Sunscreen-Based Skin Protection Against Solar Insult: Molecular Mechanisms and Opportunities

  • Andrea Krajisnik
  • Jessica Perer
  • Georg T. WondrakEmail author


Solar ultraviolet (UV) photons are established environmental carcinogens. Sunscreens (small molecule organic filters that absorb solar UV-photons and particle-sized inorganic filters that reflect and scatter UV-photons) are important topical solar photoprotectants and cancer chemopreventive molecular agents. Based on the emerging consensus that broad-spectrum photoprotection is an effective key component of a sun-safe strategy to reduce lifetime exposure to detrimental cumulative doses of solar UV light, much effort has been directed towards the identification, development, and optimization of photoprotectants that prevent and attenuate solar skin damage, a topic of particular relevance to high-risk patients such as immunosuppressed organ transplant recipients and individuals suffering from conditions associated with extreme photosensitivity. Generally, sunscreen development has aimed at (a) increased absorbance with broadened spectral coverage over the whole UVA/B spectrum, (b) optimized photostability of UV-active chromophores, and (c) prolonged skin residence time with minimal skin penetration and lack of off-target activity and systemic availability upon topical application. Extensive research has focused on the identification of targeted molecular interventions and agents that are expected to synergize with sunscreens and may also provide photoprotective benefit if used in stand-alone topical regimens (referred to as “non-sunscreen photoprotection”) through anti-inflammatory and antioxidant mechanisms. Importantly, recent legislation that responds to ecotoxicological concerns associated with sunscreen use that damages marine environments emphasizes an urgent need for the continuous development of more efficacious and safer molecular and nonmolecular strategies for skin photoprotection.


Sunscreen Photoprotection Skin photodamage Solar ultraviolet radiation Solar exposure Skin cancer Nonmelanoma skin cancer Photochemoprevention Non-sunscreen photoprotection Nutritional photoprotection 


  1. Afaq F, Mukhtar H (2006) Botanical antioxidants in the prevention of photocarcinogenesis and photoaging. Exp Dermatol 15:678–684PubMedCrossRefPubMedCentralGoogle Scholar
  2. Agar NS, Halliday GM, Barnetson RS, Ananthaswamy HN, Wheller M, Jones AM (2004) The basal layer in human squamous tumors harbors more UVA than UVB fingerprint mutations: a role for UVA in human skin carcinogenesis. PNAS 101:4954–4959PubMedCrossRefPubMedCentralGoogle Scholar
  3. Ashby J, Tinwell H, Plautz J, Twomey K, Lefevre PA (2001) Lack of binding to isolated estrogen or androgen receptors, and inactivity in the immature rat uterotrophic assay, of the ultraviolet sunscreen filters Tinosorb M-active and Tinosorb S. Regul Toxicol Pharmacol 34:287–291PubMedCrossRefPubMedCentralGoogle Scholar
  4. Astner S, Wu A, Chen J, Philips N, Rius-Diaz F, Parrado C, Mihm MC, Goukassian DA, Pathak MA, Gonzalez S (2007) Dietary lutein/zeaxanthin partially reduces photoaging and photocarcinogenesis in chronically UVB-irradiated Skh-1 hairless mice. Skin Pharmacol Physiol 20:283–291PubMedCrossRefPubMedCentralGoogle Scholar
  5. auf dem Keller U, Huber M, Beyer TA, Kumin A, Siemes C, Braun S, Bugnon P, Mitropoulos V, Johnson DA, Johnson JA, Hohl D, Werner S (2006) Nrf transcription factors in keratinocytes are essential for skin tumor prevention but not for wound healing. Mol Cell Biol 26:3773–3784PubMedPubMedCentralCrossRefGoogle Scholar
  6. Autier P, Boniol M, Dore JF (2007) Sunscreen use and increased duration of intentional sun exposure: still a burning issue. Int J Cancer 121:1–5PubMedCrossRefPubMedCentralGoogle Scholar
  7. Autier P, Boniol M, Dore JF (2011) Is sunscreen use for melanoma prevention valid for all sun exposure circumstances? J Clin Oncol 29:e425–e426; author reply e427PubMedCrossRefPubMedCentralGoogle Scholar
  8. Baan R, Straif K, Grosse Y, Secretan B, El Ghissassi F, Cogliano V (2006) Carcinogenicity of carbon black, titanium dioxide, and talc. Lancet Oncol 7:295–296PubMedCrossRefPubMedCentralGoogle Scholar
  9. Bech-Thomsen N, Wulf HC (1992) Sunbathers’ application of sunscreen is probably inadequate to obtain the sun protection factor assigned to the preparation. Photodermatol Photoimmunol Photomed 9:242–244PubMedPubMedCentralGoogle Scholar
  10. Beck I, Deflandre A, Lang G, Arnaud R, Lemair J (1981) Study of the photochemical behaviour of sunscreens - benzylidene camphor and derivatives. Int J Cosmet Sci 3:139–152PubMedCrossRefPubMedCentralGoogle Scholar
  11. Benevenuto CG, Guerra LO, Gaspar LR (2015) Combination of retinyl palmitate and UV-filters: phototoxic risk assessment based on photostability and in vitro and in vivo phototoxicity assays. Eur J Pharm Sci 68:127–136PubMedCrossRefPubMedCentralGoogle Scholar
  12. Bens G (2008) Sunscreens. Adv Exp Med Biol 624:137–161PubMedCrossRefPubMedCentralGoogle Scholar
  13. Bernerd F, Marionnet C (2017) In vitro skin models for the evaluation of sunscreen-based skin photoprotection: molecular methodologies and opportunities. Curr Med ChemGoogle Scholar
  14. Bissonnette R (2008) Update on sunscreens. Skin Therapy Lett 13:5–7PubMedPubMedCentralGoogle Scholar
  15. Bissonnette R, Nigen S, Bolduc C, Mery S, Nocera T (2008) Protection afforded by sunscreens containing inorganic sunscreening agents against blue light sensitivity induced by aminolevulinic acid. Dermatol Surg 34:1469–1476PubMedPubMedCentralGoogle Scholar
  16. Bohm F, Edge R, Truscott TG (2012) Interactions of dietary carotenoids with singlet oxygen (1O2) and free radicals: potential effects for human health. Acta Biochim Pol 59:27–30PubMedCrossRefPubMedCentralGoogle Scholar
  17. Boniol M, Dore JF, Autier P (2008) Changing the labeling of sunscreen, will we transform sun avoiders into sunscreen users? J Invest Dermatol 128:481; author reply 481–482PubMedCrossRefPubMedCentralGoogle Scholar
  18. Borghi A, Corazza M, Battaglia Y, Maietti E, Minghetti S, Virgili A (2016) What is the key to improving renal transplant recipients’ awareness of skin cancer risk? Dermatology 232:715–720PubMedCrossRefPubMedCentralGoogle Scholar
  19. Bosch R, Philips N, Suarez-Perez JA, Juarranz A, Devmurari A, Chalensouk-Khaosaat J, Gonzalez S (2015) Mechanisms of photoaging and cutaneous photocarcinogenesis, and photoprotective strategies with phytochemicals. Antioxidants (Basel) 4:248–268CrossRefGoogle Scholar
  20. Bowden GT (2004) Prevention of non-melanoma skin cancer by targeting ultraviolet-B-light signalling. Nat Rev Cancer 4:23–35PubMedCrossRefPubMedCentralGoogle Scholar
  21. Brash DE (2016) UV-induced melanin chemiexcitation: a new mode of melanoma pathogenesis. Toxicol Pathol 44:552–554PubMedPubMedCentralCrossRefGoogle Scholar
  22. Burnett ME, Wang SQ (2011) Current sunscreen controversies: a critical review. Photodermatol Photoimmunol Photomed 27:58–67PubMedCrossRefPubMedCentralGoogle Scholar
  23. Cantrell A, McGarvey DJ (2001) Photochemical studies of 4-tert-butyl-4′-methoxydibenzoylmethane (BM-DBM). J Photochem Photobiol B 64:117–122PubMedCrossRefPubMedCentralGoogle Scholar
  24. Chatelain E, Gabard B (2001) Photostabilization of butyl methoxydibenzoylmethane (Avobenzone) and ethylhexyl methoxycinnamate by bis-ethylhexyloxyphenol methoxyphenyl triazine (Tinosorb S), a new UV broadband filter. Photochem Photobiol 74:401–406PubMedPubMedCentralCrossRefGoogle Scholar
  25. Chen AC, Martin AJ, Choy B, Fernandez-Penas P, Dalziell RA, McKenzie CA, Scolyer RA, Dhillon HM, Vardy JL, Kricker A, St George G, Chinniah N, Halliday GM, Damian DL (2015) A phase 3 randomized trial of nicotinamide for skin-cancer chemoprevention. N Engl J Med 373:1618–1626PubMedCrossRefPubMedCentralGoogle Scholar
  26. Chen AC, Martin AJ, Dalziell RA, McKenzie CA, Lowe PM, Eris JM, Scolyer RA, Dhillon HM, Vardy JL, Bielski VA, Halliday GM, Damian DL (2016) A phase II randomized controlled trial of nicotinamide for skin cancer chemoprevention in renal transplant recipients. Br J Dermatol 175:1073–1075PubMedCrossRefPubMedCentralGoogle Scholar
  27. Cole C, Shyr T, Ou-Yang H (2016) Metal oxide sunscreens protect skin by absorption, not by reflection or scattering. Photodermatol Photoimmunol Photomed 32:5–10PubMedCrossRefPubMedCentralGoogle Scholar
  28. Darvin ME, Haag SF, Lademann J, Zastrow L, Sterry W, Meinke MC (2010) Formation of free radicals in human skin during irradiation with infrared light. J Invest Dermatol 130:629–631PubMedCrossRefPubMedCentralGoogle Scholar
  29. de Gruijl FR (2000) Photocarcinogenesis: UVA vs UVB. Methods Enzymol 319:359–366PubMedCrossRefPubMedCentralGoogle Scholar
  30. Dickinson SE, Wondrak GT (2017) TLR4-directed molecular strategies targeting skin photodamage and carcinogenesis. Curr Med Chem. Scholar
  31. Dickinson SE, Melton TF, Olson ER, Zhang J, Saboda K, Bowden GT (2009) Inhibition of activator protein-1 by sulforaphane involves interaction with cysteine in the cFos DNA-binding domain: implications for chemoprevention of UVB-induced skin cancer. Cancer Res 69:7103–7110PubMedPubMedCentralCrossRefGoogle Scholar
  32. Diehl JW, Chiu MW (2010) Effects of ambient sunlight and photoprotection on vitamin D status. Dermatol Ther 23:48–60PubMedCrossRefGoogle Scholar
  33. Diffey B (2001) Sunscreen isn’t enough. J Photochem Photobiol B 64:105–108PubMedCrossRefGoogle Scholar
  34. Diffey B (2016) New sunscreens and the precautionary principle. JAMA Dermatol 152:511–512PubMedCrossRefGoogle Scholar
  35. Diffey B, Osterwalder U (2017) Labelled sunscreen SPFs may overestimate protection in natural sunlight. Photochem Photobiol Sci 16:1519–1523PubMedCrossRefGoogle Scholar
  36. DiNardo JC, Downs CA (2017) Dermatological and environmental toxicological impact of the sunscreen ingredient oxybenzone/benzophenone-3. J Cosmet Dermatol. Scholar
  37. Dinkova-Kostova AT (2008) Phytochemicals as protectors against ultraviolet radiation: versatility of effects and mechanisms. Planta Med 74:1548–1559PubMedCrossRefGoogle Scholar
  38. Dinkova-Kostova AT, Jenkins SN, Fahey JW, Ye L, Wehage SL, Liby KT, Stephenson KK, Wade KL, Talalay P (2006) Protection against UV-light-induced skin carcinogenesis in SKH-1 high-risk mice by sulforaphane-containing broccoli sprout extracts. Cancer Lett 240:243–252PubMedCrossRefGoogle Scholar
  39. Dorr RT, Ertl G, Levine N, Brooks C, Bangert JL, Powell MB, Humphrey S, Alberts DS (2004) Effects of a superpotent melanotropic peptide in combination with solar UV radiation on tanning of the skin in human volunteers. Arch Dermatol 140:827–835PubMedCrossRefGoogle Scholar
  40. Downs CA, Kramarsky-Winter E, Segal R, Fauth J, Knutson S, Bronstein O, Ciner FR, Jeger R, Lichtenfeld Y, Woodley CM, Pennington P, Cadenas K, Kushmaro A, Loya Y (2016) Toxicopathological effects of the sunscreen UV filter, oxybenzone (benzophenone-3), on coral planulae and cultured primary cells and its environmental contamination in Hawaii and the U.S. Virgin islands. Arch Environ Contam Toxicol 70:265–288PubMedCrossRefPubMedCentralGoogle Scholar
  41. Forestier S (2008) Rationale for sunscreen development. J Am Acad Dermatol 58:S133–S138PubMedCrossRefPubMedCentralGoogle Scholar
  42. Fourtanier A, Moyal D, Seite S (2012) UVA filters in sun-protection products: regulatory and biological aspects. Photochem Photobiol Sci 11:81–89PubMedCrossRefPubMedCentralGoogle Scholar
  43. Gallagher RP, Rivers JK, Lee TK, Bajdik CD, McLean DI, Coldman AJ (2000) Broad-spectrum sunscreen use and the development of new nevi in white children: a randomized controlled trial. JAMA 283:2955–2960PubMedCrossRefPubMedCentralGoogle Scholar
  44. Gao D, Luo Y, Guevara D, Wang Y, Rui M, Goldwyn B, Lu Y, Smith EC, Lebwohl M, Wei H (2005) Benzo[a]pyrene and its metabolites combined with ultraviolet A synergistically induce 8-hydroxy-2′-deoxyguanosine via reactive oxygen species. Free Radic Biol Med 39:1177–1183PubMedCrossRefPubMedCentralGoogle Scholar
  45. Gasparro FP (2000) Sunscreens, skin photobiology, and skin cancer: the need for UVA protection and evaluation of efficacy. Environ Health Perspect 108(Suppl 1):71–78PubMedPubMedCentralCrossRefGoogle Scholar
  46. Gensler HL, Timmermann BN, Valcic S, Wachter GA, Dorr R, Dvorakova K, Alberts DS (1996) Prevention of photocarcinogenesis by topical administration of pure epigallocatechin gallate isolated from green tea. Nutr Cancer 26:325–335PubMedCrossRefGoogle Scholar
  47. Ghiasvand R, Weiderpass E, Green AC, Lund E, Veierod MB (2016) Sunscreen use and subsequent melanoma risk: a population-based cohort study. J Clin Oncol 34:3976–3983PubMedCrossRefGoogle Scholar
  48. Giovannucci E (2005) The epidemiology of vitamin D and cancer incidence and mortality: a review (United States). Cancer Causes Control 16:83–95PubMedCrossRefGoogle Scholar
  49. Goldenhersh MA, Koslowsky M (2011) Increased melanoma after regular sunscreen use? J Clin Oncol 29:e557–e558; author reply e859PubMedCrossRefGoogle Scholar
  50. Gonzaga ER (2009) Role of UV light in photodamage, skin aging, and skin cancer: importance of photoprotection. Am J Clin Dermatol 10(Suppl 1):19–24PubMedCrossRefPubMedCentralGoogle Scholar
  51. Gonzalez H, Farbrot A, Larko O, Wennberg AM (2006) Percutaneous absorption of the sunscreen benzophenone-3 after repeated whole-body applications, with and without ultraviolet irradiation. Br J Dermatol 154:337–340PubMedCrossRefPubMedCentralGoogle Scholar
  52. Gonzalez S, Gilaberte Y, Philips N (2010) Mechanistic insights in the use of a Polypodium leucotomos extract as an oral and topical photoprotective agent. Photochem Photobiol Sci 9:559–563PubMedCrossRefPubMedCentralGoogle Scholar
  53. Gordon-Thomson C, Gupta R, Tongkao-On W, Ryan A, Halliday GM, Mason RS (2012) 1alpha,25 Dihydroxyvitamin D(3) enhances cellular defences against UV-induced oxidative and other forms of DNA damage in skin. Photochem Photobiol Sci 11:1837–1847PubMedCrossRefPubMedCentralGoogle Scholar
  54. Green A, Williams G, Neale R, Hart V, Leslie D, Parsons P, Marks GC, Gaffney P, Battistutta D, Frost C, Lang C, Russell A (1999) Daily sunscreen application and betacarotene supplementation in prevention of basal-cell and squamous-cell carcinomas of the skin: a randomised controlled trial. Lancet 354:723–729PubMedCrossRefPubMedCentralGoogle Scholar
  55. Green AC, Williams GM, Logan V, Strutton GM (2011) Reduced melanoma after regular sunscreen use: randomized trial follow-up. J Clin Oncol 29:257–263PubMedCrossRefPubMedCentralGoogle Scholar
  56. Hanson KM, Gratton E, Bardeen CJ (2006) Sunscreen enhancement of UV-induced reactive oxygen species in the skin. Free Radic Biol Med 41:1205–1212PubMedCrossRefPubMedCentralGoogle Scholar
  57. Hawkins KE, Joy S, Delhove JM, Kotiadis VN, Fernandez E, Fitzpatrick LM, Whiteford JR, King PJ, Bolanos JP, Duchen MR, Waddington SN, McKay TR (2016) NRF2 orchestrates the metabolic shift during induced pluripotent stem cell reprogramming. Cell Rep 14:1883–1891PubMedPubMedCentralCrossRefGoogle Scholar
  58. Hayes JD, McMahon M, Chowdhry S, Dinkova-Kostova AT (2010) Cancer chemoprevention mechanisms mediated through the Keap1-Nrf2 pathway. Antioxid Redox Signal 13:1713–1748PubMedCrossRefPubMedCentralGoogle Scholar
  59. Haywood R, Wardman P, Sanders R, Linge C (2003) Sunscreens inadequately protect against ultraviolet-A-induced free radicals in skin: implications for skin aging and melanoma? J Invest Dermatol 121:862–868PubMedCrossRefPubMedCentralGoogle Scholar
  60. Haywood R, Volkov A, Andrady C, Sayer R (2012) Measuring sunscreen protection against solar-simulated radiation-induced structural radical damage to skin using ESR/spin trapping: development of an ex vivo test method. Free Radic Res 46:265–275PubMedCrossRefPubMedCentralGoogle Scholar
  61. Heinrich U, Neukam K, Tronnier H, Sies H, Stahl W (2006) Long-term ingestion of high flavanol cocoa provides photoprotection against UV-induced erythema and improves skin condition in women. J Nutr 136:1565–1569PubMedCrossRefPubMedCentralGoogle Scholar
  62. Hirota A, Kawachi Y, Yamamoto M, Koga T, Hamada K, Otsuka F (2011) Acceleration of UVB-induced photoageing in nrf2 gene-deficient mice. Exp Dermatol 20:664–668PubMedCrossRefPubMedCentralGoogle Scholar
  63. Holmstrom KM, Kostov RV, Dinkova-Kostova AT (2016) The multifaceted role of Nrf2 in mitochondrial function. Curr Opin Toxicol 1:80–91PubMedPubMedCentralCrossRefGoogle Scholar
  64. Hughes MC, Williams GM, Baker P, Green AC (2013) Sunscreen and prevention of skin aging: a randomized trial. Ann Intern Med 158:781–790PubMedCrossRefPubMedCentralGoogle Scholar
  65. Iannacone MR, Hughes MC, Green AC (2014) Effects of sunscreen on skin cancer and photoaging. Photodermatol Photoimmunol Photomed 30:55–61PubMedCrossRefPubMedCentralGoogle Scholar
  66. Jaeger A, Weiss DG, Jonas L, Kriehuber R (2012) Oxidative stress-induced cytotoxic and genotoxic effects of nano-sized titanium dioxide particles in human HaCaT keratinocytes. Toxicology 296:27–36PubMedCrossRefPubMedCentralGoogle Scholar
  67. Janda J, Burkett NB, Blohm-Mangone K, Huang V, Curiel-Lewandrowski C, Alberts DS, Petricoin EF 3rd, Calvert VS, Einspahr J, Dong Z, Bode AM, Wondrak GT, Dickinson SE (2016) Resatorvid-based pharmacological antagonism of cutaneous TLR4 blocks UV-induced NF-kappaB and AP-1 signaling in keratinocytes and mouse skin. Photochem Photobiol 92:816–825PubMedPubMedCentralCrossRefGoogle Scholar
  68. Justiniano R, Perer J, Hua A, Fazel M, Krajisnik A, Cabello CM, Wondrak GT (2017a) A topical zinc ionophore blocks tumorigenic progression in UV-exposed SKH-1 high-risk mouse skin. Photochem Photobiol 93:1472–1482PubMedPubMedCentralCrossRefGoogle Scholar
  69. Justiniano R, Williams JD, Perer J, Hua A, Lesson J, Park SL, Wondrak GT (2017b) The B6-vitamer pyridoxal is a sensitizer of UVA-induced genotoxic stress in human primary keratinocytes and reconstructed epidermis. Photochem Photobiol 93:990–998PubMedPubMedCentralCrossRefGoogle Scholar
  70. Kalra S, Knatko EV, Zhang Y, Honda T, Yamamoto M, Dinkova-Kostova AT (2012) Highly potent activation of Nrf2 by topical tricyclic bis(cyano enone): implications for protection against UV radiation during thiopurine therapy. Cancer Prev Res (Phila) 5:973–981CrossRefGoogle Scholar
  71. Kawachi Y, Xu X, Taguchi S, Sakurai H, Nakamura Y, Ishii Y, Fujisawa Y, Furuta J, Takahashi T, Itoh K, Yamamoto M, Yamazaki F, Otsuka F (2008) Attenuation of UVB-induced sunburn reaction and oxidative DNA damage with no alterations in UVB-induced skin carcinogenesis in Nrf2 gene-deficient mice. J Invest Dermatol 128:1773–1779PubMedCrossRefPubMedCentralGoogle Scholar
  72. Kensler TW, Wakabayashi N (2010) Nrf2: friend or foe for chemoprevention? Carcinogenesis 31:90–99PubMedCrossRefPubMedCentralGoogle Scholar
  73. Knatko EV, Ibbotson SH, Zhang Y, Higgins M, Fahey JW, Talalay P, Dawa R, Ferguson J, Huang JT, Clarke R, Zheng S, Saito A, Kalra S, Benedict AL, Honda T, Proby CM, Dinkova-Kostova AT (2015) Nrf2 activation protects against solar-simulated ultraviolet radiation in mice and humans. Cancer Prev Res (Phila) 8:475–486CrossRefGoogle Scholar
  74. Knatko EV, Higgins M, Fahey JW, Dinkova-Kostova AT (2016) Loss of Nrf2 abrogates the protective effect of Keap1 downregulation in a preclinical model of cutaneous squamous cell carcinoma. Sci Rep 6:25804PubMedPubMedCentralCrossRefGoogle Scholar
  75. Kolbe L (2012) How much sun protection is needed?: Are we on the way to full-spectrum protection? J Invest Dermatol 132:1756–1757PubMedCrossRefPubMedCentralGoogle Scholar
  76. Krause M, Klit A, Blomberg Jensen M, Soeborg T, Frederiksen H, Schlumpf M, Lichtensteiger W, Skakkebaek NE, Drzewiecki KT (2012) Sunscreens: are they beneficial for health? An overview of endocrine disrupting properties of UV-filters. Int J Androl 35:424–436PubMedCrossRefPubMedCentralGoogle Scholar
  77. Kreuter A, Lehmann P (2014) Relevant new insights into the effects of photoprotection in cutaneous lupus erythematosus. Exp Dermatol 23:712–713PubMedCrossRefPubMedCentralGoogle Scholar
  78. Kullavanijaya P, Lim HW (2005) Photoprotection. J Am Acad Dermatol 52:937–958; quiz 959–962PubMedCrossRefPubMedCentralGoogle Scholar
  79. Kundu JK, Surh YJ (2010) Nrf2-Keap1 signaling as a potential target for chemoprevention of inflammation-associated carcinogenesis. Pharm Res 27:999–1013PubMedCrossRefPubMedCentralGoogle Scholar
  80. Kvam E, Tyrrell RM (1997) Induction of oxidative DNA base damage in human skin cells by UV and near visible radiation. Carcinogenesis 18:2379–2384PubMedCrossRefPubMedCentralGoogle Scholar
  81. Langendonk JG, Balwani M, Anderson KE, Bonkovsky HL, Anstey AV, Bissell DM, Bloomer J, Edwards C, Neumann NJ, Parker C, Phillips JD, Lim HW, Hamzavi I, Deybach JC, Kauppinen R, Rhodes LE, Frank J, Murphy GM, Karstens FPJ, Sijbrands EJG, de Rooij FWM, Lebwohl M, Naik H, Goding CR, Wilson JHP, Desnick RJ (2015) Afamelanotide for erythropoietic protoporphyria. N Engl J Med 373:48–59PubMedPubMedCentralCrossRefGoogle Scholar
  82. Lautenschlager S, Wulf HC, Pittelkow MR (2007) Photoprotection. Lancet 370:528–537PubMedCrossRefPubMedCentralGoogle Scholar
  83. Lawrence KP, Long PF, Young AR (2017a) Mycosporine-like amino acids for skin photoprotection. Curr Med Chem. Scholar
  84. Lawrence KP, Gacesa R, Long PF, Young AR (2017b) Molecular photoprotection of human keratinocytes in vitro by the naturally occurring mycosporine-like amino acid (MAA) palythine. Br J Dermatol. Scholar
  85. Lee TK, Rivers JK, Gallagher RP (2005) Site-specific protective effect of broad-spectrum sunscreen on nevus development among white schoolchildren in a randomized trial. J Am Acad Dermatol 52:786–792PubMedCrossRefPubMedCentralGoogle Scholar
  86. Liebel F, Kaur S, Ruvolo E, Kollias N, Southall MD (2012) Irradiation of skin with visible light induces reactive oxygen species and matrix-degrading enzymes. J Invest Dermatol 132:1901–1907PubMedCrossRefPubMedCentralGoogle Scholar
  87. Mahmoud BH, Hexsel CL, Hamzavi IH, Lim HW (2008) Effects of visible light on the skin. Photochem Photobiol 84:450–462PubMedCrossRefPubMedCentralGoogle Scholar
  88. Maier H, Schauberger G, Brunnhofer K, Honigsmann H (2001) Change of ultraviolet absorbance of sunscreens by exposure to solar-simulated radiation. J Invest Dermatol 117:256–262PubMedCrossRefPubMedCentralGoogle Scholar
  89. Makarova, A., Wang, G., Dolorito, J. A., Kc, S., Libove, E., and Epstein, E. H., Jr. (2017) Vitamin D3 produced by skin exposure to UVR inhibits murine basal cell carcinoma carcinogenesis. J Invest Dermatol 137, 2613-2619PubMedCrossRefPubMedCentralGoogle Scholar
  90. Mancuso JB, Maruthi R, Wang SQ, Lim HW (2017) Sunscreens: an update. Am J Clin Dermatol 18:643–650CrossRefGoogle Scholar
  91. Marionnet C, Nouveau S, Hourblin V, Pillai K, Manco M, Bastien P, Tran C, Tricaud C, de Lacharriere O, Bernerd F (2017) UVA1-induced skin darkening is associated with molecular changes even in highly pigmented skin individuals. J Invest Dermatol 137:1184–1187PubMedCrossRefPubMedCentralGoogle Scholar
  92. Marrot L (2017) Pollution and sun exposure: a deleterious synergy. Mechanisms and opportunities for skin protection. Curr Med Chem. Scholar
  93. Marrot L, Meunier JR (2008) Skin DNA photodamage and its biological consequences. J Am Acad Dermatol 58:S139–S148PubMedCrossRefPubMedCentralGoogle Scholar
  94. McSweeney PC (2016) The safety of nanoparticles in sunscreens: an update for general practice. Aust Fam Physician 45:397–399PubMedPubMedCentralGoogle Scholar
  95. Middelkamp-Hup MA, Pathak MA, Parrado C, Goukassian D, Rius-Diaz F, Mihm MC, Fitzpatrick TB, Gonzalez S (2004) Oral Polypodium leucotomos extract decreases ultraviolet-induced damage of human skin. J Am Acad Dermatol 51:910–918PubMedCrossRefPubMedCentralGoogle Scholar
  96. Minocha R, Damian DL, Halliday GM (2017) Melanoma and nonmelanoma skin cancer chemoprevention: a role for nicotinamide? Photodermatol Photoimmunol Photomed. Scholar
  97. Monteiro-Riviere NA, Wiench K, Landsiedel R, Schulte S, Inman AO, Riviere JE (2011) Safety evaluation of sunscreen formulations containing titanium dioxide and zinc oxide nanoparticles in UVB sunburned skin: an in vitro and in vivo study. Toxicol Sci 123:264–280PubMedCrossRefPubMedCentralGoogle Scholar
  98. Morrison GC, Beko G, Weschler CJ, Schripp T, Salthammer T, Hill J, Andersson AM, Toftum J, Clausen G, Frederiksen H (2017) Dermal uptake of benzophenone-3 from clothing. Environ Sci Technol 51:11371–11379PubMedCrossRefPubMedCentralGoogle Scholar
  99. Moseley H, Cameron H, MacLeod T, Clark C, Dawe R, Ferguson J (2001) New sunscreens confer improved protection for photosensitive patients in the blue light region. Br J Dermatol 145:789–794PubMedCrossRefPubMedCentralGoogle Scholar
  100. Moyal D (2004) Prevention of ultraviolet-induced skin pigmentation. Photodermatol Photoimmunol Photomed 20:243–247PubMedCrossRefPubMedCentralGoogle Scholar
  101. Nakagami Y, Masuda K (2016) A novel Nrf2 activator from microbial transformation inhibits radiation-induced dermatitis in mice. J Radiat Res 57:567–571PubMedPubMedCentralCrossRefGoogle Scholar
  102. Nakashima Y, Ohta S, Wolf AM (2017) Blue light-induced oxidative stress in live skin. Free Radic Biol Med 108:300–310PubMedCrossRefPubMedCentralGoogle Scholar
  103. Nash JF, Tanner PR (2014) Relevance of UV filter/sunscreen product photostability to human safety. Photodermatol Photoimmunol Photomed 30:88–95PubMedCrossRefPubMedCentralGoogle Scholar
  104. Naylor MF, Boyd A, Smith DW, Cameron GS, Hubbard D, Neldner KH (1995) High sun protection factor sunscreens in the suppression of actinic neoplasia. Arch Dermatol 131:170–175PubMedCrossRefPubMedCentralGoogle Scholar
  105. Newman MD, Stotland M, Ellis JI (2009) The safety of nanosized particles in titanium dioxide- and zinc oxide-based sunscreens. J Am Acad Dermatol 61:685–692PubMedCrossRefPubMedCentralGoogle Scholar
  106. Nichols JA, Katiyar SK (2010) Skin photoprotection by natural polyphenols: anti-inflammatory, antioxidant and DNA repair mechanisms. Arch Dermatol Res 302:71–83PubMedCrossRefPubMedCentralGoogle Scholar
  107. Olsen CM, Wilson LF, Green AC, Biswas N, Loyalka J, Whiteman DC (2017a) How many melanomas might be prevented if more people applied sunscreen regularly? Br J DermatolGoogle Scholar
  108. Olsen CM, Wilson LF, Green AC, Biswas N, Loyalka J, Whiteman DC (2017b) Prevention of DNA damage in human skin by topical sunscreens. Photodermatol Photoimmunol Photomed 33:135–142PubMedCrossRefPubMedCentralGoogle Scholar
  109. Osburn WO, Kensler TW (2008) Nrf2 signaling: an adaptive response pathway for protection against environmental toxic insults. Mutat Res 659:31–39PubMedCrossRefPubMedCentralGoogle Scholar
  110. Osmond-McLeod MJ, Oytam Y, Rowe A, Sobhanmanesh F, Greenoak G, Kirby J, McInnes EF, McCall MJ (2016) Long-term exposure to commercially available sunscreens containing nanoparticles of TiO2 and ZnO revealed no biological impact in a hairless mouse model. Part Fibre Toxicol 13:44PubMedPubMedCentralCrossRefGoogle Scholar
  111. Osterwalder U, Herzog B (2010) The long way towards the ideal sunscreen—where we stand and what still needs to be done. Photochem Photobiol Sci 9:470–481PubMedCrossRefPubMedCentralGoogle Scholar
  112. Parrado C, Mascaraque M, Gilaberte Y, Juarranz A, Gonzalez S (2016) Fernblock (polypodium leucotomos extract): molecular mechanisms and pleiotropic effects in light-related skin conditions, photoaging and skin cancers, a review. Int J Mol Sci 17(7)PubMedCentralCrossRefGoogle Scholar
  113. Premi S, Wallisch S, Mano CM, Weiner AB, Bacchiocchi A, Wakamatsu K, Bechara EJ, Halaban R, Douki T, Brash DE (2015) Photochemistry. Chemiexcitation of melanin derivatives induces DNA photoproducts long after UV exposure. Science 347:842–847PubMedPubMedCentralCrossRefGoogle Scholar
  114. Reichrath J, Nurnberg B (2009) Cutaneous vitamin D synthesis versus skin cancer development: the Janus faces of solar UV-radiation. Dermatoendocrinology 1:253–261CrossRefGoogle Scholar
  115. Reisman, S. A., Goldsberry, A. R., Lee, C. Y., O’Grady, M. L., Proksch, J. W., Ward, K. W., and Meyer, C. J. (2015) Topical application of RTA 408 lotion activates Nrf2 in human skin and is well-tolerated by healthy human volunteers. BMC Dermatol 15, 10Google Scholar
  116. Rensburg JJV, Dbeibo L, Spinol SM (2016) The cutaneous microbiota as a determinant of skin barrier function: molecular interactions and therapeutic opportunities. In: Wondrak GT (ed) Skin stress response pathways: environmental factors and molecular opportunities. Springer Nature, pp 379–401Google Scholar
  117. Rojo de la Vega M, Krajisnik A, Zhang DD, Wondrak GT (2017) Targeting NRF2 for improved skin barrier function and photoprotection: focus on the achiote-derived apocarotenoid bixin. Nutrients 9:1371PubMedCentralCrossRefGoogle Scholar
  118. Rojo de la Vega, M., Zhang, D. D., Wondrak, G. T. (2018) Topical bixin confers NRF2-dependent protection against photodamage and hair graying in mouse skin. Front Pharmacol 9, 287Google Scholar
  119. Ruppert L, Koster B, Siegert AM, Cop C, Boyers L, Karimkhani C, Winston H, Mounessa J, Dellavalle RP, Reinau D, Diepgen T, Surber C (2017) YouTube as a source of health information: analysis of sun protection and skin cancer prevention related issues. Dermatol Online J 23Google Scholar
  120. Saw CL, Huang MT, Liu Y, Khor TO, Conney AH, Kong AN (2011) Impact of Nrf2 on UVB-induced skin inflammation/photoprotection and photoprotective effect of sulforaphane. Mol Carcinog 50:479–486PubMedCrossRefPubMedCentralGoogle Scholar
  121. Schafer M, Werner S (2015) Nrf2—a regulator of keratinocyte redox signaling. Free Radic Biol Med 88:243–252PubMedCrossRefPubMedCentralGoogle Scholar
  122. Schafer M, Farwanah H, Willrodt AH, Huebner AJ, Sandhoff K, Roop D, Hohl D, Bloch W, Werner S (2012) Nrf2 links epidermal barrier function with antioxidant defense. EMBO Mol Med 4:364–379PubMedPubMedCentralCrossRefGoogle Scholar
  123. Scharffetter-Kochanek K, Wlaschek M, Brenneisen P, Schauen M, Blaudschun R, Wenk J (1997) UV-induced reactive oxygen species in photocarcinogenesis and photoaging. Biol Chem 378:1247–1257PubMedPubMedCentralGoogle Scholar
  124. Schneider SL, Lim HW (2018) Review of environmental effects of oxybenzone and other sunscreen active ingredients. J Am Acad Dermatol Dermatol 18:32189–32193Google Scholar
  125. Schroeder P, Calles C, Benesova T, Macaluso F, Krutmann J (2010) Photoprotection beyond ultraviolet radiation—effective sun protection has to include protection against infrared: a radiation-induced skin damage. Skin Pharmacol Physiol 23:15–17PubMedCrossRefPubMedCentralGoogle Scholar
  126. Seite S, Moyal D, Richard S, de Rigal J, Leveque JL, Hourseau C, Fourtanier A (1998) Mexoryl SX: a broad absorption UVA filter protects human skin from the effects of repeated suberythemal doses of UVA. J Photochem Photobiol B 44:69–76PubMedCrossRefPubMedCentralGoogle Scholar
  127. Serpone N, Salinaro A, Emeline AV, Horikoshi S, Hidaka H, Zhao J (2002) An in vitro systematic spectroscopic examination of the photostabilities of a random set of commercial sunscreen lotions and their chemical UVB/UVA active agents. Photochem Photobiol Sci 1:970–981PubMedCrossRefPubMedCentralGoogle Scholar
  128. Sies H, Stahl W (2004) Nutritional protection against skin damage from sunlight. Annu Rev Nutr 24:173–200PubMedCrossRefPubMedCentralGoogle Scholar
  129. Singh RP, Agarwal R (2005) Mechanisms and preclinical efficacy of silibinin in preventing skin cancer. Eur J Cancer 41:1969–1979PubMedCrossRefPubMedCentralGoogle Scholar
  130. Sklar LR, Almutawa F, Lim HW, Hamzavi I (2012) Effects of ultraviolet radiation, visible light, and infrared radiation on erythema and pigmentation: a review. Photochem Photobiol SciGoogle Scholar
  131. Smijs TG, Pavel S (2011) Titanium dioxide and zinc oxide nanoparticles in sunscreens: focus on their safety and effectiveness. Nanotechnol Sci Appl 4:95–112PubMedPubMedCentralCrossRefGoogle Scholar
  132. Soeur J, Belaidi JP, Chollet C, Denat L, Dimitrov A, Jones C, Perez P, Zanini M, Zobiri O, Mezzache S, Erdmann D, Lereaux G, Eilstein J, Marrot L (2017) Photo-pollution stress in skin: traces of pollutants (PAH and particulate matter) impair redox homeostasis in keratinocytes exposed to UVA1. J Dermatol Sci 86:162–169PubMedCrossRefPubMedCentralGoogle Scholar
  133. Sohn M, Heche A, Herzog B, Imanidis G (2014) Film thickness frequency distribution of different vehicles determines sunscreen efficacy. J Biomed Opt 19:115,005CrossRefGoogle Scholar
  134. Sohn M, Herzog B, Osterwalder U, Imanidis G (2016) Calculation of the sun protection factor of sunscreens with different vehicles using measured film thickness distribution—comparison with the SPF in vitro. J Photochem Photobiol B 159:74–81PubMedCrossRefPubMedCentralGoogle Scholar
  135. Stanton WR, Janda M, Baade PD, Anderson P (2004) Primary prevention of skin cancer: a review of sun protection in Australia and internationally. Health Promot Int 19:369–378PubMedCrossRefPubMedCentralGoogle Scholar
  136. Surber C, Pittelkow M, Lautenschlager S (2012) Photoprotection in transplant recipients. Curr Probl Dermatol 43:171–196PubMedCrossRefPubMedCentralGoogle Scholar
  137. Surh YJ, Kundu JK, Na HK, Lee JS (2005) Redox-sensitive transcription factors as prime targets for chemoprevention with anti-inflammatory and antioxidative phytochemicals. J Nutr 135:2993S–3001SPubMedCrossRefPubMedCentralGoogle Scholar
  138. Svobodova A, Vostalova J (2010) Solar radiation induced skin damage: review of protective and preventive options. Int J Radiat Biol 86:999–1030PubMedCrossRefPubMedCentralGoogle Scholar
  139. Talalay P, Fahey J, Healy Z, Wehage S, Benedict A, Min C, Dinkova-Kostova AT (2007) Sulforaphane mobilizes cellular defenses that protect skin against damage by UV radiation. Proc Natl Acad Sci U S A 104:17500–17505PubMedPubMedCentralCrossRefGoogle Scholar
  140. Tao S, Justiniano R, Zhang DD, Wondrak GT (2013) The Nrf2-inducers tanshinone I and dihydrotanshinone protect human skin cells and reconstructed human skin against solar simulated UV. Redox Biol 1:532–541PubMedPubMedCentralCrossRefGoogle Scholar
  141. Tao S, Park SL, de la Vega MR, Zhang DD, Wondrak GT (2015) Systemic administration of the apocarotenoid bixin protects skin against solar UV-induced damage through activation of NRF2. Free Radic Biol Med 89:690–700PubMedPubMedCentralCrossRefGoogle Scholar
  142. Tarozzi A, Marchesi A, Hrelia S, Angeloni C, Andrisano V, Fiori J, Cantelli-Forti G, Hrelia P (2005) Protective effects of cyanidin-3-O-beta-glucopyranoside against UVA-induced oxidative stress in human keratinocytes. Photochem Photobiol 81:623–629PubMedCrossRefPubMedCentralGoogle Scholar
  143. Tarras-Wahlberg N, Stenhagen G, Larko O, Rosen A, Wennberg AM, Wennerstrom O (1999) Changes in ultraviolet absorption of sunscreens after ultraviolet irradiation. J Invest Dermatol 113:547–553PubMedCrossRefPubMedCentralGoogle Scholar
  144. Thompson SC, Jolley D, Marks R (1993) Reduction of solar keratoses by regular sunscreen use. N Engl J Med 329:1147–1151PubMedCrossRefPubMedCentralGoogle Scholar
  145. Tian FF, Zhang FF, Lai XD, Wang LJ, Yang L, Wang X, Singh G, Zhong JL (2011) Nrf2-mediated protection against UVA radiation in human skin keratinocytes. Biosci Trends 5:23–29PubMedCrossRefPubMedCentralGoogle Scholar
  146. Tonolli PN, Chiarelli-Neto O, Santacruz-Perez C, Junqueira HC, Watanabe IS, Ravagnani FG, Martins WK, Baptista MS (2017) Lipofuscin generated by UVA turns keratinocytes photosensitive to visible light. J Invest Dermatol 137:2447–2450PubMedCrossRefPubMedCentralGoogle Scholar
  147. Touitou E, Godin B (2008) Skin nonpenetrating sunscreens for cosmetic and pharmaceutical formulations. Clin Dermatol 26:375–379PubMedCrossRefPubMedCentralGoogle Scholar
  148. Tyrrell RM (1995) Ultraviolet radiation and free radical damage to skin. Biochem Soc Symp 61:47–53PubMedCrossRefPubMedCentralGoogle Scholar
  149. Ulrich C, Jurgensen JS, Degen A, Hackethal M, Ulrich M, Patel MJ, Eberle J, Terhorst D, Sterry W, Stockfleth E (2009) Prevention of non-melanoma skin cancer in organ transplant patients by regular use of a sunscreen: a 24 months, prospective, case-control study. Br J Dermatol 161(Suppl 3):78–84PubMedCrossRefPubMedCentralGoogle Scholar
  150. van der Pols JC, Williams GM, Pandeya N, Logan V, Green AC (2006) Prolonged prevention of squamous cell carcinoma of the skin by regular sunscreen use. Cancer Epidemiol Biomarkers Prev 15:2546–2548PubMedCrossRefPubMedCentralGoogle Scholar
  151. Wakabayashi N, Itoh K, Wakabayashi J, Motohashi H, Noda S, Takahashi S, Imakado S, Kotsuji T, Otsuka F, Roop DR, Harada T, Engel JD, Yamamoto M (2003) Keap1-null mutation leads to postnatal lethality due to constitutive Nrf2 activation. Nat Genet 35:238–245PubMedCrossRefPubMedCentralGoogle Scholar
  152. Wetz F, Routaboul C, Denis A, Rico-Lattes I (2005) A new long-chain UV absorber derived from 4-tert-butyl-4′-methoxydibenzoylmethane: absorbance stability under solar irradiation. J Cosmet Sci 56:135–148PubMedPubMedCentralGoogle Scholar
  153. Williams S, Tamburic S, Lally C (2009) Eating chocolate can significantly protect the skin from UV light. J Cosmet Dermatol 8:169–173PubMedCrossRefGoogle Scholar
  154. Wolf R, Wolf D, Morganti P, Ruocco V (2001) Sunscreens. Clin Dermatol 19:452–459PubMedCrossRefGoogle Scholar
  155. Wondrak GT (2007) Let the sun shine in: mechanisms and potential for therapeutics in skin photodamage. Curr Opin Investig Drugs 8:390–400PubMedGoogle Scholar
  156. Wondrak GT, Roberts MJ, Jacobson MK, Jacobson EL (2004) 3-hydroxypyridine chromophores are endogenous sensitizers of photooxidative stress in human skin cells. J Biol Chem 279:30009–30020PubMedCrossRefGoogle Scholar
  157. Wondrak GT, Jacobson MK, Jacobson EL (2005) Identification of quenchers of photoexcited states as novel agents for skin photoprotection. J Pharmacol Exp Ther 312:482–491PubMedCrossRefGoogle Scholar
  158. Wondrak GT, Jacobson MK, Jacobson EL (2006) Endogenous UVA-photosensitizers: mediators of skin photodamage and novel targets for skin photoprotection. Photochem Photobiol Sci 5:215–237PubMedCrossRefGoogle Scholar
  159. Wondrak GT, Cabello CM, Villeneuve NF, Zhang S, Ley S, Li Y, Sun Z, Zhang DD (2008) Cinnamoyl-based Nrf2-activators targeting human skin cell photo-oxidative stress. Free Radic Biol Med 45:385–395PubMedPubMedCentralCrossRefGoogle Scholar
  160. Xu J, Sagawa Y, Futakuchi M, Fukamachi K, Alexander DB, Furukawa F, Ikarashi Y, Uchino T, Nishimura T, Morita A, Suzui M, Tsuda H (2011) Lack of promoting effect of titanium dioxide particles on ultraviolet B-initiated skin carcinogenesis in rats. Food Chem Toxicol 49:1298–1302PubMedCrossRefGoogle Scholar
  161. Yang J, Wiley CJ, Godwin DA, Felton LA (2008) Influence of hydroxypropyl-beta-cyclodextrin on transdermal penetration and photostability of avobenzone. Eur J Pharm Biopharm 69:605–612PubMedCrossRefGoogle Scholar
  162. Young AR, Boles J, Herzog B, Osterwalder U, Baschong W (2010) A sunscreen’s labeled sun protection factor may overestimate protection at temperate latitudes: a human in vivo study. J Invest Dermatol 130:2457–2462PubMedCrossRefPubMedCentralGoogle Scholar
  163. Zastrow L, Lademann J (2016) Light—instead of UV protection: new requirements for skin cancer prevention. Anticancer Res 36:1389–1393PubMedGoogle Scholar
  164. Zastrow L, Ferrero L, Herrling T, Groth N (2004) Integrated sun protection factor: a new sun protection factor based on free radicals generated by UV irradiation. Skin Pharmacol Physiol 17:219–231PubMedCrossRefPubMedCentralGoogle Scholar
  165. Zastrow L, Groth N, Klein F, Kockott D, Lademann J, Renneberg R, Ferrero L (2009) The missing link—light-induced (280-1,600 nm) free radical formation in human skin. Skin Pharmacol Physiol 22:31–44PubMedCrossRefPubMedCentralGoogle Scholar
  166. Zastrow L, Meinke MC, Albrecht S, Patzelt A, Lademann J (2017) From UV protection to protection in the whole spectral range of the solar radiation: new aspects of sunscreen development. Adv Exp Med Biol 996:311–318PubMedCrossRefPubMedCentralGoogle Scholar
  167. Zhang DD (2006) Mechanistic studies of the Nrf2-Keap1 signaling pathway. Drug Metab Rev 38:1–21CrossRefGoogle Scholar
  168. Zhang DD, Lo SC, Cross JV, Templeton DJ, Hannink M (2004) Keap1 is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex. Mol Cell Biol 24:10941–10953PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Andrea Krajisnik
    • 1
  • Jessica Perer
    • 1
  • Georg T. Wondrak
    • 1
    Email author
  1. 1.Department of Pharmacology and ToxicologyCollege of Pharmacy and University of Arizona Cancer Center, University of ArizonaTucsonUSA

Personalised recommendations