Skip to main content

Trends in Analysis of Cortisol and Its Derivatives

  • Chapter
  • First Online:
Book cover Advancements of Mass Spectrometry in Biomedical Research

Abstract

Determination of concentration of cortisol in various biological fluids can provide extensive information about a person’s health. Historically, cortisol and its derivatives were (and still are) determined using immunoaffinity-based methods such as colorimetric ELISA assay, chemiluminescent immunoassay, fluorescence assays, radioimmunoassay, electrochemiluminescence immunoassay, immunochromatographic test, or sensors and immunosensors. Recently, mass spectrometry (MS)-based methods started to be used in determination of cortisol and its derivatives. These MS methods are net superior to immunoaffinity-based assays, but are not easily applicable and are also time-consuming and price prohibitive. Furthermore the standard MS instruments used are triple quadrupole instruments. Here we review the literature on the MS and non-MS based methods for determination of cortisol and its derivatives and also explore the use of a less used quadrupole-time of flight instrument in determination of these compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kanaley, J. A., Weltman, J. Y., Pieper, K. S., Weltman, A., & Hartman, M. L. (2001). Cortisol and growth hormone responses to exercise at different times of day. The Journal of Clinical Endocrinology & Metabolism, 86(6), 2881–2889.

    CAS  Google Scholar 

  2. Gleeson, M., Bishop, N. C., Stensel, D. J., Lindley, M. R., Mastana, S. S., & Nimmo, M. A. (2011). The anti-inflammatory effects of exercise: Mechanisms and implications for the prevention and treatment of disease. Nature Reviews Immunology, 11(9), 607.

    CAS  PubMed  Google Scholar 

  3. Biondi, M., & Picardi, A. (1999). Psychological stress and neuroendocrine function in humans: The last two decades of research. Psychotherapy and Psychosomatics, 68(3), 114–150.

    CAS  PubMed  Google Scholar 

  4. Stansbury, K., & Gunnar, M. R. (1994). Adrenocortical activity and emotion regulation. Monographs of the Society for Research in Child Development, 59(2–3), 108–134.

    CAS  PubMed  Google Scholar 

  5. Sapolsky, R. M., Romero, L. M., & Munck, A. U. (2000). How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocrine Reviews, 21(1), 55–89.

    CAS  PubMed  Google Scholar 

  6. Ousova, O., Guyonnet-Duperat, V., Iannuccelli, N., Bidanel, J.-P., Milan, D., Genêt, C., et al. (2004). Corticosteroid binding globulin: A new target for cortisol-driven obesity. Molecular Endocrinology, 18(7), 1687–1696.

    CAS  PubMed  Google Scholar 

  7. Lovallo, W. R., & Thomas, T. L. (2000). Stress hormones in psychophysiological research: Emotional, behavioral, and cognitive implications. In J. T. Cacioppo, L. G. Tassinary, & G. G. Berntson (Eds.), Handbook of psychophysiology (pp. 342–367). New York, NY: Cambridge University Press.

    Google Scholar 

  8. Crown, A., & Lightman, S. (2005). Why is the management of glucocorticoid deficiency still controversial: A review of the literature. Clinical Endocrinology, 63(5), 483–492.

    CAS  PubMed  Google Scholar 

  9. Keenan, D. M., Roelfsema, F., & Veldhuis, J. D. (2004). Endogenous ACTH concentration-dependent drive of pulsatile cortisol secretion in the human. American Journal of Physiology-Endocrinology and Metabolism, 287(4), E652–E661.

    CAS  PubMed  Google Scholar 

  10. Mulrow, P. (1972). The adrenal cortex. Annual Review of Physiology, 34(1), 409–424.

    CAS  PubMed  Google Scholar 

  11. Sawchenko, P., Li, H., & Ericsson, A. (2000). Circuits and mechanisms governing hypothalamic responses to stress: A tale of two paradigms. Progress in Brain Research, 122, 61–80.

    CAS  PubMed  Google Scholar 

  12. Young, E. A., Abelson, J., & Lightman, S. L. (2004). Cortisol pulsatility and its role in stress regulation and health. Frontiers in Neuroendocrinology, 25(2), 69–76.

    CAS  PubMed  Google Scholar 

  13. Simpson, E. R., & Waterman, M. R. (1988). Regulation of the synthesis of steroidogenic enzymes in adrenal cortical cells by ACTH. Annual Review of Physiology, 50(1), 427–440.

    CAS  PubMed  Google Scholar 

  14. Goto, M., Hanley, K. P., Marcos, J., Wood, P. J., Wright, S., Postle, A. D., et al. (2006). In humans, early cortisol biosynthesis provides a mechanism to safeguard female sexual development. The Journal of Clinical Investigation, 116(4), 953–960.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Westphal, U. (1986). Steroid-protein interactions revisited. In Steroid-Protein Interactions II (pp. 1–7). New York: Springer.

    Google Scholar 

  16. Haourigui, M., Sakr, S., Martin, M., Thobie, N., Girard-Globa, A., Benassayag, C., et al. (1995). Postprandial free fatty acids stimulate activity of human corticosteroid binding globulin. American Journal of Physiology-Endocrinology and Metabolism, 269(6), E1067–E1075.

    CAS  Google Scholar 

  17. Liu, P. Y., Death, A. K., & Handelsman, D. J. (2003). Androgens and cardiovascular disease. Endocrine Reviews, 24(3), 313–340.

    CAS  PubMed  Google Scholar 

  18. Thompson, E. B., & Lippman, M. E. (1974). Mechanism of action of glucocorticoids. Metabolism, 23(2), 159–202.

    CAS  PubMed  Google Scholar 

  19. Desborough, J. (2000). The stress response to trauma and surgery. British Journal of Anaesthesia, 85(1), 109–117.

    CAS  PubMed  Google Scholar 

  20. Levine, A., Zagoory-Sharon, O., Feldman, R., Lewis, J. G., & Weller, A. (2007). Measuring cortisol in human psychobiological studies. Physiology & Behavior, 90(1), 43–53.

    CAS  Google Scholar 

  21. Draper, N., & Stewart, P. M. (2005). 11β-Hydroxysteroid dehydrogenase and the pre-receptor regulation of corticosteroid hormone action. Journal of Endocrinology, 186(2), 251–271.

    CAS  PubMed  Google Scholar 

  22. Horrocks, P., Jones, A., Ratcliffe, W., Holder, G., White, A., Holder, R., et al. (1990). Patterns of ACTH and cortisol pulsatility over twenty-four hours in normal males and females. Clinical Endocrinology, 32(1), 127–134.

    CAS  PubMed  Google Scholar 

  23. Veldhuis, J. D., Iranmanesh, A., Roelfsema, F., Aoun, P., Takahashi, P., Miles, J. M., et al. (2011). Tripartite control of dynamic ACTH-cortisol dose responsiveness by age, body mass index, and gender in 111 healthy adults. The Journal of Clinical Endocrinology & Metabolism, 96(9), 2874–2881.

    CAS  Google Scholar 

  24. Koob, G. F., Heinrichs, S. C., Pich, E. M., Menzaghi, F., Baldwin, H., Miczek, K., et al. (1993). The role of corticotropin-releasing factor in behavioural responses to stress. Corticotropin-releasing factor. Ciba Foundation Symposium, 172, 277.

    CAS  PubMed  Google Scholar 

  25. Munck, A., Guyre, P. M., & Holbrook, N. J. (1984). Physiological functions of glucocorticoids in stress and their relation to pharmacological actions. Endocrine Reviews, 5(1), 25–44.

    CAS  PubMed  Google Scholar 

  26. Khani, S., & Tayek, J. A. (2001). Cortisol increases gluconeogenesis in humans: Its role in the metabolic syndrome. Clinical Science, 101(6), 739–747.

    CAS  PubMed  Google Scholar 

  27. Porte, D., & Woods, S. (1981). Regulation of food intake and body weight by insulin. Diabetologia, 20(1), 274–280.

    CAS  PubMed  Google Scholar 

  28. Björntorp, P. (1996). The regulation of adipose tissue distribution in humans. International Journal of Obesity and Related Metabolic Disorders: Journal of the International Association for the Study of Obesity, 20(4), 291–302.

    Google Scholar 

  29. Kotelevtsev, Y., Holmes, M. C., Burchell, A., Houston, P. M., Schmoll, D., Jamieson, P., et al. (1997). 11β-Hydroxysteroid dehydrogenase type 1 knockout mice show attenuated glucocorticoid-inducible responses and resist hyperglycemia on obesity or stress. Proceedings of the National Academy of Sciences, 94(26), 14924–14929.

    CAS  Google Scholar 

  30. Seckl, J. R., Morton, N., Chapman, K. E., & Walker, B. R. (2004). Glucocorticoids and 11beta-hydroxysteroid dehydrogenase in adipose tissue. Recent Progress in Hormone Research, 59, 359–394.

    CAS  PubMed  Google Scholar 

  31. Epel, E., Lapidus, R., McEwen, B., & Brownell, K. (2001). Stress may add bite to appetite in women: A laboratory study of stress-induced cortisol and eating behavior. Psychoneuroendocrinology, 26(1), 37–49.

    CAS  PubMed  Google Scholar 

  32. O’connor, T., O’halloran, D., & Shanahan, F. (2000). The stress response and the hypothalamic-pituitary-adrenal axis: From molecule to melancholia. QJM, 93(6), 323–333.

    Google Scholar 

  33. Hellhammer, D. H., Wüst, S., & Kudielka, B. M. (2009). Salivary cortisol as a biomarker in stress research. Psychoneuroendocrinology, 34(2), 163–171.

    CAS  PubMed  Google Scholar 

  34. Torres, S. J., & Nowson, C. A. (2007). Relationship between stress, eating behavior, and obesity. Nutrition, 23(11–12), 887–894.

    PubMed  Google Scholar 

  35. Association, A.D. (2014). Diagnosis and classification of diabetes mellitus. Diabetes Care, 37(Supplement 1), S81–S90.

    Google Scholar 

  36. Kiecolt-Glaser, J. K., & Glaser, R. (2002). Depression and immune function: Central pathways to morbidity and mortality. Journal of Psychosomatic Research, 53(4), 873–876.

    PubMed  Google Scholar 

  37. Walker, B. R., Connacher, A. A., Webb, D. J., & Edwards, C. R. (1992). Glucocorticoids and blood pressure: A role for the cortisol/cortisone shuttle in the control of vascular tone in man. Clinical Science, 83(2), 171–178.

    CAS  PubMed  Google Scholar 

  38. Perretti, M., & D’acquisto, F. (2009). Annexin A1 and glucocorticoids as effectors of the resolution of inflammation. Nature Reviews Immunology, 9(1), 62.

    Google Scholar 

  39. Serhan, C. N., & Savill, J. (2005). Resolution of inflammation: The beginning programs the end. Nature Immunology, 6(12), 1191.

    CAS  PubMed  Google Scholar 

  40. Miller, A. L. (2006). Textbook of functional medicine. Alternative Medicine Review, 11(2), 162–163.

    Google Scholar 

  41. Traish, A. M., Guay, A., Feeley, R., & Saad, F. (2009). The dark side of testosterone deficiency: I. metabolic syndrome and erectile dysfunction. Journal of Andrology, 30(1), 10–22.

    CAS  PubMed  Google Scholar 

  42. Genazzani, A., Lemarchand-Beraud, T., Aubert, M., Felber, J., Muller, A., Lavanchy, M., et al. (1975). Pattern of plasma ACTH, hGH, and cortisol during menstrual cycle. The Journal of Clinical Endocrinology & Metabolism, 41(3), 431–437.

    CAS  Google Scholar 

  43. Maccari, S., Darnaudery, M., Morley-Fletcher, S., Zuena, A., Cinque, C., & Van Reeth, O. (2003). Prenatal stress and long-term consequences: Implications of glucocorticoid hormones. Neuroscience & Biobehavioral Reviews, 27(1–2), 119–127.

    CAS  Google Scholar 

  44. Vining, R. F., McGinley, R. A., & Symons, R. G. (1983). Hormones in saliva: Mode of entry and consequent implications for clinical interpretation. Clinical Chemistry, 29(10), 1752–1756.

    CAS  PubMed  Google Scholar 

  45. Teruhisa, U., Ryoji, H., Taisuke, I., Tatsuya, S., Fumihiro, M., & Tatsuo, S. (1981). Use of saliva for monitoring unbound free cortisol levels in serum. Clinica Chimica Acta, 110(2–3), 245–253.

    Google Scholar 

  46. Wedekind, D., Bandelow, B., Broocks, A., Hajak, G., & Rüther, E. (2000). Salivary, total plasma and plasma free cortisol in panic disorder. Journal of Neural Transmission, 107(7), 831–837.

    CAS  PubMed  Google Scholar 

  47. Kirschbaum, C., & Hellhammer, D. H. (1994). Salivary cortisol in psychoneuroendocrine research: Recent developments and applications. Psychoneuroendocrinology, 19(4), 313–333.

    CAS  PubMed  Google Scholar 

  48. Kirschbaum, C., & Hellhammer, D. H. (1989). Salivary cortisol in psychobiological research: An overview. Neuropsychobiology, 22(3), 150–169.

    CAS  PubMed  Google Scholar 

  49. Vining, R. F., & McGinley, R. A. (1987). The measurement of hormones in saliva: Possibilities and pitfalls. Journal of Steroid Biochemistry, 27(1–3), 81–94.

    CAS  PubMed  Google Scholar 

  50. Halbreich, U., Asnis, G. M., Shindledecker, R., Zumoff, B., & Nathan, R. S. (1985). Cortisol secretion in endogenous depression: I. Basal plasma levels. Archives of General Psychiatry, 42(9), 904–908.

    CAS  PubMed  Google Scholar 

  51. Meulenberg, P., & Hofman, J. (1990). The effect of oral contraceptive use and pregnancy on the daily rhythm of cortisol and cortisone. Clinica Chimica Acta, 190(3), 211–221.

    CAS  Google Scholar 

  52. Kudielka, B. M., Hellhammer, D. H., & Wüst, S. (2009). Why do we respond so differently? Reviewing determinants of human salivary cortisol responses to challenge. Psychoneuroendocrinology, 34(1), 2–18.

    CAS  PubMed  Google Scholar 

  53. Vining, R. F., McGinley, R. A., Maksvytis, J. J., & Ho, K. Y. (1983). Salivary cortisol: A better measure of adrenal cortical function than serum cortisol. Annals of Clinical Biochemistry, 20(6), 329–335.

    CAS  PubMed  Google Scholar 

  54. Sakamoto, T., Yoshiki, M., Takahashi, H., Yoshida, M., Ogino, Y., Ikeuchi, T., et al. (2016). Principal function of mineralocorticoid signaling suggested by constitutive knockout of the mineralocorticoid receptor in medaka fish. Scientific Reports, 6, 37991.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. de Kloet, E. R., Oitzl, M. S., & Joels, M. (1999). Stress and cognition: Are corticosteroids good or bad guys? Trends in Neurosciences, 22(10), 422–426.

    PubMed  Google Scholar 

  56. Cidlowski, J. A., King, K. L., EvansStorms, R. B., Montague, J. W., Bortner, C. D., & Hughes, F. M. (1996). The biochemistry and molecular biology of glucocorticoid-induced apoptosis in the immune system. Recent Progress in Hormone Research, 51, 457–491.

    CAS  PubMed  Google Scholar 

  57. Keller, S. E., Weiss, J. M., Schleifer, S. J., Miller, N. E., & Stein, M. (1983). Stress-induced suppression of immunity in Adrenalectomized rats. Science, 221(4617), 1301–1304.

    CAS  PubMed  Google Scholar 

  58. Mann, C. L., & Cidlowski, J. A. (2001). Glucocorticoids regulate plasma membrane potential during rat thymocyte apoptosis in vivo and in vitro. Endocrinology, 142(1), 421–429.

    CAS  PubMed  Google Scholar 

  59. Saleh, A., Srinivasula, S. M., Acharya, S., Fishel, R., & Alnemri, E. S. (1999). Cytochrome c and dATP-mediated oligomerization of Apaf-1 is a prerequisite for procaspase-9 activation. Journal of Biological Chemistry, 274(25), 17941–17945.

    CAS  PubMed  Google Scholar 

  60. Herr, I., Gassler, N., Friess, H., & Buchler, M. W. (2007). Regulation of differential pro- and anti-apoptotic signaling by glucocorticoids. Apoptosis, 12(2), 271–291.

    CAS  PubMed  Google Scholar 

  61. Meagher, L. C., Cousin, J. M., Seckl, J. R., & Haslett, C. (1996). Opposing effects of glucocorticoids on the rate of apoptosis in neutrophilic and eosinophil granulocytes. Journal of Immunology, 156(11), 4422–4428.

    CAS  Google Scholar 

  62. Gulliford, M. C., Charlton, J., & Latinovic, R. (2006). Risk of diabetes associated with prescribed glucocorticoids in a large population. Diabetes Care, 29(12), 2728–2729.

    CAS  PubMed  Google Scholar 

  63. Losel, R. M., & Wehling, M. (2008). Classic versus non-classic receptors for nongenomic mineralocorticoid responses: Emerging evidence. Frontiers in Neuroendocrinology, 29(2), 258–267.

    PubMed  Google Scholar 

  64. Naray-Fejes-Toth, A., & Fejes-Toth, G. (2000). The sgk, an aldosterone-induced gene in mineralocorticoid target cells, regulates the epithelial sodium channel. Kidney International, 57(4), 1290–1294.

    CAS  PubMed  Google Scholar 

  65. Kassahn, K. S., Ragan, M. A., & Funder, J. W. (2011). Mineralocorticoid receptors: Evolutionary and pathophysiological considerations. Endocrinology, 152(5), 1883–1890.

    CAS  PubMed  Google Scholar 

  66. Funder, J. W. (2017). Aldosterone and mineralocorticoid receptors-physiology and pathophysiology. International Journal of Molecular Sciences, 18(5).

    PubMed Central  Google Scholar 

  67. Edelman, I. S., Bogoroch, R., Porter, G. A., & Rossier, B. C. (1999). On the mechanism of action of aldosterone on sodium transport: The role of protein synthesis. Journal of the American Society of Nephrology, 10(3), 675–676.

    CAS  PubMed  Google Scholar 

  68. Ong, G. S. Y., & Young, M. J. (2017). Mineralocorticoid regulation of cell function: The role of rapid signalling and gene transcription pathways. Journal of Molecular Endocrinology, 58(1), R33–R57.

    CAS  PubMed  Google Scholar 

  69. Marney, A. M., & Brown, N. J. (2007). Aldosterone and end-organ damage. Clinical Science, 113(5–6), 267–278.

    CAS  PubMed  Google Scholar 

  70. Lavall, D., Schuster, P., Selzer, C., Adam, O., Schaefers, H. J., Boehm, M., et al. (2013). The mineralocorticoid receptor promotes pro-fibrotic remodeling in atrial fibrillation. European Heart Journal, 34, 749.

    Google Scholar 

  71. Belden, Z., Deiuliis, J. A., Dobre, M., & Rajagopalan, S. (2017). The role of the mineralocorticoid receptor in inflammation: Focus on kidney and vasculature. American Journal of Nephrology, 46(4), 298–314.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Di Dalmazi, G., Pagotto, U., Pasquali, R., & Vicennati, V. (2012). Glucocorticoids and type 2 diabetes: From physiology to pathology. J Nutr Metab, 525093(10), 18.

    Google Scholar 

  73. Papich, M. G. (2016). Prednisone. In M. G. Papich (Ed.), Saunders handbook of veterinary drugs (4th ed., pp. 670–672). St. Louis: W.B. Saunders.

    Google Scholar 

  74. Aisen, P. S., Marin, D., Altstiel, L., Goodwin, C., Baruch, B., Jacobson, R., et al. (1996). A pilot study of prednisone in Alzheimer’s disease. Dementia, 7(4), 201–206.

    CAS  PubMed  Google Scholar 

  75. Biondo, M., Field, J., Toh, B. H., & Alderuccio, F. (2006). Prednisolone promotes remission and gastric mucosal regeneration in experimental autoimmune gastritis. The Journal of Pathology, 209(3), 384–391.

    CAS  PubMed  Google Scholar 

  76. Al-Maini, M., & Urowitz, M. (2007). Chapter 45 - Systemic steroids. In G. C. Tsokos, C. Gordon, & J. S. Smolen (Eds.), Systemic lupus erythematosus (pp. 487–497). Philadelphia: Mosby.

    Google Scholar 

  77. Ahuja, C. S., Cadotte, D. W., & Fehlings, M. (2018). 33 - Spinal cord injury. In R. G. Ellenbogen et al. (Eds.), Principles of neurological surgery (4th ed., pp. 518–531.e3). Philadelphia: Elsevier.

    Google Scholar 

  78. Guerrero, J. A., Vicente, V., & Corral, J. (2011). Chapter Seven - Dexamethasone induction of a heat stress response. In P. M. Conn (Ed.), Methods in enzymology (pp. 121–135). San Diego: Academic Press.

    Google Scholar 

  79. Abernethy, A. P., Wheeler, J. L., Kamal, A., & Currow, D. C. (2013). Chapter 9 - When should corticosteroids be used to manage pain? In N. E. Goldstein & R. S. Morrison (Eds.), Evidence-based practice in palliative medicine (pp. 44–48). Philadelphia: W.B. Saunders.

    Google Scholar 

  80. de Kloet, E. R., Ortiz Zacarias, N. V., & Meijer, O. C. (2017). Chapter 37 - Manipulating the brain corticosteroid receptor balance: Focus on ligands and modulators. In G. Fink (Ed.), Stress: Neuroendocrinology and neurobiology (pp. 367–383). San Diego: Academic Press.

    Google Scholar 

  81. Kaufmann, H., & Biaggioni, I. (2010). Chapter 63 - Disorders of the autonomic nervous system. In H. M. Fillit, K. Rockwood, & K. Woodhouse (Eds.), Brocklehurst’s textbook of geriatric medicine and gerontology (7th ed., pp. 498–510). Philadelphia: W.B. Saunders.

    Google Scholar 

  82. Perogamvros, I., Aarons, L., Miller, A. G., Trainer, P. J., & Ray, D. W. (2011). Corticosteroid-binding globulin regulates cortisol pharmacokinetics. Clinical Endocrinology, 74(1), 30–36.

    CAS  PubMed  Google Scholar 

  83. Raff, H., Homar, P. J., & Burns, E. A. (2002). Comparison of two methods for measuring salivary cortisol. Clinical Chemistry, 48(1), 207–208.

    CAS  PubMed  Google Scholar 

  84. Calvi, J. L., Chen, F. R., Benson, V. B., Brindle, E., Bristow, M., De, A., et al. (2017). Measurement of cortisol in saliva: A comparison of measurement error within and between international academic-research laboratories. BMC Research Notes, 10(1), 479.

    PubMed  PubMed Central  Google Scholar 

  85. Carrozza, C., Corsello, S. M., Paragliola, R. M., Ingraudo, F., Palumbo, S., Locantore, P., et al. (2010). Clinical accuracy of midnight salivary cortisol measured by automated electrochemiluminescence immunoassay method in Cushing’s syndrome. Annals of Clinical Biochemistry, 47(Pt 3), 228–232.

    CAS  PubMed  Google Scholar 

  86. Chen, H. L., Chen, Y. L., Wu, L. S., Kaphle, K., & Lin, J. H. (2006). Establishment and application of enzyme immunoassay for saliva cortisol in Taiwanese context. Journal of Immunoassay & Immunochemistry, 27(3), 239–249.

    CAS  Google Scholar 

  87. Chiu, S. K., Collier, C. P., Clark, A. F., & Wynn-Edwards, K. E. (2003). Salivary cortisol on ROCHE Elecsys immunoassay system: Pilot biological variation studies. Clinical Biochemistry, 36(3), 211–214.

    CAS  PubMed  Google Scholar 

  88. Cooper, T. R., Trunkfield, H. R., Zanella, A. J., & Booth, W. D. (1989). An enzyme-linked immunosorbent assay for cortisol in the saliva of man and domestic farm animals. The Journal of Endocrinology, 123(2), R13–R16.

    CAS  PubMed  Google Scholar 

  89. Crewther, B. T., & Cook, C. (2010). Measuring the salivary testosterone and cortisol concentrations of weightlifters using an enzyme-immunoassay kit. International Journal of Sports Medicine, 31(7), 486–489.

    CAS  PubMed  Google Scholar 

  90. Demel, A. W. (1992). Radioimmunologic study of the circadian rhythm of cortisol and melatonin in saliva. Wiener Klinische Wochenschrift, 104(14), 423–425.

    CAS  PubMed  Google Scholar 

  91. Di Nardo, F., Anfossi, L., Ozella, L., Saccani, A., Giovannoli, C., Spano, G., et al. (2016). Validation of a qualitative immunochromatographic test for the noninvasive assessment of stress in dogs. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 1028, 192–198.

    PubMed  Google Scholar 

  92. Fulton, A., Chan, S., & Coleman, G. (1989). Effect of salivary proteins on binding curves of three radioimmunoassay kits: Amerlex-M progesterone, Amerlex cortisol, and biodata testosterone. Clinical Chemistry, 35(4), 641–644.

    CAS  PubMed  Google Scholar 

  93. Gehris, T. L., & Kathol, R. G. (1992). Comparison of time-integrated measurement of salivary corticosteroids by oral diffusion sink technology to plasma cortisol. Endocrine Research, 18(1), 77–89.

    CAS  PubMed  Google Scholar 

  94. Gordon, M. K., Peloso, E., Auker, A., & Dozier, M. (2005). Effect of flavored beverage crystals on salivary cortisol enzyme-immunoreactive assay measurements. Developmental Psychobiology, 47(2), 189–195.

    CAS  PubMed  Google Scholar 

  95. Hanneman, S. K., Cox, C. D., Green, K. E., & Kang, D. H. (2011). Estimating intra- and inter-assay variability in salivary cortisol. Biological Research for Nursing, 13(3), 243–250.

    CAS  PubMed  Google Scholar 

  96. Hansen, A. M., Garde, A. H., Christensen, J. M., Eller, N. H., & Netterstrom, B. (2003). Evaluation of a radioimmunoassay and establishment of a reference interval for salivary cortisol in healthy subjects in Denmark. Scandinavian Journal of Clinical and Laboratory Investigation, 63(4), 303–310.

    CAS  PubMed  Google Scholar 

  97. Hansen, A. M., Garde, A. H., & Persson, R. (2008). Measurement of salivary cortisol–effects of replacing polyester with cotton and switching antibody. Scandinavian Journal of Clinical and Laboratory Investigation, 68(8), 826–829.

    CAS  PubMed  Google Scholar 

  98. Heintz, M. R., Santymire, R. M., Parr, L. A., & Lonsdorf, E. V. (2011). Validation of a cortisol enzyme immunoassay and characterization of salivary cortisol circadian rhythm in chimpanzees (Pan troglodytes). American Journal of Primatology, 73(9), 903–908.

    CAS  PubMed  Google Scholar 

  99. Hubl, W., Taubert, H., Freymann, E., Meissner, D., Stahl, F., & Dorner, G. (1984). A sensitive direct enzyme immunoassay for cortisol in plasma and saliva. Experimental and Clinical Endocrinology, 84(1), 63–70.

    CAS  PubMed  Google Scholar 

  100. Kenwright, K., Liddell, P. W., Bloom, L., Zucker-Levin, A., Nolen, A. H., Faulkner, L. W., et al. (2011). Salivary cortisol levels in students challenged with a testing stressor. Clinical Laboratory Science, 24(4), 221–226.

    PubMed  Google Scholar 

  101. Lippi, G., Dipalo, M., Buonocore, R., Gnocchi, C., Aloe, R., & Delsignore, R. (2016). Analytical evaluation of free testosterone and cortisol immunoassays in saliva as a reliable alternative to serum in sports medicine. Journal of Clinical Laboratory Analysis, 30(5), 732–735.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Miller, R., Plessow, F., Rauh, M., Groschl, M., & Kirschbaum, C. (2013). Comparison of salivary cortisol as measured by different immunoassays and tandem mass spectrometry. Psychoneuroendocrinology, 38(1), 50–57.

    CAS  PubMed  Google Scholar 

  103. Nahoul, K., Patricot, M. C., Bressot, N., Penes, M. C., & Revol, A. (1996). Measurement of salivary cortisol with four commercial kits. Annales de Biologie Clinique, 54(2), 75–82.

    CAS  PubMed  Google Scholar 

  104. Nelson, N., Arbring, K., & Theodorsson, E. (2001). Neonatal salivary cortisol in response to heelstick: Method modifications enable analysis of low concentrations and small sample volumes. Scandinavian Journal of Clinical and Laboratory Investigation, 61(4), 287–291.

    CAS  PubMed  Google Scholar 

  105. Obminski, Z., & Stupnicki, R. (1991). Radioimmunoassay of cortisol in saliva. Endokrynologia Polska, 42(3), 491–498.

    CAS  PubMed  Google Scholar 

  106. Ozgocer, T., Yildiz, S., & Ucar, C. (2017). Development and validation of an enzyme-linked immunosorbent assay for detection of cortisol in human saliva. Journal of Immunoassay & Immunochemistry, 38(2), 147–164.

    CAS  Google Scholar 

  107. Pearson, B. L., Judge, P. G., & Reeder, D. M. (2008). Effectiveness of saliva collection and enzyme-immunoassay for the quantification of cortisol in socially housed baboons. American Journal of Primatology, 70(12), 1145–1151.

    CAS  PubMed  Google Scholar 

  108. Repetto, E. M., Gonzalez, D., Jacobsen, D., Smithuis, F., Jamardo, J., Cano, M., et al. (2017). Evaluation of an automated chemiluminescent immunoassay for salivary cortisol measurement. Utility in the diagnosis of Cushing’s syndrome. Clinical Chemistry and Laboratory Medicine, 55(3), e65–e68.

    Google Scholar 

  109. Sesay, A. M., Micheli, L., Tervo, P., Palleschi, G., & Virtanen, V. (2013). Development of a competitive immunoassay for the determination of cortisol in human saliva. Analytical Biochemistry, 434(2), 308–314.

    CAS  PubMed  Google Scholar 

  110. Shirtcliff, E. A., Buck, R. L., Laughlin, M. J., Hart, T., Cole, C. R., & Slowey, P. D. (2015). Salivary cortisol results obtainable within minutes of sample collection correspond with traditional immunoassays. Clinical Therapeutics, 37(3), 505–514.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Thomsson, O., Strom-Holst, B., Sjunnesson, Y., & Bergqvist, A. S. (2014). Validation of an enzyme-linked immunosorbent assay developed for measuring cortisol concentration in human saliva and serum for its applicability to analyze cortisol in pig saliva. Acta Veterinaria Scandinavica, 56, 55.

    PubMed  PubMed Central  Google Scholar 

  112. Westermann, J., Demir, A., & Herbst, V. (2004). Determination of cortisol in saliva and serum by a luminescence-enhanced enzyme immunoassay. Clinical Laboratory, 50(1–2), 11–24.

    CAS  PubMed  Google Scholar 

  113. Yamaguchi, M., Matsuda, Y., Sasaki, S., Sasaki, M., Kadoma, Y., Imai, Y., et al. (2013). Immunosensor with fluid control mechanism for salivary cortisol analysis. Biosensors & Bioelectronics, 41, 186–191.

    CAS  Google Scholar 

  114. Zangheri, M., Cevenini, L., Anfossi, L., Baggiani, C., Simoni, P., Di Nardo, F., et al. (2015). A simple and compact smartphone accessory for quantitative chemiluminescence-based lateral flow immunoassay for salivary cortisol detection. Biosensors & Bioelectronics, 64, 63–68.

    CAS  Google Scholar 

  115. Turpeinen, U., & Hamalainen, E. (2013). Determination of cortisol in serum, saliva and urine. Best Practice & Research. Clinical Endocrinology & Metabolism, 27(6), 795–801.

    CAS  Google Scholar 

  116. Antonelli, G., Ceccato, F., Artusi, C., Marinova, M., & Plebani, M. (2015). Salivary cortisol and cortisone by LC-MS/MS: Validation, reference intervals and diagnostic accuracy in Cushing’s syndrome. Clinica Chimica Acta, 451(Pt B), 247–251.

    Google Scholar 

  117. Bae, Y. J., Gaudl, A., Jaeger, S., Stadelmann, S., Hiemisch, A., Kiess, W., et al. (2016). Immunoassay or LC-MS/MS for the measurement of salivary cortisol in children? Clinical Chemistry and Laboratory Medicine, 54(5), 811–822.

    CAS  PubMed  Google Scholar 

  118. Zhai, X., Chen, F., Zhu, C., & Lu, Y. (2015). A simple LC-MS/MS method for the determination of cortisol, cortisone and tetrahydro-metabolites in human urine: Assay development, validation and application in depression patients. Journal of Pharmaceutical and Biomedical Analysis, 107, 450–455.

    CAS  PubMed  Google Scholar 

  119. Baid, S. K., Sinaii, N., Wade, M., Rubino, D., & Nieman, L. K. (2007). Radioimmunoassay and tandem mass spectrometry measurement of bedtime salivary cortisol levels: A comparison of assays to establish hypercortisolism. The Journal of Clinical Endocrinology and Metabolism, 92(8), 3102–3107.

    CAS  PubMed  Google Scholar 

  120. Carrozza, C., Lapolla, R., Gervasoni, J., Rota, C. A., Locantore, P., Pontecorvi, A., et al. (2012). Assessment of salivary free cortisol levels by liquid chromatography with tandem mass spectrometry (LC-MS/MS) in patients treated with mitotane. Hormones (Athens, Greece), 11(3), 344–349.

    Google Scholar 

  121. Ceccato, F., Barbot, M., Zilio, M., Frigo, A. C., Albiger, N., Camozzi, V., et al. (2015). Screening tests for Cushing’s syndrome: Urinary free cortisol role measured by LC-MS/MS. The Journal of Clinical Endocrinology and Metabolism, 100(10), 3856–3861.

    CAS  PubMed  Google Scholar 

  122. El-Farhan, N., Rees, D. A., & Evans, C. (2017). Measuring cortisol in serum, urine and saliva - are our assays good enough? Annals of Clinical Biochemistry, 54(3), 308–322.

    CAS  PubMed  Google Scholar 

  123. Erickson, D., Singh, R. J., Sathananthan, A., Vella, A., & Bryant, S. C. (2012). Late-night salivary cortisol for diagnosis of Cushing’s syndrome by liquid chromatography/tandem mass spectrometry assay. Clinical Endocrinology, 76(4), 467–472.

    CAS  PubMed  Google Scholar 

  124. Fustinoni, S., Polledri, E., & Mercadante, R. (2013). High-throughput determination of cortisol, cortisone, and melatonin in oral fluid by on-line turbulent flow liquid chromatography interfaced with liquid chromatography/tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 27(13), 1450–1460.

    CAS  PubMed  Google Scholar 

  125. Gunnala, V., Guo, R., Minutti, C., Durazo-Arvizu, R., Laporte, C., Mathews, H., et al. (2015). Measurement of salivary cortisol level for the diagnosis of critical illness-related corticosteroid insufficiency in children. Pediatric Critical Care Medicine, 16(4), e101–e106.

    PubMed  Google Scholar 

  126. Hawley, J. M., & Keevil, B. G. (2016). Endogenous glucocorticoid analysis by liquid chromatography-tandem mass spectrometry in routine clinical laboratories. The Journal of Steroid Biochemistry and Molecular Biology, 162, 27–40.

    CAS  PubMed  Google Scholar 

  127. Jensen, M. A., Hansen, A. M., Abrahamsson, P., & Norgaard, A. W. (2011). Development and evaluation of a liquid chromatography tandem mass spectrometry method for simultaneous determination of salivary melatonin, cortisol and testosterone. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 879(25), 2527–2532.

    CAS  PubMed  Google Scholar 

  128. Jensen, M. A., Mortier, L., Koh, E., Keevil, B., Hyttinen, S., & Hansen, A. M. (2014). An interlaboratory comparison between similar methods for determination of melatonin, cortisol and testosterone in saliva. Scandinavian Journal of Clinical and Laboratory Investigation, 74(5), 454–461.

    CAS  PubMed  Google Scholar 

  129. Jones, R. L., Owen, L. J., Adaway, J. E., & Keevil, B. G. (2012). Simultaneous analysis of cortisol and cortisone in saliva using XLC-MS/MS for fully automated online solid phase extraction. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 881-882, 42–48.

    CAS  PubMed  Google Scholar 

  130. Jonsson, B. A., Malmberg, B., Amilon, A., Helene Garde, A., & Orbaek, P. (2003). Determination of cortisol in human saliva using liquid chromatography-electrospray tandem mass spectrometry. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 784(1), 63–68.

    CAS  PubMed  Google Scholar 

  131. Kataoka, H., Ehara, K., Yasuhara, R., & Saito, K. (2013). Simultaneous determination of testosterone, cortisol, and dehydroepiandrosterone in saliva by stable isotope dilution on-line in-tube solid-phase microextraction coupled with liquid chromatography-tandem mass spectrometry. Analytical and Bioanalytical Chemistry, 405(1), 331–340.

    CAS  PubMed  Google Scholar 

  132. Kataoka, H., Matsuura, E., & Mitani, K. (2007). Determination of cortisol in human saliva by automated in-tube solid-phase microextraction coupled with liquid chromatography-mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 44(1), 160–165.

    CAS  PubMed  Google Scholar 

  133. Keevil, B. G. (2013). Novel liquid chromatography tandem mass spectrometry (LC-MS/MS) methods for measuring steroids. Best Practice & Research. Clinical Endocrinology & Metabolism, 27(5), 663–674.

    CAS  Google Scholar 

  134. Kobori, Y., Koh, E., Sugimoto, K., Izumi, K., Narimoto, K., Maeda, Y., et al. (2009). The relationship of serum and salivary cortisol levels to male sexual dysfunction as measured by the international index of erectile function. International Journal of Impotence Research, 21(4), 207–212.

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Krumbholz, A., Schonfelder, M., Hofmann, H., & Thieme, D. (2018). The plasma protein binding of the endogenous glucocorticosteroids is of vital importance for the concentrations in hair and saliva. Forensic Science International, 286, 23–30.

    CAS  PubMed  Google Scholar 

  136. Kutsukake, N., Ikeda, K., Honma, S., Teramoto, M., Mori, Y., Hayasaka, I., et al. (2009). Validation of salivary cortisol and testosterone assays in chimpanzees by liquid chromatography-tandem mass spectrometry. American Journal of Primatology, 71(8), 696–706.

    CAS  PubMed  Google Scholar 

  137. Magda, B., Dobi, Z., Meszaros, K., Szabo, E., Marta, Z., Imre, T., et al. (2017). Charged derivatization and on-line solid phase extraction to measure extremely low cortisol and cortisone levels in human saliva with liquid chromatography-tandem mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 140, 223–231.

    CAS  PubMed  Google Scholar 

  138. Matsui, F., Koh, E., Yamamoto, K., Sugimoto, K., Sin, H. S., Maeda, Y., et al. (2009). Liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay for simultaneous measurement of salivary testosterone and cortisol in healthy men for utilization in the diagnosis of late-onset hypogonadism in males. Endocrine Journal, 56(9), 1083–1093.

    CAS  PubMed  Google Scholar 

  139. McWhinney, B. C., Briscoe, S. E., Ungerer, J. P., & Pretorius, C. J. (2010). Measurement of cortisol, cortisone, prednisolone, dexamethasone and 11-deoxycortisol with ultra high performance liquid chromatography-tandem mass spectrometry: Application for plasma, plasma ultrafiltrate, urine and saliva in a routine laboratory. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 878(28), 2863–2869.

    CAS  PubMed  Google Scholar 

  140. Meszaros, K., Karvaly, G., Marta, Z., Magda, B., Toke, J., Szucs, N., et al. (2018). Diagnostic performance of a newly developed salivary cortisol and cortisone measurement using an LC-MS/MS method with simple and rapid sample preparation. Journal of Endocrinological Investigation, 41(3), 315–323.

    CAS  PubMed  Google Scholar 

  141. Mezzullo, M., Fanelli, F., Fazzini, A., Gambineri, A., Vicennati, V., Di Dalmazi, G., et al. (2016). Validation of an LC-MS/MS salivary assay for glucocorticoid status assessment: Evaluation of the diurnal fluctuation of cortisol and cortisone and of their association within and between serum and saliva. The Journal of Steroid Biochemistry and Molecular Biology, 163, 103–112.

    CAS  PubMed  Google Scholar 

  142. Montsko, G., Tarjanyi, Z., Mezosi, E., & Kovacs, G. L. (2014). A validated method for measurement of serum total, serum free, and salivary cortisol, using high-performance liquid chromatography coupled with high-resolution ESI-TOF mass spectrometry. Analytical and Bioanalytical Chemistry, 406(9–10), 2333–2341.

    CAS  PubMed  Google Scholar 

  143. Owen, L. J., Haslam, S., Adaway, J. E., Wood, P., Glenn, C., & Keevil, B. G. (2010). A simplified liquid chromatography tandem mass spectrometry assay, using on-line solid-phase extraction, for the quantitation of cortisol in saliva and comparison with a routine DELFIA method. Annals of Clinical Biochemistry, 47(Pt 2), 131–136.

    CAS  PubMed  Google Scholar 

  144. Palmieri, S., Morelli, V., Polledri, E., Fustinoni, S., Mercadante, R., Olgiati, L., et al. (2013). The role of salivary cortisol measured by liquid chromatography-tandem mass spectrometry in the diagnosis of subclinical hypercortisolism. European Journal of Endocrinology, 168(3), 289–296.

    CAS  PubMed  Google Scholar 

  145. Perogamvros, I., Owen, L. J., Keevil, B. G., Brabant, G., & Trainer, P. J. (2010). Measurement of salivary cortisol with liquid chromatography-tandem mass spectrometry in patients undergoing dynamic endocrine testing. Clinical Endocrinology, 72(1), 17–21.

    CAS  PubMed  Google Scholar 

  146. Perogamvros, I., Owen, L. J., Newell-Price, J., Ray, D. W., Trainer, P. J., & Keevil, B. G. (2009). Simultaneous measurement of cortisol and cortisone in human saliva using liquid chromatography-tandem mass spectrometry: Application in basal and stimulated conditions. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 877(29), 3771–3775.

    CAS  PubMed  Google Scholar 

  147. Raff, H., & Singh, R. J. (2012). Measurement of late-night salivary cortisol and cortisone by LC-MS/MS to assess preanalytical sample contamination with topical hydrocortisone. Clinical Chemistry, 58(5), 947–948.

    CAS  PubMed  Google Scholar 

  148. Rauh, M. (2009). Steroid measurement with LC-MS/MS in pediatric endocrinology. Molecular and Cellular Endocrinology, 301(1–2), 272–281.

    CAS  PubMed  Google Scholar 

  149. Ruiter, A. F., Teeninga, N., Nauta, J., Endert, E., & Ackermans, M. T. (2012). Determination of unbound prednisolone, prednisone and cortisol in human serum and saliva by on-line solid-phase extraction liquid chromatography tandem mass spectrometry and potential implications for drug monitoring of prednisolone and prednisone in saliva. Biomedical Chromatography, 26(7), 789–796.

    CAS  PubMed  Google Scholar 

  150. Turpeinen, U., Valimaki, M. J., & Hamalainen, E. (2009). Determination of salivary cortisol by liquid chromatography-tandem mass spectrometry. Scandinavian Journal of Clinical and Laboratory Investigation, 69(5), 592–597.

    CAS  PubMed  Google Scholar 

  151. Ueland, G. A., Methlie, P., Kellmann, R., Bjorgaas, M., Asvold, B. O., Thorstensen, K., et al. (2017). Simultaneous assay of cortisol and dexamethasone improved diagnostic accuracy of the dexamethasone suppression test. European Journal of Endocrinology, 176(6), 705–713.

    CAS  PubMed  Google Scholar 

  152. van Faassen, M., Bischoff, R., & Kema, I. P. (2017). Relationship between plasma and salivary melatonin and cortisol investigated by LC-MS/MS. Clinical Chemistry and Laboratory Medicine, 55(9), 1340–1348.

    PubMed  Google Scholar 

  153. Vieira, J. G. H., Nakamura, O. H., & Carvalho, V. M. (2014). Determination of cortisol and cortisone in human saliva by a liquid chromatography-tandem mass spectrometry method. Arquivos Brasileiros de Endocrinologia e Metabologia, 58(8), 844–850.

    PubMed  Google Scholar 

  154. Vogeser, M., Durner, J., Seliger, E., & Auernhammer, C. (2006). Measurement of late-night salivary cortisol with an automated immunoassay system. Clinical Chemistry and Laboratory Medicine, 44(12), 1441–1445.

    CAS  PubMed  Google Scholar 

  155. Zerikly, R. K., Amiri, L., Faiman, C., Gupta, M., Singh, R. J., Nutter, B., et al. (2010). Diagnostic characteristics of late-night salivary cortisol using liquid chromatography-tandem mass spectrometry. The Journal of Clinical Endocrinology and Metabolism, 95(10), 4555–4559.

    CAS  PubMed  Google Scholar 

  156. Zhang, Y. V. (2016). Quantitative analysis of salivary cortisol using LC-MS/MS. Methods in Molecular Biology, 1378, 71–79.

    CAS  PubMed  Google Scholar 

  157. Brown, H. A., Calton, L. J., Gillingwater, S. G., Morris, M., & Rossi, C. (2017). Measurement of serum cortisol, androst enedione and 17-hydroxyprogesterone by ultra performance liquid chromatography tandem mass spectrometry. Application Note, Waters Corporation.

    Google Scholar 

  158. Lee, S., Kwon, S., Shin, H. J., Lim, H. S., Singh, R. J., Lee, K. R., et al. (2010). Simultaneous quantitative analysis of salivary cortisol and cortisone in Korean adults using LC-MS/MS. BMB Reports, 43(7), 506–511.

    CAS  PubMed  Google Scholar 

  159. Popot, M. A., Garcia, P., Fournier, F., Bonnaire, Y., & Tabet, J. C. (1998). Different approaches to the identification of a cortisol isomer compound in horse urine. Analyst, 123(12), 2649–2652.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Isagenix Corporation (grant #ISAG-375-100409) for funding that allowed us to determine the concentrations of caffeine and cortisol in saliva samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Costel C. Darie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Boolani, A. et al. (2019). Trends in Analysis of Cortisol and Its Derivatives. In: Woods, A., Darie, C. (eds) Advancements of Mass Spectrometry in Biomedical Research. Advances in Experimental Medicine and Biology, vol 1140. Springer, Cham. https://doi.org/10.1007/978-3-030-15950-4_39

Download citation

Publish with us

Policies and ethics