Skip to main content

Sequencing Proteins from Bottom to Top: Combining Techniques for Full Sequence Analysis of Glucokinase

  • Chapter
  • First Online:
Advancements of Mass Spectrometry in Biomedical Research

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1140))

Abstract

Proteomics-based mass spectrometry has gained increasing amounts of popularity in recent years. In particular, high resolution accurate mass measurements in mass spectrometry has gained notoriety for giving the capability of high throughput analysis with lower cost to the user. In particular, its uses in the identification of protein sequence through the utilization of bottom-up, middle-down, and top-down approaches has been widely discussed. In this chapter, we discuss the advantages of each technique as well as using the techniques in tandem to gain well-rounded structural data on our protein of interest, glucokinase. The study will focus on the use of Fourier-transform ion cyclotron resonance (FT-ICR) mass spectrometry, but give insights into the advantages that may come from the utilization of other high resolution techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Westermeier, R., & Naven, T. (2002). Proteomics in practice. Hoboken, NJ: John Wiley & Sons.

    Book  Google Scholar 

  2. Loo, J., & Ogorzalek Loo, R. R. (1997). Electrospray ionization mass spectrometry of peptides and proteins. In R. B. Cole (Ed.), Electrospray ionization mass spectrometry fundamentals instrumentation & applications. Hoboken, NJ: John Wiley & Sons.

    Google Scholar 

  3. Ghase, M., Mistrik, R., & Shulaev, V. (2016). Application of Fourier transform ion cyclotron resonance (FT-ICR) and orbitrap based high resolution mass spectrometry in metabolomics and lipidomics. International Journal of Molecular Sciences, 17, 816.

    Article  Google Scholar 

  4. van den Heuvel, R. H. H., van Duijin, E., Mazon, H., Synowsky, S. A., Lorenzen, K., Versluis, C., Brouns, S. J. J., Langridge, D., van der Oost, J., Hoyes, J., & Heck, A. J. R. (2006). Improving the performance of a quadrupole time-of-flight instrument for macromolecular mass spectrometry. Analytical Chemistry, 78(21), 7473.

    Google Scholar 

  5. de Hoffman, E., & Stroobant, V. (2007). Mass spectrometry: Principles and applications (3rd ed.). Hoboken, NJ: John Wiley & Sons.

    Google Scholar 

  6. Domon, B., & Aebersold, R. (2006). Mass spectrometry and protein analysis. Science, 312(5771), 212.

    Article  CAS  Google Scholar 

  7. Aebersold, R., & Mann, M. (2003). Mass spectrometry-based proteomics. Nature, 422(6928), 198.

    Article  CAS  Google Scholar 

  8. Zubarev, R. A., & Makarov, A. (2013). Orbitrap mass spectrometry. Analytical Chemistry, 85, 52888.

    Article  Google Scholar 

  9. Lesur, A., & Domon, B. (2014). Advances in high-resolution accurate mass spectrometry application to targeted proteomics. Proteomics, 15(5–6), 880.

    Google Scholar 

  10. Marshall, A. G., Hendrickson, C. L., & Jackson, G. L. (1998). Fourier transform ion cyclotron resonance mass spectrometry: A primer. Mass Spectrometry Reviews, 17, 1.

    Article  CAS  Google Scholar 

  11. Bogdanov, B., & Smith, R. D. (2004). Proteomics by FTICR mass spectrometry: Top down and bottom up. Mass Spectrometry Reviews, 24(2), 168.

    Article  Google Scholar 

  12. Beitner, R. (1985). Regulation of carbohydrate metabolism (Vol. 1). Boca Raton, NJ: CRC Press.

    Google Scholar 

  13. Iynedijian, P. B. (2009). Molecular physiology of mammalian glucokinase. Cellular and Molecular Life Sciences, 66, 27.

    Article  Google Scholar 

  14. Pilkis, S. J., Weber, I. T., Harrison, R. W., & Bell, G. I. (1994). Glucokinase: Structural analysis of a protein involved in susceptibility to diabetes. The Journal of Biological Chemistry, 269(35), 21925.

    CAS  PubMed  Google Scholar 

  15. Kamata, K., Mitsuya, M., Nishimura, T., Eiki, J., & Nagata, Y. (2004). Structural basis for allosteric regulation of the monomeric allosteric enzyme human glucokinase. Structure, 12, 429.

    Article  CAS  Google Scholar 

  16. Hengartner, H., & Zuber, H. (1973). Isolation and characterization of a thermophilic glucokinase from Bacillus Stearothermophilus. FEBS Letters, 37(2), 212.

    Article  CAS  Google Scholar 

  17. Han, X., Aslanian, A., & Yates III, J. R. (2008). Mass spectrometry for proteomics. Current Opinion in Chemical Biology, 12(5), 483.

    Article  CAS  Google Scholar 

  18. Zhang, Y., Fonslow, B. R., Shan, B., Baek, M., & Yates III, J. R. (2013). Protein analysis by shotgun/bottom-up proteomics. Chemical Reviews, 113(4), 2343.

    Article  CAS  Google Scholar 

  19. Gabelica, V., & De Pauw, E. (2004). Internal energy and fragmentation of ions produced in electrospray sources. Mass Spectrometry Reviews, 24(4), 566.

    Article  Google Scholar 

  20. Kinter, M., & Sherman, N. E. (2000). Protein sequencing and identification using tandem mass spectrometry. Hoboken, NJ: John Wiley & Sons.

    Book  Google Scholar 

  21. Armirotti, A. (2009). Bottom-up proteomics. Current Analytical Chemistry, 5, 116.

    Article  CAS  Google Scholar 

  22. Ahn, J., Cao, M., Yu, Y. Q., & Engen, J. R. (2013). Accessing the reproducibility and specificity of pepsin and other aspartic proteases. BBA - Proteins and Proteomics, 1834(6), 1222.

    Article  CAS  Google Scholar 

  23. Zenaidee, M. A., & Donald, W. A. (2015). Extremely supercharged proteins in mass spectrometry: Profiling the pH of electrospray generated droplets, narrowing charge state distributions, and increasing ion fragmentation. Analyst, 140, 1894.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Craig Dufresne (ThermoFisher) for his support and expertise in bringing this project to light. We gratefully acknowledge the financial support of the National Institutes of Health through the National Center for Research Resources (Grant #S10-RR029517-01) for providing funding used to obtain the instrumentation used in the research and the University at Buffalo for financial support for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Troy D. Wood .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sekera, E.R., Wood, T.D. (2019). Sequencing Proteins from Bottom to Top: Combining Techniques for Full Sequence Analysis of Glucokinase. In: Woods, A., Darie, C. (eds) Advancements of Mass Spectrometry in Biomedical Research. Advances in Experimental Medicine and Biology, vol 1140. Springer, Cham. https://doi.org/10.1007/978-3-030-15950-4_6

Download citation

Publish with us

Policies and ethics