of biotic recovery following the end-Permian mass extinction. Nat Geosci 5:375–383

    Article  Google Scholar 

  • Chen D, Qing H, Li R (2005) The Late Devonian Frasnian–Famennian (F/F) biotic crisis: insights from d13Ccarb, d13Corg and 87Sr/86Sr isotopic systematics. Earth Planet Sci Lett 235(1–2):151–166

    Article  Google Scholar 

  • Chenet AL, Quidelleur X, Fluteau F, Courtillot V (2007) 40K/40Ar dating of the main Deccan large igneous province: further evidence of KTB age and short duration. Earth Planet Sci Lett 263:1–15

    Article  Google Scholar 

  • Chiappe LM (1995) The first 85 million years of avian evolution. Nature 378:349–355

    Article  Google Scholar 

  • Christie M, Holland SM, Bush AM (2013) Contrasting the ecological and taxonomic consequences of extinction. Paleobiology 39(4):538–559

    Google Scholar 

  • Claeys P, Casier LG (1994) Microtektite-like impact glass associated with the Frasnian-Famennian boundary mass extinction. Earth and Planetary Science Letters 122(3–4):303–315

    Google Scholar 

  • Cooper A (1994) Calibration of mitochondrial 12s rDNA sequences indicate many modern avian orders survived the K–T boundary impact. Geological Society of America, Abstracts with Programs, 26, A–395

    Google Scholar 

  • Copeland MJ (1981) Latest Ordovician and Silurian ostracode faunas from Anticosti Island Québec. See Lespérance 1981:185–195

    Google Scholar 

  • Copper P (1986) Frasnian/Famennian mass extinction and cold-water oceans. Geology 14:835–839

    Article  Google Scholar 

  • Copper P (2002) Reef development at the Frasnian-Famennian mass extinction boundary. Palaeogeogr Palaeoclimatol Palaeoecol 181:27–66

    Article  Google Scholar 

  • Courtillot V (1990) Deccan volcanism at the Cretaceous–Tertiary boundary: past climatic crises as a key to the future? Palaeogeogr Palaeoclimatol Palaeoecol 189:291–299

    Article  Google Scholar 

  • Courtillot V, Besse J, Vandamme D, Montigny R, Jaeger JJ, Cappetta H (1986) Deccan flood basalts at the Cretaceous/Tertiary boundary. Earth Planet Sci Lett 80(3–4):361–374

    Article  Google Scholar 

  • Courtillot V, Feraud G, Maluski H, Vandamme D, Moreau MG, Besse J (1988) Deccan flood basalts and the Cretaceous/Tertiary boundary. Nature 333(6176):843–846

    Article  Google Scholar 

  • Courtillot V, Kravchinsky VA, Quidelleur X, Renne PR, Gladkochub DP (2010) Preliminary dating of the Viluy Traps (eastern Siberia): eruption at the time of Late Devonian extinction events? Earth Planet Sci Lett 300:239–245

    Article  Google Scholar 

  • Cripps JA, Widdowson M, Spicer RA, Jolley DW (2005) Coastal ecosystem responses to late stage Deccan Trap volcanism: the post-K-boundary (Danian) palynofacies of Mumbai (Bombay), west India. Palaeogeogr Palaeoclimatol Palaeoecol 216:303–332

    Article  Google Scholar 

  • Cuny G (1995) French vertebrate faunas and the Triassic–Jurassic boundary. Palaeogeogr Palaeoclimatol Palaeoecol 119:343–358

    Article  Google Scholar 

  • Dal Corso J, Marzoli A, Tateo F, Jenkyns HC, Bertrand H, Youbi N, Mahmoudi A, Font E, Buratti N, Cirilli S (2014) The dawn of CAMP volcanism and its bearing on the end-Triassic carbon cycle disruption. J Geol Soc Lond 171:153–164

    Article  Google Scholar 

  • Davies JHFL, Marzoli A, Bertrand N, Youbi M, Ernesto M, Schaltegger U (2017) End-Triassic mass extinction started by intrusive CAMP activity. Nat Commun 8:15596

    Article  Google Scholar 

  • De Vleeschouwer D, Crucifix M, Bounceur N, Claeys P (2014) The impact of astronomical forcing on the Late Devonian greenhouse climate. Glob Planet Chang 120:65–80

    Article  Google Scholar 

  • Dickins JM, Zunyi Y, Hongfu Y, Lucas SG, Acharyya SK (1997) Late Palaeozoic and Early Mesozoic circum-Pacific events and their global correlation. Cambridge University Press, Cambridge. 245p

    Book  Google Scholar 

  • Dogra NN, Singh RY, Singh YR (2004) Palynological assemblage from the Anjar intertrappeans, Kutch district, Gujarat: age implications. Curr Sci 86(12):1596–1597

    Google Scholar 

  • Doyle P, Donovan DT, Nixon M (1994) Phylogeny and systematics of the Coleoidea. Univ Kansas Paleontol Contrib 5:1–15

    Google Scholar 

  • Draganits E, Brady SJ, Briggs DEG (2001) A Gondwana Coastal Arthropod Ichnofauna from the Muth formation (Lower Devonian), Northern India: paleoenvironment and tracemaker behaviour. PALAIOS 16:126–147

    Article  Google Scholar 

  • Draganits E, Mawson R, Talent J, Krystyn L (2002) Lithostratigraphy, conodont biostratigraphy and depositional environment of the Middle Devonian (Givetian) to Early Carboniferous (Tournaisian) Lipak formation in the Pin Valley (NW India). Riv Ital Paleontol Stratigraph 108(1):7–35

    Google Scholar 

  • Ebert J (1993) Globale events im Grenz–Bereich Mittel–/Ober–Devon (No. 59). Im Selbstverlag der Geologischen Institute der Georg August Universität Göttingen, Göttingen

    Google Scholar 

  • Elliot DH, Askin RA, Kyte FT, Zinsmeister WJ (1994) Iridium and dinocysts at the Cretaceous–Tertiary boundary on Seymour Island, Antarctica: implications for the K–T event. Geology 22:347–355

    Article  Google Scholar 

  • Ernst RE (2014) Large Igneous Provinces. Cambridge University Press, Cambridge, p 653

    Book  Google Scholar 

  • Ernst RE, Youbi N (2017) How Large Igneous Provinces affect global climate, sometimes cause mass extinctions, and represent natural markers in the geological record. Palaeogeogr Palaeoclimatol Palaeoecol 478:30–52

    Article  Google Scholar 

  • Erwin DH (1993) The great Paleozoic crisis: life and death in the Permian. Columbia University Press, New York, p 327

    Google Scholar 

  • Erwin DH (1994) The Permo-Triassic extinction. Nature 367:231–236

    Article  Google Scholar 

  • Eshet Y, Rampino MR, Visscher H (1995) Fungal event and palynological record of ecological crisis and recovery across the Permian–Triassic boundary. Geology 23:967–970

    Article  Google Scholar 

  • Fan JX, Peng PA, Melchin MJ (2009) Carbon isotopes and event stratigraphy near the Ordovician–Silurian boundary, Yichang, South China. Palaeogeogr Palaeoclimatol Palaeoecol 276:160–169

    Article  Google Scholar 

  • Fantasia A, Adatte T, Spangenberg JE, Font E (2016) Palaeoenvironmental changes associated with Deccan volcanism, examples from terrestrial deposits from Central India. Palaeogeogr Palaeoclimatol Palaeoecol 441(1):165–180

    Article  Google Scholar 

  • Farley KA, Mukhopadhyay S (2001) An extraterrestrial impact at the Permian-Triassic boundary? Comment Sci 293:2343

    Article  Google Scholar 

  • Farley KA, Ward P, Garrison G, Mukhopadhyay S (2005) Absence of extraterrestrial 3He in Permian-Triassic age sedimentary rocks. Earth Planet Sci Lett 240:265–275

    Article  Google Scholar 

  • Feistmantel O (1881) The fossil flora of the Gondwana System 3(2–3). The flora of the Damuda and Panchet divisions. Mem Geol Surv India Palaeontol Indica 3(2):1–49

    Google Scholar 

  • Feng Q, He W, Gu S, Meng Y, Jin Y, Zhang F (2007) Radiolarian evolution during the latest Permian in South China. Glob Planet Chang 55:177–292

    Article  Google Scholar 

  • Flügel E (2002) Triassic reef patterns. Soc Sediment Geol Spec Publ 72:391–464

    Google Scholar 

  • Font E, Adatte T, Sial AN, de Lacerda LD, Keller G, Punekar J (2016) Mercury anomaly, Deccan volcanism, and the end-Cretaceous mass extinction. Geology 44(2):171–174

    Article  Google Scholar 

  • Fortey RA (1989) There are extinctions and extinctions: examples from the Lower Palaeozoic. Philos Trans R Soc Lond B Biol Sci 325:327–355

    Article  Google Scholar 

  • Foster CB, Stephenson MH, Marshall C, Logan GA, Greenwood PF (2002) A revision of Reduviasporonites Wilson 1962: description, illustration, comparison and biological affinities. Palynology 26:35–58

    Article  Google Scholar 

  • Gaffney ES, Chatterjee S, Rudra DK (2001) Kurmademys, a new side-necked turtle (Pelomedusoides: Bothremydidae) from the Late Cretaceous of India. Am Mus Novit 3321:1–16

    Article  Google Scholar 

  • Gansser A (1964) Geology of the Himalayas. Interscience Publications, London, p 289

    Google Scholar 

  • Garg R, Khowaja-Ateequzzaman, Prasad V (2006) Significant dinoflagellate cyst biohorizons in the Upper Cretaceous-Palaeocene succession in the Khasi Hills, Meghalaya. J Geol Soc India 67:737–747

    Google Scholar 

  • Garzanti E (1993) Himalayan ironstones, “superplumes,” and the breakup of Gondwana. Geology 21(2):105–108

    Article  Google Scholar 

  • Garzanti E, Angiolini L, Brunton H, Sciunnach D, Balini M (1998) The bashkirian fenestella shales and the moscovian chaetetid shales of the Tethys Himalaya: south Tibet, Nepal and India. J Asian Earth Sci 16:119–141

    Article  Google Scholar 

  • Gautam S, Awtar R, Tewari R, Goswami S (2016) Permian-Triassic palynofloral transition in Sohagpur Coalfield, South Rewa Gondwana Basin, Madhya Pradesh, India. Palaeobotanist 65(1):109–129

    Google Scholar 

  • Geldsetzer HHJ, Goodfellow WD, McLaren DJ (1993) The Frasnian-Famennian extinction event in a stable cratonic shelf setting: Trout River, NWT, Canada. Palaeogeogr Palaeoclimatol Palaeoecol 104:81–95

    Article  Google Scholar 

  • Gertsch B, Keller G, Adatte T, Garg R, Prasad V, Fleitmann D, Berner Z (2011) Environmental effects of Deccan volvanism across the Cretaceous-Tertiary transition in Meghalaya, India. Earth Planet Sci Lett 310:272–285

    Article  Google Scholar 

  • Ghevariya ZG (1988) Intertrappean dinosaurian fossils from Anjar area, Kachchh district, Gujarat. Curr Sci 57:248–251

    Google Scholar 

  • Ghosh SC, Nandi A, Ahmed G (1994) Study of Permo-Triassic boundary in Gondwana sequence of Raniganj basin, India. Ninth International Gondwana Symposium, Hyderabad, India, pp 179193

    Google Scholar 

  • Ghosh P, Bhattacharya SK, Shukla AD, Shukla PN, Bhandari N, Parthasarathy G, Kunwar AC (2002) Negative d13C excursion and anoxia at the Permo-Triassic boundary in the Tethys Sea. Curr Sci 83(4):498–502

    Google Scholar 

  • Girard C, Klapper G, Feist R (2005) Subdivision of the terminal Frasnian linguiformis conodont Zone, revision of the correlative interval of Montagne Noire Zone 13, and discussion of stratigraphically significant associated trilobites. In: Over DJ, Morrow JR, Wignall PB (eds) Understanding Late Devonian and Permian-Triassic biotic and climatic events: towards an integrated approach, Developments in palaeontology & stratigraphy, vol 20. Elsevier, Amsterdam, pp 181–198

    Google Scholar 

  • Glasby GP, Kunzendorf H (1996) Multiple factors in the origin of the Cretaceous/Tertiary boundary; the role of environmental stress and Deccan Trap volcanism. Geol Rundsch 85:191–210

    Article  Google Scholar 

  • Goel RK, Kato M, Jain AK, Srivastava SS (1987a) Fauna from the “Muth Quartzite”, Garhwal Himalaya, India. J Fac Sci Hokkaido Univ 22(2):247–257

    Google Scholar 

  • Goel RK, Srivastava SS, Verma RM (1987b) First record of indubitable Conodonts from Ordovician of Spiti and Garhwal Himalaya. Proceedings Sixth IGC, Roorkee, India, pp 183186

    Google Scholar 

  • Goin FJ, Pascual R, Tejedor MF, Gelfo JN, Woodburne MO, Case JA, Reguero MA, Bond M, López GM, Cione AL, Sauthier DU (2006) The earliest Tertiary Therian mammal from South America. J Vertebr Paleontol 26(2):505–510

    Article  Google Scholar 

  • Goswami A, Prasad GVR, Verma O, Flynn JJ, Benson RBJ (2013) A troodontid dinosaur from the latest Cretaceous of India. Nat Commun 4:1703

    Article  Google Scholar 

  • Gradstein FM, Ogg JG, Schmitz M, Ogg G (2012) The geologic time scale 2012. Elsevier, Amsterdam

    Google Scholar 

  • Grieve RAF (1991) Terrestrial impact: the record in the rocks. Meteoritics 26:175–194

    Article  Google Scholar 

  • Groves JR, Altiner D (2005) Survival and recovery of calcareous foraminifera pursuant to the end-Permian mass extinction. Comptes Rendus Palevol 4:419–432

    Article  Google Scholar 

  • Hallam A (1987) End-Cretaceous mass extinction event: argument for terrestrial causation. Science 238:1237–1242

    Article  Google Scholar 

  • Hallam A, Wignall PB (1997) Mass extinctions and their aftermath. Oxford University Press, Oxford

    Google Scholar 

  • Hallam A, Wignall PB (2004) Discussion on sea-level change and facies development across potential Triassic–Jurassic boundary horizons, SW Britain. J Geol Soc Lond 161:1053–1056

    Article  Google Scholar 

  • Halliday TJD, Cuff AR, Prasad GVR, Thanglemmoi MS, Goswami A (2016) New record of Egertonia (Elopiformes, Phyllodontidae) from the Late Cretaceous of South India. Pap Palaeontol 2:287–294

    Article  Google Scholar 

  • Hammarlund EU, Dahl TW, Harper DAT, Bond DPG, Nielsen AT, Bjerrum CJ, Schovsbo NH, Schönlaub HP, Zalasiewicz JA, Canfield DE (2012) A sulfidic driver for the end-Ordovician mass extinction. Earth Planet Sci Lett 331:128–139

    Article  Google Scholar 

  • Hansen HJ, Mohabey DM, Toft P (2001) No K/T boundary at Anjar, Gujarat, India: evidence from magnetic susceptibility and carbon isotopes. J Earth Syst Sci 110(2):133–142

    Article  Google Scholar 

  • Harper DAT, Hammarlund EU, Rasmussen CMØ (2014) End Ordovician extinctions: a coincidence of causes. Gondwana Res 25:1294–1307

    Article  Google Scholar 

  • Harwood DM (1988) Upper Cretaceous and Lower Paleocene diatom and silicoflagellate biostratigraphy of Seymour Island, Eastern Antarctic Peninsula. In: Feldmann RM, Woodburne MO (eds) Geology and paleontology of Seymour Island, Antarctic Peninsula, Geological Society of America Memoirs, vol 169. Geological Society of America, Boulder, CO, pp 55–129

    Chapter  Google Scholar 

  • Heim A, Gansser A (1939) Central Himalaya, geological observations of the Swiss expedition. Gebruder Fretz, 1939, vol 73(1). Hindustan Publishing Corporation (India), Delhi, p 245

    Google Scholar 

  • Herrmann AD, Patzkowsky ME (2002) Modeling the response of the Late Ordovician climate system to different forcing factors. Astrobiology 2:560–561

    Article  Google Scholar 

  • Hildebrand AR, Penfield GT, Kring DA, Pilkington M, Camargo A, Jacobsen SB, Boynton WV (1991) Chicxulub crater – a possible Cretaceous Tertiary boundary impact crater on the Yucatan Peninsular, Mexico. Geology 19:867–871

    Article  Google Scholar 

  • Hillebrandt AV, Krystyn L, Kürschner WM, Bonis NR, Ruhl M, Richoz S, Schobben MAN, Urlichs M, Bown PR, Kment K, McRoberts CA, Simms M, Tomãsových A (2013) The Global Stratotype Sections and Point (GSSP) for the base of the Jurassic System at Kuhjoch (Karwendel Mountains, Northern Calcareous Alps, Tyrol, Austria). Episodes 36:162–198

    Article  Google Scholar 

  • Hochuli PA, Hermann E, Vigran JO, Bucher H, Weissert H (2010) Rapid demise and recovery of plant ecosystems across the end-Permian extinction event. Glob Planet Chang 74:144–155

    Article  Google Scholar 

  • Hodych JP, Dunning GR (1992) Did the Manicouagan impact trigger end-of-Triassic mass extinction? Geology 20:51–54

    Article  Google Scholar 

  • Hollis CJ (1993) Latest Cretaceous to Late Paleocene radiolarian biostratigraphy: a New zonation from the New Zealand region. Mar Micropaleontol 21:295–327

    Article  Google Scholar 

  • Holser WT, Schönlaub HP, Boeckelmann K, Magaritz M, Orth CJ (1991) The Permian–Triassic of the Gartnerkofel-1 core (Carnic Alps, Austria): synthesis and conclusions. Abh Geologische Bundesanst 45:213–232

    Google Scholar 

  • Hongfu Y, Kexin Z, Jinnan T, Zunyi Y, Sunbao W (2001) The global stratotype section and point (GSSP) of the Permian–Triassic boundary. Episodes 24:102–114

    Article  Google Scholar 

  • Isozaki Y (2001) An extraterrestrial impact at the Permian–Triassic boundary? Science 293:23–43

    Google Scholar 

  • Isozaki Y (2009) Integrated “plume winter” scenario for the double-phased extinction during the Paleozoic–Mesozoic transition: The G-LB and P-TB events from a Panthalassan perspective. J Asia Earth Sci 36(6):459–480

    Google Scholar 

  • Jablonski D (1991) Extinctions: a paleontological perspective. Science 253:754–757

    Article  Google Scholar 

  • Jablonski D, Raup DM (1995) Selectivity of end-Cretaceous marine bivalve extinctions. Science 268:389–391

    Article  Google Scholar 

  • Jaiprakash BC, Singh J, Raju DSN (1993) Foraminiferal events across K/T boundary and age of Deccan volcanism in Palakollu area, Krishna-Godavari Basin, India. J Geol Soc India 41:105–117

    Google Scholar 

  • Jaiprakash BC, Venkatesh P, Panicker MV, Gilbert H, Paul SS (2016) Biochrono and tectonic framework for the origin of KTB canyon in Nagapattinam subbasin, Cauvery Basin. Proc Natl Acad Sci U S A 82(3):905–921

    Google Scholar 

  • Jay AE, Widdowson M (2008) Stratigraphy, structure and volcanology of the south-east Deccan continental flood basalt province: implications for eruptive extent and volumes. J Geol Soc Lond 165:177–188

    Article  Google Scholar 

  • Joachimski MM, Buggisch W (2002) Conodont apatite d18O signatures indicate climatic cooling as a trigger of the Late Devonian mass extinction. Geology 30:711–714

    Article  Google Scholar 

  • Joachimski MM, Ostertag Henning C, Pancost RD, Strauss H, Freeman KH, Littke R, Sinninghe Damsté JS, Racki G (2001) Water column anoxia, enhanced productivity and concomitant changes in d13C and d34S across the Frasnian–Famennian boundary (Kowala–Holy Cross Mountains/Poland). Chem Geol 175(1–2):109–131

    Article  Google Scholar 

  • Joachimski MM, Breisig S, Buggisch W, Talent JA, Mawson R, Gereke M, Morrow JR, Day J, Weddige K (2009) Devonian climate and reef evolution: insights from oxygen isotopes in apatite. Earth Planet Sci Lett 284(3–4):599–609

    Article  Google Scholar 

  • Johnson JG (1974) Extinction of perched faunas. Geology 2:479–482

    Article  Google Scholar 

  • Johnson KR, Hickey LJ (1990) Megafloral change across the Cretaceous–Tertiary boundary in the northern Great Plains and Rocky Mountains, U.S.A. In: Sharpton VL, Ward PD (eds) Global catastrophes in Earth History: an interdisciplinary conference on impact, volcanism, and mass mortality, Geological Society of America, Special Papers, vol 247. Geological Society of America, Boulder, CO, pp 433–444

    Chapter  Google Scholar 

  • Johnson JG, Sandberg CA (1988) Devonian eustatic events in the western United States and their biostratigraphic responses. Can Soc Pet Geol Mem 14:171–178

    Google Scholar 

  • Johnson JG, Klapper G, Elrick M (1996) Devonian transgressive-regressive cycles and biostratigraphy, northern Antelope Range, Nevada; establishment of reference horizons for global cycles. PALAIOS 11:3–14

    Article  Google Scholar 

  • Jones DS, Martini MA, Fike DA, Kaiho K (2017) A volcanic trigger for the Late Ordovician mass extinction? Mercury data from south China and Laurentia. Geology 45(7):631–634

    Article  Google Scholar 

  • Kalia P, Pande PK (1987) Record of Cyclolobus walkeri, from the base of Member-C Zewan formation, India. J Geol Soc India 29:271–276

    Google Scholar 

  • Kapoor HM (1996) The Guryul ravine section, candidate of the global stratotype and point (GSSP) of the Permian–Triassic boundary (PTB). In: Yin H (ed) The Paleozoic–Mesozoic Boundary: candidates of the Global Stratotype Section and Point of the Permian–Triassic Boundary. China University of Geosciences Press, Wuhan, pp 99–110

    Google Scholar 

  • Kapur VV, Das D, Bajpai S, Prasad GVR (2017) First mammal of Gondwanan lineage in the Early Eocene of India. Comptes Rendus Palevol 16(7):721–737

    Article  Google Scholar 

  • Kasprak AH, Sepúlveda J, Price Waldman R, Williford KH, Schoepfer SD, Haggart JW, Ward PD, Summons RE, Whiteside JH (2015) Episodic photic zone euxinia in the northeastern Panthalassic Ocean during the end-Triassic extinction. Geology 43:307–310

    Article  Google Scholar 

  • Kauffman EG (1986) High-resolution event stratigraphy: regional and global Cretaceous bio-events. In: Walliser OH (ed) Global bio-events, Lecture notes in earth sciences, vol 8. Springer, Berlin, pp 279–335

    Chapter  Google Scholar 

  • Keller G (1989) Extended period of extinctions across the Cretaceous/Tertiary boundary in planktonic foraminifera of continental shelf sections: implications for impact and volcanism theories. Bull Geol Soc Am 101:1408–1419

    Article  Google Scholar 

  • Keller G (2007) Impact stratigraphy: Old principle, new reality. Geological Society of America Special Paper 437:147–178

    Google Scholar 

  • Keller G (2014) Deccan volcanism, the Chicxulub impact, and the end-Cretaceous mass extinction: coincidence? Cause and effect? Geol Soc Am Spec Pap 505:57–89

    Google Scholar 

  • Keller G, Adatte T, Gardin S, Bartolini A, Bajpai S (2008) Main Deccan Volcanism phase ends near the K-T boundary: evidence from the Krishna-Godavari Basin, SE India. Earth Planet Sci Lett 268:293–311

    Article  Google Scholar 

  • Keller G, Adatte T, Bajpai S, Mohabey DM, Widdowson M, Khosla A, Sharma R, Khosla SC, Gertsch B, Fleitmann D, Sahni A (2009) K–T transition in Deccan traps and intertrappean beds in central India mark major marine Seaway across India. Earth Planet Sci Lett 282:10–23

    Article  Google Scholar 

  • Keller G, Bhowmick PK, Upadhyay H, Dave A, Reddy AN, Jaiprakash BC, Adatte T (2011) Deccan volcanism linked to the Cretaceous-Tertiary Boundary (KTB) mass extinction: new evidence from ONGC wells in the Krishna–Godavari Basin, India. J Geol Soc India 78:399–428

    Article  Google Scholar 

  • Keller G, Adatte T, Bhowmick PK, Upadhyay H, Dave A, Reddy AN, Jaiprakash BC (2012) Nature and timing of extinctions in Cretaceous-Tertiary planktic foraminifera preserved in Deccan intertrappean sediments of the Krishna-Godavari basin, India. Earth Planet Sci Lett 341–344:211–221

    Article  Google Scholar 

  • Kershaw S, Crasquin S, Li Y, Collin PY, Forel MB, Mu X, Baud A, Wang Y, Xie S, Maurer F, Guo L (2012) Microbialites and global environmental change across the Permian-Triassic boundary: a synthesis. Geobiology 10:25–47

    Article  Google Scholar 

  • Khosla SC, Nagori ML, Jakhar SR, Rathore AS (2009) Mixed marine, brackish water and non-marine macrofaunal association in the intertrappean beds (Early Palaeocene) of Jhilmili, Chhindwara District, Madhya Pradesh. J Geol Soc India 73:724–732

    Article  Google Scholar 

  • Kiselev AI, Yarmolyuk VV, Egorov KN, Chernyushov RA, Nikiphorov AV (2006) Middle Paleozoic basite magmatism of the north-west part of the Viluy rift: composition, sources, geodynamics. Petrology 6:660–682

    Google Scholar 

  • Klapper G (2000) Species of Spathiognathodontidae and Polygnathidae (Conodonta) in the recognition of Upper Devonian stage boundaries. Cour Forschungsinst Senck 220:153–159

    Google Scholar 

  • Klapper G, Uyeno TT, Armstrong DK, Telford PG (2004) Conodonts of the Williams Island and Long Rapids Formations (Upper Devonian, Frasnian-Famennian) of the Onakawana B Drillhole, Moose River Basin, Northern Ontario, with a revision of Lower Famennian species. J Paleontol 78(2):371–387

    Article  Google Scholar 

  • Knight KB, Renne PR, Baker J, Waight T, White N (2003) 40Ar/39Ar dating of the Rajahmundry traps, Eastern India and their relationship to the Deccan Traps. Earth Planet Sci Lett 208:85–99

    Article  Google Scholar 

  • Knight KB, Renne PR, Baker J, Waight T, White N (2005) Reply to 40Ar/39Ar dating of the Rajahmundry Traps, Eastern India and their relationship to the Deccan Traps: discussion’ by A.K. Baksi. Earth Planet Sci Lett 239:374–382

    Article  Google Scholar 

  • Korte C, Kozur HW (2010) Carbon-isotope stratigraphy across the Permian-Triassic boundary: a review. J Asian Earth Sci 39:215–235

    Article  Google Scholar 

  • Korte C, Pande P, Kalia P, Kozur HW, Joachimski MM, Oberhänsli H (2010) Massive volcanism at the Permian-Triassic boundary and its impact on the isotopic composition of the ocean and atmosphere. J Asian Earth Sci 37:293–311

    Article  Google Scholar 

  • Kramm U, Wedepohl KH (1991) The isotopic composition of strontium and sulfur in seawater of Late Permian (Zechstein) age. Chem Geol 90:253–262

    Article  Google Scholar 

  • Kravchinsky VA (2012) Paleozoic large igneous provinces of northern Eurasia: correlation with mass extinction events. Glob Planet Chang 86:31–36

    Article  Google Scholar 

  • Krystyn L, Horacek M, Brandner R, Parcha S (2014) Late Permian tsunamites in Guryul Ravine (Kashmir, India) - revisited and rejected. Geophys Res Abstr 16:EGU2014–EG15312

    Google Scholar 

  • Kump LR, Pavlov A, Arthur MA (2005) Massive release of hydrogen sulfide to the surface ocean and atmosphere during intervals of oceanic anoxia. Geology 33(5):397–400

    Article  Google Scholar 

  • Kunio K, Yatsu S, Oba M, Gorjan P, Casier J-G, Ikeda M (2013) A forest fire and soil erosion event during the Late Devonian mass extinction. Palaeogeogr Palaeoclimatol Palaeoecol 392:272–280

    Article  Google Scholar 

  • Kusznir NJ, Kokhuto A, Stephenson RA (1996) Synrift evolution of the Pripyat Trough: constraints from structural and stratigraphic modeling. Tectonophysics 268:221–236

    Article  Google Scholar 

  • Kutty TS, Sengupta DP (1989) The Late Triassic formations of the Pranhita-Godavari valley and their vertebrate faunal succession – a reappraisal. Ind J Earth Sci 16(3–4):189–206

    Google Scholar 

  • Kutty TS, Jain SL, Roy Chowdhury T (1988) Gondwana sequence of the northern Pranhita-Godavari valley: its stratigraphy and vertebrate faunas. Palaeobotanist 36:263–282

    Google Scholar 

  • Kutty TS, Chatterjee S, Galton PM, Upchurch P (2007) Basal sauropodomorphs (Dinosauria: Saurischia) from the Lower Jurassic of India: their anatomy and relationships. J Paleontol 81:1218–1240

    Article  Google Scholar 

  • Kuzmin MI, Yarmolyuk VV, Kravchinsky VA (2010) Phanerozoic hot spot traces and paleogeographic reconstructions of the Siberian continent based on interaction with the African large low shear velocity province. Earth Sci Rev 102:29–59

    Article  Google Scholar 

  • Lahiri TC, Sen MK, Raychaudhuri AK, Acharyya SK (1988) Observations on Cretaceous/Tertiary boundary and reported iridium enrichment, Khasi Hills, Meghalaya. Current Science 57: 1335–1336

    Google Scholar 

  • Lakshminarayana G, Manikyamba C, Khana TC, Kanakdande P, Raju K (2010) New observations on Rajahmundry Traps of the Krishna-Godavari basin. J Geol Soc India 75:807–819

    Article  Google Scholar 

  • LaPorte DF, Holmden C, Patterson WP, Loxton JD, Melchin MJ, Mitchell CE, Finney SC, Sheets HD (2009) Local and global perspectives on carbon and nitrogen cycling during the Hirnantian glaciation. Palaeogeogr Palaeoclimatol Palaeoecol 276:182–195

    Article  Google Scholar 

  • Large RR, Halpin JA, Lounejeva E, Danyushevsky LV, Maslennikov VV, Gregory D, Sack PJ, Haines PW, Long JA, Makoundi C, Stepanov AS (2015) Cycles of nutrient trace elements in the Phanerozoic Ocean. Gondwana Res 28:1282–1293

    Article  Google Scholar 

  • Lefebvre V, Servais T, François L, Averbuch O (2010) Did a Katian large igneous province trigger the Late Ordovician glaciation? A hypothesis tested with a carbon cycle model. Palaeogeogr Palaeoclimatol Palaeoecol 296:310–319

    Article  Google Scholar 

  • Leu M, Baud A, Brosse M, Goudemand N, Vennemann T, Meier M, Bhat G, Bucher H (2014) Earthquake induced soft sediment deformation (seismites): new data from the Early Triassic Guryul Ravine section (Kashmir), vol 19. International Sedimentological Congress, Geneva. https://doi.org/10.13140/2.1.2848.9600

    Book  Google Scholar 

  • Lindström S (2016) Palynofloral patterns of terrestrial ecosystem change during the end Triassic event – a review. Geol Mag 153:223–251

    Article  Google Scholar 

  • Luz B, Kolodny Y, Kovach J (1984) Oxygen isotope variations in phosphate of biogenic apatites, III. Conodonts. Earth Planet Sci Lett 69:255–262

    Article  Google Scholar 

  • Ma X, Gong Y, Chen D, Racki G, Chen X, Liao W (2015) The Late Devonian Frasnian-Famennian event in South China – patterns and causes of extinctions, sea level changes, and isotope variations. Palaeogeogr Palaeoclimatol Palaeoecol 448:224–244

    Article  Google Scholar 

  • MacLeod N (1996) Nature of the Cretaceous–Tertiary (K–T) planktonic foraminiferal record: stratigraphic confidence intervals, Signor–Lipps effect, and patterns of survivorship. In: Macleod N, Keller G (eds) The Cretaceous–Tertiary mass extinction: biotic and environmental changes. W W Norton & Co., New York, pp 85–138

    Google Scholar 

  • MacLeod N, Keller G (1994) Mass extinction and planktic foraminiferal survivorship across the Cretaceous-Tertiary boundary: a biogeographic test. Paleobiology 20:143–177

    Article  Google Scholar 

  • Macleod N, Rawson PF, Forey PL, Banner FT, Boudagher-Fadel MK, Bown PR, Burnett JA, Chambers P, Culver S, Evans SE, Jeffery C, Kaminski MA, Lord AR, Milner AC, Milner AR, Morris N, Owen E, Rosen BR, Smith AB, Taylor PD, Urquhart E, Young JR (1997) The Cretaceous-Tertiary biotic transition. J Geol Soc London 154(2):265–292

    Google Scholar 

  • Martin EE, Macdougall JD (1995) Sr and Nd isotopes at the Permian1 Triassic boundary: a record of climate change. Chem Geol 125:73–95

    Article  Google Scholar 

  • Maxwell WD (1992) Permian and Early Triassic extinction of non-marine tetrapods. Palaeontology 35:571–583

    Google Scholar 

  • McCune AR, Schaeffer B (1986) Triassic and Jurassic fishes: patterns of diversity. In: Padian K (ed) The beginning of the age of Dinosaurs. Cambridge University Press, Cambridge, UK, pp 171–181

    Google Scholar 

  • McElwain JC, Beerling DJ, Woodward FI (1999) Fossil plants and global warming at the Triassic–Jurassic boundary. Science 285:1386–1139

    Article  Google Scholar 

  • McGhee GR (1996) The Late Devonian mass extinction: the Frasnian/Famennian crisis. Columbia University Press, New York, p 303

    Google Scholar 

  • McGhee GR Jr (1989) The Frasnian-Famennian extinction event. In: Donovan SK (ed) Mass extinctions: processes and evidence. Columbia University Press, New York, pp 133–151. 266p

    Google Scholar 

  • McGhee GR, Clapham ME, Sheehan PM, Bottjer DJ, Droser ML (2013) A new ecological-severity ranking of major Phanerozoic biodiversity crises. Palaeogeogr Palaeoclimatol Palaeoecol 370:260–270

    Article  Google Scholar 

  • McKinney FK, Jackson JBC (1989) Bryozoan evolution. Unwin Hyman, Boston, p 238

    Google Scholar 

  • McLaren DJ (1970) Presidential address: time, life and boundaries. J Paleontol 48:801–815

    Google Scholar 

  • McLaren DJ (1982) Frasnian-Famennian extinctions. In: Silver LT, Schultz PH (eds) Geologic implications of large asteroids and comets on the Earth, Geological Society of America Special Paper, vol 190. Geological Society of America, Boulder, CO, pp 477–484. 582p

    Chapter  Google Scholar 

  • McLaren DJ, Goodfellow WD (1990) Geological and biological consequences of giant impacts. Annu Rev Earth Planet Sci 18:123–171

    Article  Google Scholar 

  • McLean DM (1985) Deccan Traps mantle degassing in the terminal Cretaceous marine extinctions. Cretac Res 6:235–259

    Article  Google Scholar 

  • Mehta DRS (1956) A revision of the geology and coal resources of the Raniganj Coalfield. Mem Geol Surv India 84:1–113

    Google Scholar 

  • Melchin MJ, Mitchell CE, Holmden C, Štorch P (2013) Environmental changes in the Late Ordovician–Early Silurian: review and new insights from black shales and nitrogen isotopes. Geol Soc Am Bull 125:1635–1670

    Article  Google Scholar 

  • Melott AL, Lieberman BS, Laird CM, Martin LD, Medvedev MV, Thomas BC, Cannizzo JK, Gehrels N, Jackman CH (2004) Did a gamma ray burst initiate the late Ordovician mass extinction? Int J Astrobiol 3:55–61

    Article  Google Scholar 

  • Miller KG, Kominz MA, Browning JV, Wright JD, Mountain GS, Katz ME, Sugarman PJ, Cramer BS, Christie Blick N, Pekar SF (2005) The Phanerozoic Record of global sea-level change. Science 310:1293–1298

    Article  Google Scholar 

  • Molina E, Alegret L, Arenillas I, Arz JA, Gallala N, Hardenbol J, von Salis K, Steurbaut E, Vandenberghe N, Turki DZ (2006) The global boundary stratotype section and point for the base of the Danian Stage (Paleocene, Paleogene, “Tertiary”, Cenozoic) at El Kef, Tunisia – original definition and revision. Episodes 29(4):263–273

    Article  Google Scholar 

  • Molina E, Alegret L, Arenillas I, Arz JA, Gallala N, Grajales Nishimura M, Murillo Muñetón G, Zaghbig Turki D (2009) The global boundary stratotype section and point for the base of the Danian Stage (Paleocene, Paleogene, “Tertiary”, Cenozoic): auxiliary sections and correlation. Episodes 32(2):84–95

    Article  Google Scholar 

  • Mukhopadhyay SK (1988) Stratigraphy and micropalaeontology of the Late Cretaceous–Early Tertiary marine sequences developed in south west Meghalaya, Eastern India. PhD Thesis, University of Calcutta, Calcutta, India, pp 1–380

    Google Scholar 

  • Mukhopadhyay SK (2008) Planktonic foraminiferal succession in Late Cretaceous to Early Palaeocene strata in Meghalaya, India. Lethaia 41:71–84

    Article  Google Scholar 

  • Mukhopadhyay SK (2009) Convener’s report for 2008 on the progress of work in the IGCP Project 507 on ‘Palaeoclimate in Asia during the Cretaceous: their variations, causes, and biotic and environmental responses’. IGCP India Newsl 29:11–13

    Google Scholar 

  • Mukhopadhyay SK (2012) Guembelitria (Foraminifera) in the Upper Cretaceous-Lower Paleocene succession of the Langpar Formation, India and its paleoenvironmental implication. J Geol Soc India 79:627–651

    Article  Google Scholar 

  • Murata M (1981) Late Permian and Early Triassic conodonts from Guryul Ravine. In: Nakazawa K, Kapoor HM (eds) The Upper Permian and Lower Triassic Faunas of Kashmir, Palaeontolgia Indica New Series, vol 46. Geological Survey of India, Calcutta, pp 179–186

    Google Scholar 

  • Myrow PM, Fike DA, Malmskog E, Leslie S, Zhang T, Singh BP, Chaubey RS, Prasad SK (2018) Ordovician–Silurian boundary strata of the Indian Himalaya: record of the latest Ordovician Boda Event. Geol Soc Am Bull 131(5–6):881–898

    Google Scholar 

  • Nagappa Y (1959) Foraminiferal biostratigraphy of the Cretaceous: Eocene succession in the India–Pakistan–Burma region. Micropaleontology 5:145–192

    Article  Google Scholar 

  • Nagendra R, Kamala Kannan BV, Sen G, Gilbert H, Bakkiaraj D, Reddy AN, Jaiprakash BC (2011) Sequence surfaces and Paleobathymetric trends in Albian to Maastrichtian sediments of Ariyalur area, Cauvery basin, India. Mar Pet Geol 28:895–905

    Article  Google Scholar 

  • Nakazawa K, Kapoor HM, Ishii K, Bando Y, Okimura Y, Tokuoka T (1975) The Upper Permian and the Lower Triassic in Kashmir, India. Mem Fac Sci Kyoto Univ Ser of Geol 41:1–106

    Google Scholar 

  • Nandi B (1990) Palynostratigraphy of Upper Cretaceous sediments, Meghalaya, northeastern India. Rev Palaeobot Palynol 65:119–129

    Article  Google Scholar 

  • Nicholos DJ, Fleming RF (1990) Plant microfossil record of the terminal Cretaceous event in the western United States and Canada. In: Sharpton VL, Ward PD (eds) Global catastrophes in Earth history: an interdisciplinary conference on impacts, volcanism, and mass mortality, Geological Society of America Special Papers, vol 247. Geological Society of America, Boulder, CO, pp 445–455

    Chapter  Google Scholar 

  • Novas FE, Ezcurra MD, Chatterjee S, Kutty TS (2011) New dinosaur species from the Upper Triassic upper Maleri and Lower Dharmaram formations of Central India. Earth Environ Sci Trans R Soc Edinb 101:333–349

    Google Scholar 

  • Officer CB, Hallam A, Drake CL, Devine JD (1987) Late Cretaceous and paroxysmal Cretaceous/Tertiary extinctions. Nature 326:143–149

    Article  Google Scholar 

  • Olsen PE, Shubin NH, Anders MH (1987) New Early Jurassic tetrapod assemblages constrain Triassic–Jurassic tetrapod extinction event. Science 237:1025–1029

    Article  Google Scholar 

  • Olsen PE, Kent DV, Sues HD, Koeberl C, Huber H, Montanari A, Rainforth EC, Fowell SJ, Szajna MJ, Hartline BW (2002) Ascent of dinosaurs linked to an iridium anomaly at the Triassic-Jurassic boundary. Science 296:1305–1307

    Article  Google Scholar 

  • Over DJ, Conaway CA, Katz DJ, Goodfellow WD, Gregoire DC (1997) Platinum group element enrichments and possible chondritic Ru/Ir ratio across the Frasnian–Famennian boundary, western New York State. Palaeogeogr Palaeoclimatol Palaeoecol 132:399–410

    Article  Google Scholar 

  • Palfy J, Mortensen JK, Carter ES, Smith PL, Friedman RM, Tipper HW (2000) Timing the end-Triassic mass extinction: first on land, then in the sea. Geology 28(1):39–42

    Article  Google Scholar 

  • Pande PK, Kalia P (1994) Upper Permian and Lower Triassic nodosariid foraminifera from the Kashmir Himalaya, India. Neues Jahrb Geol Palaontol Abh 191:313–329

    Google Scholar 

  • Pandey J (1990) Cretaceous/Tertiary boundary, iridium anomaly and foraminifer breaks in the Um Sohryngkew river section, Meghalaya. Curr Sci 59:570–575

    Google Scholar 

  • Payne JL, Turchyn AV, Paytan A, DePaolo DJ, Lehrmann DJ, Yu M, Wei J (2010) Calcium isotope constraints on the end-Permian mass extinction. Proc Natl Acad Sci 107(19):8543–8548

    Google Scholar 

  • Payne JL, Clapham ME (2012) End Permian mass extinction in the oceans: an ancient analog for the twenty-first century? Annu Rev Earth Planet Sci 40:89–111

    Article  Google Scholar 

  • Percival LME, Witt MLI, Mather TA, Hermoso M, Jenkyns HC, Hesselbo SP, Al Suwaidi AH, Storm MS, Xu W, Ruhl M (2015) Globally enhanced mercury deposition during the end-Pliensbachian extinction and Toarcian OAE: a link to the Karoo-Ferrar Large Igneous Province. Earth Planet Sci Lett 428:267–280

    Article  Google Scholar 

  • Percival LME, Cohen AS, Davies MK, Dickson AJ, Hesselbo SP, Jenkyns HC, Leng MJ, Mather TA, Storm MS, Xu W (2016) Osmium isotope evidence for two pulses of increased continental weathering linked to Early Jurassic volcanism and climate change. Geology 44(9):759–762

    Article  Google Scholar 

  • Peterson SV, Dutton A, Lohmann KC (2016) End Cretaceous extinction in Antarctica linked to both Deccan volcanism and meteorite impact via climate change. Nat Commun 7:12079

    Article  Google Scholar 

  • Prasad GVR, Khajuria CK (1995) Implications of the infratrappean and intertrappean biota from the Deccan, India, for the role of volcanism in in Cretaceous-Tertiary boundary extinctions. J Geol Soc Lond 152:289–296

    Article  Google Scholar 

  • Prasad GVR, Sahni A (2014) Vertebrate fauna from the Deccan volcanic province: response to volcanic activity. Geol Soc Am Spec Pap 505:1–18

    Google Scholar 

  • Prasad GVR, Verma O, Flynn JJ, Goswami A (2013) A new Late Cretaceous vertebrate fauna from the Cauvery Basin, South India: implications for Gondwanan paleobiogeography. J Verteb Paleontol 33:1260–1268

    Article  Google Scholar 

  • Prasad V, Farooqui A, Murthy S, Sarate OS, Bajpai S (2018) Palynological assemblage from the Deccan volcanic province, Central India: insights into early history of angiosperms and the terminal Cretaceous paleogeography of peninsular India. Cretac Res 86:186–198

    Article  Google Scholar 

  • Racki G (1998) The Late Devonian bio-crisis and brachiopods: introductory remarks. Acta Palaeontol Pol 43:135–136

    Google Scholar 

  • Racki G (1999) The Frasnian–Famennian biotic crisis: how many (if any) bolide impacts? Geol Rundsch 87:617–632

    Article  Google Scholar 

  • Racki G, Rakocińsk M, Marynowski L, Wignall PB (2018) Mercury enrichments and the Frasnian-Famennian biotic crisis: a volcanic trigger proved? Geology 46(6):543–546

    Article  Google Scholar 

  • Raju DSN, Ravindram CN, Dave A, Jaiprakash BC, Singh J (1991) K/T boundary events in the Cauvery and Krishna-Godavari basins and the age of Deccan volcanism. Geosci J 12:177–190

    Google Scholar 

  • Raju DSN, Jaiprakash BC, Kumar A, Saxena RK, Dave A, Chatterjee TK, Mishra CM (1995) Age of Deccan volcanism across KTB in Krishna–Godavari Basin: new evidences. J Geol Soc India 45:229–233

    Google Scholar 

  • Raju DSN, Jaiprakash BC, Kumar A (1996) Palaeoenvironmental set-up and age of basin floor just prior to the spread of Deccan volcanism in the Krishna-Godavari Basin, India. Mem Geol Soc India 37:285–295

    Google Scholar 

  • Rampino MR, Haggerty BM (1996) Impact crises and mass extinctions: a working hypothesis. Geol Soc Am Spec Pap 307:11–30

    Google Scholar 

  • Rampino MR, Prokoph A, Adler A (2000) Tempo of the end-Permian event: high resolution cyclostratigraphy at the Permian-Triassic boundary. Geology 28:643–646

    Article  Google Scholar 

  • Raup DM (1979) Size of the Permo-Triassic bottleneck and its evolutionary implications. Science 206:217–218

    Article  Google Scholar 

  • Raup DM, Sepkoski JJ Jr (1984) Periodicity of extinctions in the geologic past. Proc Natl Acad Sci U S A 81:801–805

    Article  Google Scholar 

  • Reichow MK, Saunders AD, White RV, Pringle MS, Al’Mukhamedov AI, Medvedev AI, Kirda NP (2002) 40Ar/39Ar dates from the West Siberian Basin: Siberian flood basalt province doubled. Science 296:1846–1849

    Article  Google Scholar 

  • Renne PR, Melosh HJ, Farley KA, Reimold WU, Koeberl C et al (2004) Is Bedout an impact crater? Take 2. Science 306:610–612

    Article  Google Scholar 

  • Renne PR, Mundil R, Balco G, Min K, Ludwig KR (2010) Joint determination of 40K decay constants and 40Ar/40K for the Fish Canyon sanidine standard, and improved accuracy for 40Ar/39Ar geochronology. Geochim Cosmochim Acta 74:5349

    Article  Google Scholar 

  • Retallack GJ, Veevers J, Morante R (1996) Global coal gap between Permian-Triassic extinction and Middle Triassic recovery of peat–forming plants. Geol Soc Am Bull 108:195–207

    Article  Google Scholar 

  • Rong JY, Harper DA (1988) A global synthesis of the latest Ordovician Hirnantian Brachiopod faunas. Trans R Soc Edinb Earth Sci 79:383–402

    Article  Google Scholar 

  • Rossbach TJ, Hall JC (1998) Field guide to the Late Devonian (Frasnian-Famennian) extinction event in the Catskill Delta of Virginia and West Virginia. Paleontol Society and Western Carolina University, Charleston, WV, p 35

    Google Scholar 

  • Ryskin G (2003) Methane-driven oceanic eruptions and mass extinctions. Geology 31(9):741–744

    Article  Google Scholar 

  • Samant B, Mohabey DM (2009) Palynoflora from Deccan volcano–sedimentary sequence (Cretaceous–Paleogene transition) of central India: implication for spatiotemporal correlation. J Biosci 34(5):811–823

    Article  Google Scholar 

  • Samant B, Mohabey DM (2014) Deccan volcanic eruptions and their impact on flora: palynological evidence. Geol Soc Am Spec Pap 505:171–191

    Google Scholar 

  • Sant DA, Mathew G, Khadkikar AS, Gogte V, Gundurao TK (2003) Co-existent cristobalite and iridium at 65Ma, Anjar intertrappeans, Kachchh, western India. Cretac Res 24:105–110

    Article  Google Scholar 

  • Sarkar A, Yoshioka H, Ebihara M, Naraoka H (2003) Geochemical and organic carbon isotope studies across the continental Permo-Triassic boundary of Raniganj Basin, eastern India. Palaeogeogr Palaeoclimatol Palaeoecol 191:1–14

    Article  Google Scholar 

  • Saunders A, Reichow M (2009) The Siberian Traps and the End-Permian mass extinction: a critical review. Chinese Science Bulletin 54(1):20–37

    Google Scholar 

  • Saxena RK, Misra CM (1995) Campanian–Maastrichtian nannoplankton biostratigraphy of the Narsapur claystone Formation, Krishna–Godavari Basin, India. J Geol Soc India 45:323–329

    Google Scholar 

  • Schaller MF, Wright JD, Kent DV (2011) Atmospheric PCO2 perturbations associated with the Central Atlantic Magmatic Province. Science 331:1404–1409

    Article  Google Scholar 

  • Schoene B, Guex J, Bartolini A, Schaltegger U, Blackburn TJ (2010) Correlating the end Triassic mass extinction and flood basalt volcanism at the 100 Ka level. Geology 38(5):387–390

    Article  Google Scholar 

  • Self S, Blake S, Sharma K, Widdowson M, Sephton S (2008) Sulfur and chlorine in Late Cretaceous Deccan magmas and eruptive gas release. Science 319(5870):1654–1657

    Article  Google Scholar 

  • Sepkoski JJ (1981) A factor analytic description of the Phanerozoic marine fossil record. Paleobiology 7:36–53

    Article  Google Scholar 

  • Sepkoski JJ (1982) Mass extinctions in the Phanerozoic oceans: a review. In: Silver LT, Schultz PH (eds) Geologic implications of large asteroids and comets on the Earth, Geologic Society of America Special Paper, vol 190. Geologic Society of America, Boulder, CO, pp 283–289. 582p

    Chapter  Google Scholar 

  • Sepkoski JJ (1984) A kinetic model of Phanerozoic taxonomic diversity. III. Post-Paleozoic families and mass extinctions. Paleobiology 10:246–267

    Article  Google Scholar 

  • Sepkoski JJ (1989) Periodicity in extinction and the problem of catastrophism in the history of life. J Geol Soc Lond 146:7–19

    Article  Google Scholar 

  • Sepkoski JJ (1996) Patterns of Phanerozoic extinction: a perspective from global data bases. In: Walliser OH (ed) Global events and event stratigraphy in the Phanerozoic. Springer, Berlin, pp 35–51

    Chapter  Google Scholar 

  • Shah SK, Sinha AK (1974) Stratigraphy and tectonics of the “Tethyan” zone in a part of western Kumaun Himalaya. Himal Geol 14:1–24

    Google Scholar 

  • Sheehan PM (2001) The late Ordovician mass extinction. Annu Rev Earth Planet Sci 29:331–364

    Article  Google Scholar 

  • Shen SZ, Crowley JL, Wang Y, Bowring SA, Erwin DH, Sadler PM, Cao CQ, Rothman DH, Henderson CM, Ramezani J, Zhang H (2011) Calibrating the end-Permian mass extinction. Science 334:1367–1372

    Article  Google Scholar 

  • Shen J, Feng Q, Algeo T J, Li C, , Planavsky N J, Zhou L, Zhang M (2016) Two pulses of oceanic environmental disturbance during the Permian–Triassic boundary crisis Earth Planet Sci Lett, 443, pp 139–152

    Article  Google Scholar 

  • Shukla PN, Shukla AD, Bhandari N (1997) Geochemical characterisation of the Cretaceous–Tertiary boundary sediments at Anjar, India. Palaeobotanist 46(1,2):127–132

    Google Scholar 

  • Shukla AD, Bhandari N, Shukla PN (2002) Chemical signatures of the Permian-Triassic transitional environment in Spiti Valley, India. In: Koeberl C, MacLeod KG (eds) Catastrophic events and mass extinctions: impacts and beyond. Geological Society of America, Boulder, CO, pp 445–453

    Google Scholar 

  • Siljan (2008) Earth Impact Database. University of New Brunswick. Accessed 6 Oct 2018

    Google Scholar 

  • Singh J, Mahanti S, Singh K (2004) Geology and evaluation of hydrocarbon prospects of Tethyan sediments in Spiti Valley, Spiti and Zanskar, Himachal Pradesh, 19th HimalayaKarakoramTibet Workshop. Himalayan Journal of Sciences, 2(4), Niseko, Japan, p 250

    Google Scholar 

  • Sinha HN, Trampisch C (2013) Melanosclerites from the Late Ordovician strata of the Shiala Formation, Indian Gondwana. J Asian Earth Sci 75:13–18

    Article  Google Scholar 

  • Sinha HN, Verniers J (2016) Discovery of the Chitinozoans Belonechitina Capitata from the Shiala formation of Northeastern Garhwal-Kumaon Tethys Himalaya, Pithoragarh District, Uttarakhand, India. Geosci Front 7(5):859–864

    Article  Google Scholar 

  • Sinha HN, Prasad B, Srivastava SS (1998) OrdovicianSilurian acritarch biostratigraphy of the Tethyan Garhwal Himalaya, India. Rev Palaeobot Palynol 103:167–199

    Article  Google Scholar 

  • Sinha HN, Vandenbroucke TRA, Verniers J (2011) First Ordovician chtinozoans from Indian Gondwananew evidence from the Shiala Formation. Rev Palaeobot Palynol 167:117–122

    Article  Google Scholar 

  • Smith AB, Jeffery CH (1988) Selectivity of extinction among sea urchins at the end of the Cretaceous period. Nature 392(5):69–71

    Google Scholar 

  • Sole RV, Newman M (2002) Extinctions and biodiversity in the fossil record – Volume Two, The earth system: biological and ecological dimensions of global environment change, Encyclopedia of global environmental change. Wiley, Chichester, pp 297–391

    Google Scholar 

  • Spicer RA, Collinson ME (2014) Plants and floral change at the Cretaceous-Palaeogene boundary: three decades on. Geol Soc Am Spec Pap 505:117–132

    Google Scholar 

  • Srikantia SV, Bhargava ON (1998) Geology of Himachal Pradesh. Geological Society of India, Bangalore, p 406

    Google Scholar 

  • Stearn CW (1987) Effect of the Frasnian–Famennian extinction event on the stromatoporoids. Geology 15:677–679

    Article  Google Scholar 

  • Stigall AL (2012) Speciation collapse and invasive species dynamics during the Late Devonian mass extinction. Geol Soc Am Today 22(1):4–9

    Google Scholar 

  • Subbarao KV, Pathak S (1993) Reversely magnetized flows, Rajahmundry, Andhra Pradesh. J Geol Soc India 41:71–72

    Google Scholar 

  • Sundaram R, Henderson RA, Ayyasami K, Stilwell J (2001) A lithostratigraphic revision and palaeoenvironmental assessment of the Cretaceous System exposed in the onshore Cauvery Basin, southern India. Cretac Res 22:743–762

    Article  Google Scholar 

  • Svensen H, Planke S, Polozov AG, Schmidbauer N, Corfu F, Podladchikov YY, Jamtveit B (2009) Siberian gas venting and the end–Permian environmental crisis. Earth Planet Sci Lett 277:490–500

    Article  Google Scholar 

  • Swami NK, Tripathi SK, Laishram R, Dharwadkar A (2017) First record of extinct Paraconularia (Cnidaria, Scyphozoa) from Tethyan sequence (Upper Permian) of Spiti valley, Himachal Himalaya, India. Palaeontol Electron 20(3):1–6

    Google Scholar 

  • Sweet WC (1973) Late Permian and Early Triassic conodont faunas. In: Logan A, Hills LV (eds) The Permian and Triassic System and their mutual boundary, Canadian Society of Petroleum Geologists Special Publication 2, pp 630–646

    Google Scholar 

  • Sweet AR, Braman DR, Lerbekmo JF (1990) Palynofloral response to K/T boundary events; a transitory interruption within a dynamic system. In: Sharpton VL, Ward PD (eds) Global catastrophes in earth history, Geological Society of America Special Papers, vol 247. Geological Society of America, Boulder, CO, pp 457–469

    Google Scholar 

  • Tandon SK, Sood A, Andrews JE, Dennis F (1995) Palaeoenvironment of Dinosaur-bearing Lameta Beds (Maastrichtian), Narmada valley, Central India. Palaeogeogr Palaeoclimatol Palaeoecol 117:153–184

    Article  Google Scholar 

  • Tanner LH, Kyte FT, Walker AE (2008) Multiple Ir anomalies in uppermost Triassic to Jurassic-age strata of the Blomidon Formation, Fundy basin, eastern Canada. Earth Planet Sci Lett 274:103–111

    Article  Google Scholar 

  • Taylor PD (1993) Bryozoa. In: Benton MJ (ed) The fossil record 2. Chapman & Hall, London, pp 465–489

    Google Scholar 

  • Teichert C, Kummell B, Kapoor HM (1970) Mixed Permian-Triassic fauna, Guryul Ravine, Kashmir. Science 167:174–175

    Article  Google Scholar 

  • Tewari R, Awtar R, Pandita SK, McLoughlin S, Agnihotri D, Pillai SSK, Singh V, Kumar K, Bhat GD (2015) The Permian–Triassic palynological transition in the Guryul Ravine section, Kashmir, India: implications for Tethyan Gondwanan correlations. Earth-Sci Rev 149:53–66

    Article  Google Scholar 

  • Thompson JB, Newton CR (1988) Late Devonian mass extinction; episodic climatic cooling or warming? In: McMillen NJ, Embry AF, Glass DJ (eds) Devonian of the World, Memoir 14. Canadian Society of Petroleum Geologists, Calgary, AB, pp 29–34

    Google Scholar 

  • Tiwari RS, Tripathi A (1992) Marker assemblage zone of spore and pollen species through Gondwana Palaeozoic and Mesozopic sequence in India. Palaeobotanist 40:1904–1236

    Google Scholar 

  • Twitchett RJ (2007) The Lilliput effect in the aftermath of the end-Permian extinction event. Palaeogeogr Palaeoclimatol Palaeoecol 252:132–144

    Article  Google Scholar 

  • Twitchett RJ, Looy CV, Morante R, Visscher H, Wignall PB (2001) Rapid and synchronous collapse of marine and terrestrial ecosystems during the end-Permian mass extinction event. Geology 29:351–354

    Article  Google Scholar 

  • Vajda V, McLoughlin S (2007) Extinction and recovery patterns of the vegetation across Cretaceous–Palaeogene boundary – a tool for unravelling the causes of the end Permian mass-extinction. Rev Palaeobot Palynol 144:99–112

    Article  Google Scholar 

  • Vajda V, Raine JI, Hollis CJ (2001) Indication of global deforestation at the Cretaceous-Tertiary boundary by New Zealand fern spike. Science 294:1700–1702

    Article  Google Scholar 

  • Van de Schootbrugge B, Tremolada F, Rosenthal Y, Bailey TR, Feist Burkhardt S, Brinkhuis H, Pross J, Kent DV, Falkowski PG (2007) End–Triassic calcification crisis and blooms of organic-walled ‘disaster species’. Palaeogeogr Palaeoclimatol Palaeoecol 244:126–141

    Article  Google Scholar 

  • Van de Schootbrugge B, Quan TM, Lindström S, Püttmann W, Heunisch C, Pross J, Fiebig J, Petschick R, Röhling HG, Richoz S, Rosenthal Y, Falkowski PG (2009) Floral changes across the Triassic–Jurassic boundary linked to massive flood basalt volcanism. Nat Geosci 2:589–594

    Article  Google Scholar 

  • Vandamme D, Courtillot VE (1992) Palaeomagnetic constraints on the structure of the Deccan Traps. Phys Earth Planet Inter 74:241–261

    Article  Google Scholar 

  • Vandenbroucke TRA, Emsbo P, Munnecke A, Nuns N, Duponchel L, Lepot K, Quijada M, Paris F, Servais T, Kiessling W (2015) Metal-induced malformations in early Paleozoic plankton are harbingers of mass extinction. Nat Commun 6:7977

    Article  Google Scholar 

  • Vannay JC (1993) Geologie des chaines du Haut-Himalaya et du Pir Panjal au Haut-Lahul (NW-Himalaya, Inde): Paleogeographie et tectonique. Mem Geol Univ Lausanne 16:148

    Google Scholar 

  • Venkatesan TR, Pande K, Ghevariya ZG (1996) 40Ar–39Ar ages of Anjar Traps, Western Deccan Province (India) and its relation to the Cretaceous–Tertiary Boundary events. Curr Sci 70:990–996

    Google Scholar 

  • Visscher H, Brinkhuis H, Dilcher DL, Elsik WC, Eshet Y, Looy CV, Rampino MR, Traverse A (1996) The terminal Paleozoic fungal event: evidence of terrestrial ecosystem destabilization and collapse. Proc Natl Acad Sci U S A 93:2155–2158

    Article  Google Scholar 

  • Von Salis K, Saxena RK (1998) Calcareous nannofossils across the K/T boundary and the age of the Deccan Trap volcanism in southern India. J Geol Soc India 51:183–192

    Google Scholar 

  • Walliser OH (1996) Global events in the Devonian and Carboniferous. In: Walliser OH (ed) Global events and event stratigraphy in the Phanerozoic. Springer, Berlin, pp 225–250. 333p

    Chapter  Google Scholar 

  • Wang K, Orth CJ, Attrep M, Chatterton BDE, Hou H, Geldsetzer HHJ (1991) Geochemical evidence for a catastrophic biotic event at the Frasnian/Famennian boundary in south China. Geology 19:776–779

    Article  Google Scholar 

  • Wang K, Geldsetzer HHJ, Goodfellow WD, Krouse HR (1996) Carbon and sulfur isotope anomalies across the Frasnian-Famennian extinction boundary, Alberta, Canada. Geology 24:187–191

    Article  Google Scholar 

  • Ward PD, Botha J, Buick R, De Kock MO, Erwin DH, Garrison GH, Kirschvink JL, Smith R (2005) Abrupt and gradual extinction among Late Permian land vertebrates in the Karoo Basin, South Africa. Science 307:709–714

    Article  Google Scholar 

  • Whalen M T, Sliwinski M G, Payne J H, Day J E, Chen D, Da Silva A C (2015) Chemostratigraphy and magnetic susceptibility of the Late Devonian Frasnian–Famennian transition in western Canada and southern China: implications for carbon and nutrient cycling and mass extinction. In Da Silva AC, Whalen MT, Hladil J, Chadimova L, Chen D, Spassov S, Boulvain F, Devleeschouwer X Magnetic susceptibility application: a window onto ancient environments and climatic variations, Geological Society London Special Publication, London 414, pp 37–72

    Google Scholar 

  • Whalen MT, De Vleeschouwer DM, Payne JH, Day JE, Over DJ, Claeys P (2016) Pattern and timing of the late Devonian biotic crisis in Western Canada: insights from carbon isotopes and astronomical calibration of magnetic susceptibility data. New Adv Devonian Carbonates Outcrop Analogs Reservoirs Chronostratigraphy 107:185–201

    Google Scholar 

  • White RV (2002) Earth’s biggest ‘whodunnit’: unravelling the clues in the case of the end–Permian mass extinction. Philos Trans R Soc Lond A Math Phys Eng Sci 360:2963–2985

    Article  Google Scholar 

  • Wignall PB, Twitchett RJ (2002) Extent, duration and nature of the Permian–Triassic superanoxic event. In: Koeberl C, MacLeod KG (eds) Catastrophic events and mass extinctions: impacts and beyond, Geological Society of America Special Paper, vol 356. Geological Society of America, Boulder, CO, pp 395–413

    Google Scholar 

  • Wignall PB, Morante R, Newton R (1998) The Permo-Triassic transition in Spitsbergen: 13Corg chemostratigraphy, Fe and S geochemistry, facies, fauna and trace fossils. Geol Mag 135:47–62

    Article  Google Scholar 

  • Wignall PB, Newton R, Brookfield ME (2005) Pyrite framboid evidence for oxygen-poor deposition during the Permian–Triassic crisis in Kashmir. Palaeogeogr Palaeoclimatol Palaeoecol 216:183–188

    Article  Google Scholar 

  • Williams ME (1994) Catastrophic versus noncatastrophic extinction of the dinosaurs: testing, falsifiability, and the burden of proof. J Paleontol 68:183–190

    Article  Google Scholar 

  • Williams JC, Basu AR, Bargava ON, Ahluwalia AD, Hannigan RE (2012) Resolving original signatures from a sea of overprint – the geochemistry of the Gungri Shale (Upper Permian) Spiti Valley India. Chem Geol 324:59–72

    Article  Google Scholar 

  • Wilson M, Lyashkevich ZM (1996) Magmatism and the geodynamics of rifting of the Pripyat–Dnieper–Donets rift, East European Platform. Tectonophysics 268:65–81

    Article  Google Scholar 

  • Wright CW (With Callomon JH & Howarth MK) (1986) Treatise on invertebrate paleontology. Part L. Mollusca (revised), 4. The Geological Society of America and the University of Kansas, p 362

    Google Scholar 

  • Xu D, Ma S, Chai Z, Mao X, Sun Y, Zhang Q w, Yang Z (1985) Abundance variation of Iridium anomalies and trace elements at the Permian/Triassic boundary at Shangsi in China. Nature 314:154–156

    Article  Google Scholar 

  • Zhou L, Kyte FT (1988) The Permian-Triassic boundary event: a geochemical study of three Chinese sections. Earth Planet Sci Lett 90(4):411–421

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to L. Ranjit Singh and Shreya Mishra, Department of Geology, University of Delhi, and K. Deepak Singh, Department of Geology, University of Jammu, for their help in drafting the figures. G.V.R.P. acknowledges funding support from J.C. Bose National Fellowship from SERB, New Delhi, for this work. V.P. also thanks SERB for financial support in the form of a major research project (EMR/2017/004143).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Prasad, G.V.R., Parmar, V. (2020). Phanerozoic Mass Extinctions and Indian Stratigraphic Records. In: Gupta, N., Tandon, S. (eds) Geodynamics of the Indian Plate. Springer Geology. Springer, Cham. https://doi.org/10.1007/978-3-030-15989-4_9

Download citation

Keywords

Publish with us

Policies and ethics