Skip to main content

Digital Technology in Endodontics

  • Chapter
  • First Online:

Abstract

Following the growing digitalization occurring in many fields of restorative dentistry, digital technologies are now started to be applied in endodontics as well. This chapter describes how we can take advantages of digital technologies in endodontics. There is a common understanding that digital information provided by conventional 2D periapical radiograph or 3D cone beam computerized tomography are essential for diagnosis. However, merging this information with that coming from intraoral scanners is relatively recent in the field of endodontics. This approach is borrowed from implant dentistry where preparation for an implant can be virtually planned three-dimensionally (3D) and the optical surface scan allows the production of an accurate guide. Thus, microguided access, in particular where teeth present pulp canal obliterations, and endodontic surgery with surgical templates can now be considered. These two main applications are described in this chapter along with their advantages and drawbacks.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Jung W, Park S, Shin H. Combining volumetric dental CT and optical scan data for teeth modeling. CAD Comput Aided Des. 2015;67–68:24–37.

    Article  Google Scholar 

  2. Shen P, Zhao J, Fan L, Qiu H, Xu W, Wang Y, et al. Accuracy evaluation of computer-designed surgical guide template in oral implantology. J Craniomaxillofac Surg. 2015;43:2189–94.

    Article  Google Scholar 

  3. Matta RE, Bergauer B, Adler W, Wichmann M, Nickenig HJ. The impact of the fabrication method on the three-dimensional accuracy of an implant surgery template. J Craniomaxillofacial Surg. 2017;45(6):804–8.

    Article  Google Scholar 

  4. Cassetta M, Di Mambro A, Giansanti M, Stefanelli LV, Cavallini C. The intrinsic error of a stereolithographic surgical template in implant guided surgery. Int J Oral Maxillofac Surg. 2013;42(2):264–75.

    Article  Google Scholar 

  5. Metska ME, Liem VML, Parsa A, Koolstra JH, Wesselink PR, Ozok AR. Cone-beam computed tomographic scans in comparison with periapical radiographs for root canal length measurement: an in situ study. J Endod. 2014;40(8):1206–9.

    Article  Google Scholar 

  6. Cheng L, Zhang R, Yu X, Tian Y, Wang H, Zheng G, et al. A comparative analysis of periapical radiography and cone-beam computerized tomography for the evaluation of endodontic obturation length. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2011;112(3):383–9.

    Article  Google Scholar 

  7. Guo J, Simon JH, Sedghizadeh P, Soliman ON, Chapman T, Enciso R. Evaluation of the reliability and accuracy of using cone-beam computed tomography for diagnosing periapical cysts from granulomas. J Endod. 2013;39(12):1485–90.

    Article  Google Scholar 

  8. Fayad MI, Nair M, Levin MD, Benavides E, Rubinstein RA, Barghan S, et al. AAE and AAOMR Joint Position Statement: use of cone beam computed tomography in endodontics 2015 update. Oral Surg Oral Med Oral Pathol Oral Radiol. 2015;120(4):508–12.

    Article  Google Scholar 

  9. Patel S, Horner K. The use of cone beam computed tomography in endodontics. Int Endod J. 2009;42(9):755–6.

    Article  Google Scholar 

  10. Lofthag-Hansen S, Huumonen S, Gröndahl K, Gröndahl HG. Limited cone-beam CT and intraoral radiography for the diagnosis of periapical pathology. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2007;103(1):114–9.

    Article  Google Scholar 

  11. Patel S, Durack C, Abella F, Shemesh H, Roig M, Lemberg K. Cone beam computed tomography in endodontics—a review. Int Endod J. 2015;48:3–15.

    Article  Google Scholar 

  12. Chang E, Lam E, Shah P, Azarpazhooh A. Cone-beam computed tomography for detecting vertical root fractures in endodontically treated teeth: a systematic review. J Endod. 2016;42(2):177–85.

    Article  Google Scholar 

  13. Thakur S, Thakur NS, Bramta M, Gupta M. Dens invagination: a review of literature and report of two cases. J Nat Sci Biol Med. 2014;5(1):218–21.

    Article  Google Scholar 

  14. Dillenseger JP, Gros CI, Sayeh A, Rasamimanana J, Lawniczak F, Leminor JM, et al. Image quality evaluation of small FOV and large FOV CBCT devices for oral and maxillofacial radiology. Dentomaxillofac Radiol. 2016;46(1):1–10.

    Google Scholar 

  15. Setzer FC, Hinckley N, Kohli MR, Karabucak B. A survey of cone-beam computed tomographic use among endodontic practitioners in the United States. J Endod. 2017;43(5):699–704.

    Article  Google Scholar 

  16. Vibhute NK, Anikhet HV, Rajendra TD, Puja PB, Aditi M. Hard facts about stones: pulpal calcifications: a review. J Pat Care. 2016;2(1):2–5.

    Google Scholar 

  17. da Silva EJNLJNL, Prado MC, Queiroz PM, Nejaim Y, Brasil DM, Groppo FC, et al. Assessing pulp stones by cone-beam computed tomography. Clin Oral Investig. 2016;21(7):2327–33.

    Article  Google Scholar 

  18. Arys A, Philippart CDN. Microradiography and light microscopy of mineralization in the pulp of undermineralized human primary molars. J Oral Pathol Med. 1993;22(2):49–53.

    Article  Google Scholar 

  19. Chandler NP, Pitt Ford TR, Monteith BD. Coronal pulp size in molars: a study of bitewing radiographs. Int Endod J. 2003;36(11):757–63.

    Article  Google Scholar 

  20. Berès F, Isaac J, Mouton L, Rouzi S. Comparative physicochemical analysis of pulp stone and dentin. J Endod. 2016;42(3):432–8.

    Article  Google Scholar 

  21. Brodin P, Linge L, Aars H. Messung der aktuellen Pulpadurchblutung nach orthodontischer Kraftapplikation. J Orofac Orthop. 1996;57(5):306–9.

    Article  Google Scholar 

  22. Oginni AO, Adekoya-Sofowora CA, Kolawole KA. Evaluation of radiographs, clinical signs and symptoms associated with pulp canal obliteration: an aid to treatment decision. Dent Traumatol. 2009;25(6):620–5.

    Article  Google Scholar 

  23. McCabe PS, Dummer PMHH. Pulp canal obliteration: an endodontic diagnosis and treatment challenge. Int Endod J. 2012;45(2):177–97.

    Article  Google Scholar 

  24. American Association of Endodontists. AAE endodontic case difficulty assessment form and guidelines [Internet]. 2005.

    Google Scholar 

  25. Tsesis I, Rosen E, Taschieri S, Telishevsky Strauss Y, Ceresoli V, Del Fabbro M. Outcomes of surgical endodontic treatment performed by a modern technique: an updated meta-analysis of the literature. J Endod. 2013;39(3):332–9.

    Article  Google Scholar 

  26. Tsesis I, Faivishevsky V, Kfir A, Rosen E. Outcome of surgical endodontic treatment performed by a modern technique: a meta-analysis of literature. J Endod. 2009;35(11):1505–11.

    Article  Google Scholar 

  27. Song M, Shin SJ, Kim E. Outcomes of endodontic micro-resurgery: a prospective clinical study. J Endod. 2011;37(3):316–20.

    Article  Google Scholar 

  28. Del Fabbro M, Corbella S, Sequeira-Byron P, Tsesis I, Rosen E, Lolato A, et al. Endodontic procedures for retreatment of periapical lesions. Cochrane Database Syst Rev. 2016;(10):CD005511.

    Google Scholar 

  29. Setzer FC, Kohli MR, Shah SB, Karabucak B, Kim S. Outcome of endodontic surgery: a meta-analysis of the literature—Part 2: Comparison of endodontic microsurgical techniques with and without the use of higher magnification. J Endod. 2012;38(1):1–10.

    Article  Google Scholar 

  30. Kohli MR, Berenji H, Setzer FC, Lee S-M, Karabucak B. Outcome of endodontic surgery: a meta-analysis of the literature—Part 3: Comparison of endodontic microsurgical techniques with 2 different root-end filling materials. J Endod. 2018;44(6):923–31.

    Article  Google Scholar 

  31. Chércoles-Ruiz A, Sanchez-Torres A, Gay-Escoda C, Sánchez-Torres A, Gay-Escoda C. Surgery versus tooth extraction and implant placement: a systematic review. J Endod. 2017;43(5):679–86.

    Article  Google Scholar 

  32. Setzer FC, Kim S. Comparison of long-term survival of implants and endodontically treated teeth. J Dent Res. 2014;93(1):19–26.

    Article  Google Scholar 

  33. Neumeister A, Schulz L, Glodecki C. Investigations on the accuracy of 3D-printed drill guides for dental implantology. Int J Comput Dent. 2017;20(1):35–51.

    PubMed  Google Scholar 

  34. Kernen F, Benic GI, Payer M, Schär A, Müller-Gerbl M, Filippi A, et al. Accuracy of three-dimensional printed templates for guided implant placement based on matching a surface scan with CBCT. Clin Implant Dent Relat Res. 2016;18(4):762–8.

    Article  Google Scholar 

  35. Richert R, Goujat A, Venet L, Viguie G, Viennot S, Robinson P, et al. Intraoral scanner technologies: a review to make a successful impression. J Healthc Eng. 2017;2017:8427595.

    Article  Google Scholar 

  36. Mangano F, Gandolfi A, Luongo G, Logozzo S. Intraoral scanners in dentistry: a review of the current literature. BMC Oral Health. 2017;17(1):1–11.

    Article  Google Scholar 

  37. Kim JE, Amelya A, Shin Y, Shim JS. Accuracy of intraoral digital impressions using an artificial landmark. J Prosthet Dent. 2017;117(6):755–61.

    Article  Google Scholar 

  38. Giacomino CM, Ray JJ, Wealleans JA. Targeted endodontic microsurgery: a novel approach to anatomically challenging scenarios using 3-dimensional-printed guides and trephine burs—a report of 3 cases. J Endod. 2018;44(4):671–7.

    Article  Google Scholar 

  39. Ahn SY, Kim NH, Kim S, Karabucak B, Kim E. Computer-aided design/computer-aided manufacturing-guided endodontic surgery: guided osteotomy and apex localization in a mandibular molar with a thick buccal bone plate. J Endod. 2018;44(4):665–70.

    Article  Google Scholar 

  40. Connert T, Zehnder MS, Amato M, Weiger R, Kühl S, Krastl G. Microguided endodontics: a method to achieve minimally invasive access cavity preparation and root canal location in mandibular incisors using a novel computer-guided technique. Int Endod J. 2018;51(2):247–55.

    Article  Google Scholar 

  41. Hoang D, Perrault D, Stevanovic M, Ghiassi A. Surgical applications of three-dimensional printing: a review of the current literature & how to get started. Ann Transl Med. 2016;4(23):456.

    Article  Google Scholar 

  42. Zehnder MS, Connert T, Weiger R, Krastl G, Kühl S. Guided endodontics: accuracy of a novel method for guided access cavity preparation and root canal location. Int Endod J. 2016;49(10):966–72.

    Article  Google Scholar 

  43. Connert T, Zehnder MS, Weiger R, Kühl S, Krastl G. Microguided endodontics: accuracy of a miniaturized technique for apically extended access cavity preparation in anterior teeth. J Endod. 2017;43(5):787–90.

    Article  Google Scholar 

  44. Krastl G, Zehnder MS, Connert T, Weiger R, Kühl S. Guided endodontics: a novel treatment approach for teeth with pulp canal calcification and apical pathology. Dent Traumatol. 2016;32(3):240–6.

    Article  Google Scholar 

  45. Strbac GD, Schnappauf A, Giannis K, Moritz A, Ulm C. Guided modern endodontic surgery: a novel approach for guided osteotomy and root resection. J Endod. 2017;43(3):496–501.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexis Gaudin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gaudin, A., Pérez, F., Galicia, J. (2019). Digital Technology in Endodontics. In: Tamimi, F., Hirayama, H. (eds) Digital Restorative Dentistry . Springer, Cham. https://doi.org/10.1007/978-3-030-15974-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-15974-0_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-15973-3

  • Online ISBN: 978-3-030-15974-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics