Skip to main content

Formation, Deformation, Rolling and Sliding of Particles and Particle Aggregates: Mechanisms and Applications

  • Chapter
  • First Online:
Particles in Contact

Abstract

Particulate systems under external forces, like mechanical load, exhibit reorganization processes on various length and times scales. Here we review our investigation of the characterization of the mechanical properties of nanoporous colloidal networks and micrometer sized granular particles. To quantify the mechanical properties of nanoporous colloidal networks, we used soot templated surfaces as model system. These surfaces have the advantage that the hardness and the wetting properties of the network can be easily tuned. Bending of particle chains and breaking of single contact points were resolved by AFM. The elastic and plastic modulus of the network was monitored using the colloidal probe technique or for harder networks by nanoindentation. To gain insight into the adhesion force of hydrophobic porous networks, microspheres coated with a fluorinated soot-templated layer were investigated. In contrast to smooth surfaces, the roughness gives rise to an adhesion force which depends on the load. In the second part, we discuss particle agglomerates which are only physically linked. To relate macroscopic processes to the motion of single particles a combination of confocal microscopy and high resolution mechanical testing was used. We have developed measurement and image analysis techniques that allows an automatic tracking of the translation and rotation of the particles under mechanical load (e.g. shear). 3D imaging of granular systems under mechanical deformation allows following the trajectories of the granular particles. Here, we also describe methods to detect the rotation of spherical particles. First steps towards using simulations for a refinement of experimental data, e.g., the estimation of friction parameters is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tomas, J.: Adhesion of ultrafine particles—a micromechanical approach. Chem. Eng. Sci. 62, 1997–2010 (2007)

    Article  CAS  Google Scholar 

  2. Fuchs, R., et al.: Rolling, sliding and torsion of micron-sized silica particles: experimental, numerical and theoretical analysis. Granul. Matter 16, 281–297 (2014). https://doi.org/10.1007/s10035-014-0481-9

    Article  CAS  Google Scholar 

  3. Goncu, F., Luding, S.: Effect of particle friction and polydispersity on the macroscopic stress-strain relations of granular materials. Acta Geotech. 8, 629–643 (2013). https://doi.org/10.1007/s11440-013-0258-z

    Article  Google Scholar 

  4. Butt, H.J., Cappella, B., Kappl, M.: Force measurements with the atomic force microscope: Technique, interpretation and applications. Surf. Sci. Rep. 59, 1–152 (2005). https://doi.org/10.1016/j.surfrep.2005.08.003

    Article  CAS  Google Scholar 

  5. Yethiraj, A., van Blaaderen, A.: A colloidal model system with an interaction tunable from hard sphere to soft and dipolar. Nature 421, 513–517 (2003). https://doi.org/10.1038/nature01328

    Article  CAS  Google Scholar 

  6. Pusey, P.N., Vanmegen, W.: Phase-behavior of concentrated suspensions of nearly hard colloidal spheres. Nature 320, 340–342 (1986). https://doi.org/10.1038/320340a0

    Article  CAS  Google Scholar 

  7. Koylu, U.O., Faeth, G.M., Farias, T.L., Carvalho, M.G.: Fractal and projected structure properties of soot aggregates. Combust. Flame 100, 621–633 (1995). https://doi.org/10.1016/0010-2180(94)00147-k

    Article  CAS  Google Scholar 

  8. Verho, T., et al.: Mechanically durable superhydrophobic surfaces. Adv. Mater. 23, 673–678 (2011). https://doi.org/10.1002/adma.201003129

    Article  CAS  Google Scholar 

  9. Paven, M., et al.: Mechanical properties of highly porous super liquid-repellent surfaces. Adv. Func. Mater. 26, 4914–4922 (2016). https://doi.org/10.1002/adfm.201600627

    Article  CAS  Google Scholar 

  10. Binnig, G., Quate, C.F., Gerber, C.: Atomic force microscope. Phys. Rev. Lett. 56, 930–933 (1986)

    Article  CAS  Google Scholar 

  11. Oliver, W.C., Pharr, G.M.: An improved method for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564–1583 (1992)

    Article  CAS  Google Scholar 

  12. Ducker, W.A., Senden, T.J., Pashley, R.M.: Direct measurement of colloidal forces using an atomic force microscope. Nature 353, 239–241 (1991)

    Article  CAS  Google Scholar 

  13. Kappl, M., Butt, H.-J.: The colloidal probe technique and its application to adhesion force measurements. Part. Part. Syst. Charact. 19, 129–143 (2002)

    Article  CAS  Google Scholar 

  14. Kwade, A., et al.: Micromechanical properties of colloidal structures. In: AIP Conference Proceedings, vol. 1542, 939–942 (2013)

    Google Scholar 

  15. Strege, S., et al.: Approach to structural anisotropy in compacted cohesive powder. Granul. Matter 16, 401–409 (2014). https://doi.org/10.1007/s10035-013-0454-4

    Article  Google Scholar 

  16. MiDi, G.: On dense granular flows. Eur. Phys. J. E 14, 341–365 (2004)

    Article  CAS  Google Scholar 

  17. Scheel, M., et al.: Morphological clues to wet granular pile stability. Nat. Mater. 7, 189–193 (2008)

    Article  CAS  Google Scholar 

  18. Herminghaus, S.: Wet Granular Matter: A Truly Complex Fluid. World Scientific Publishing Co. Pte. Ltd. (2013)

    Google Scholar 

  19. Mani, R., et al.: Role of contact-angle hysteresis for fluid transport in wet granular matter. Phys. Rev. E 91 (2015). https://doi.org/10.1103/physreve.91.042204

  20. Koos, E., Willenbacher, N.: Capillary forces in suspension rheology. Science 331, 897–900 (2011)

    Article  CAS  Google Scholar 

  21. Bossler, F., Koos, E.: Structure of particle networks in capillary suspensions with wetting and nonwetting fluids. Langmuir 32, 1489–1501 (2016). https://doi.org/10.1021/acs.langmuir.5b04246

    Article  CAS  Google Scholar 

  22. Roy, S., Singh, A., Luding, S., Weinhart, T.: Micro–macro transition and simplified contact models for wet granular materials. Comput. Part. Mech. 3, 449–462 (2016). https://doi.org/10.1007/s40571-015-0061-8

    Article  Google Scholar 

  23. Greenwood, J.A., Williamson, J.B.P.: The contact of two nominally flat surfaces. Proc. R. Soc. Lond. 295, 300–319 (1966)

    Article  CAS  Google Scholar 

  24. Groten, J., Ruhe, J.: Surfaces with combined microscale and nanoscale structures: a route to mechanically stable superhydrophobic surfaces? Langmuir 29, 3765–3772 (2013). https://doi.org/10.1021/la304641q

    Article  CAS  Google Scholar 

  25. Zhang, L., et al.: Hollow silica spheres: synthesis and mechanical properties. Langmuir 25, 2711–2717 (2009). https://doi.org/10.1021/la803546r

    Article  CAS  Google Scholar 

  26. Reissner, E.: Stresses and small displacements of shallow spherical shells 2. J. Math. Phys. 25, 279–300 (1946)

    Article  Google Scholar 

  27. Deng, X., Mammen, L., Butt, H.-J., Vollmer, D.: Candle soot as a template for a transparent robust superamphiphobic coating. Science 335, 67–70 (2012). https://doi.org/10.1126/science.1207115

    Article  CAS  Google Scholar 

  28. Paven, M., et al.: Optimization of superamphiphobic layers based on candle soot. Pure Appl. Chem. 86, 87–96 (2014). https://doi.org/10.1515/pac-2014-5015

    Article  CAS  Google Scholar 

  29. Callies, M., Quere, D.: On water repellency. Soft Matter 1, 55–61 (2005). https://doi.org/10.1039/b501657f

    Article  CAS  Google Scholar 

  30. Deng, X., et al.: Transparent, thermally stable and mechanically robust superhydrophobic surfaces made from porous silica capsules. Adv. Mater. 23, 2962–2965 (2011)

    Article  CAS  Google Scholar 

  31. Stober, W., Fink, A., Bohn, E.: Controlled growth of monodisperse silica spheres in micron size range. J. Colloid Interface Sci. 26, 62– (1968)

    Google Scholar 

  32. D’Acunzi, M., et al.: Superhydrophobic surfaces by hybrid raspberry-like particles. Faraday Discuss. 146, 35–48 (2010). https://doi.org/10.1039/b925676h

    Article  CAS  Google Scholar 

  33. Zhang, L.J., et al.: Tuning the mechanical properties of silica microcapsules. Phys. Chem. Chem. Phys. 12, 15392–15398 (2010). https://doi.org/10.1039/c0cp00871k

    Article  CAS  Google Scholar 

  34. Butt, H.-J., Kappl, M.: Surface and Interfacial Forces. Wiley-VCH (2010)

    Google Scholar 

  35. Heim, L.O., Blum, J., Preuss, M., Butt, H.-J.: Adhesion and friction forces between spherical micrometer-sized particles. Phys. Rev. Lett. 83, 3328–3331 (1999)

    Article  CAS  Google Scholar 

  36. Heim, L., Butt, H.-J., Schräpler, R., Blum, J.: Analyzing the compaction of high-porosity microscopic agglomerates. Aust. J. Chem. 58, 1–3 (2005)

    Article  Google Scholar 

  37. Ye, M., et al.: Superamphiphobic particles: how small can we go? Phys. Rev. Lett. 112 (2014). https://doi.org/10.1103/physrevlett.112.016101

  38. Ducker, W.A., Xu, Z., Israelachvili, J.N.: Measurement of hydrophobic and DLVO forces in bubble-surface interactions in aqueous solutions. Langmuir 10, 3279–3289 (1994)

    Article  CAS  Google Scholar 

  39. Fielden, M.L., Hayes, R.A., Ralston, J.: Surface and capillary forces affecting air bubble-particle interactions in aqueous electrolyte. Langmuir 12, 3721–3727 (1996)

    Article  CAS  Google Scholar 

  40. Preuss, M., Butt, H.-J.: Direct measurement of forces between particles and bubbles. Int. J. Miner. Process. 56, 99–115 (1999)

    Article  CAS  Google Scholar 

  41. Scheludko, A., Toshev, B.V., Bojadjiev, D.T.: Attachment of particles to a liquid surface (Capillary theory of flotation). J. Chem. Soc. Faraday Trans. I 72, 2815–2828 (1976)

    Article  CAS  Google Scholar 

  42. Butt, H.J., et al.: Design principles for superamphiphobic surfaces. Soft Matter 9, 418–428 (2013). https://doi.org/10.1039/c2sm27016a

    Article  CAS  Google Scholar 

  43. Wooh, S., et al.: Synthesis of mesoporous supraparticles on superamphiphobic surfaces. Adv. Mater. 27, 7338–+ (2015). https://doi.org/10.1002/adma.201503929

    Article  CAS  Google Scholar 

  44. Deng, X., et al.: Solvent-free synthesis of microparticles on superamphiphobic surfaces. Angew. Chem. Int. Ed. 52, 11286–11289 (2013). https://doi.org/10.1002/anie.201302903

    Article  CAS  Google Scholar 

  45. Weeks, E.R., Crocker, J.C., Levitt, A.C., Schofield, A., Weitz, D.A.: Three-dimensional direct imaging of structural relaxation near the colloidal glass transition. Science 287, 627–631 (2000)

    Article  CAS  Google Scholar 

  46. Crocker, J.C., Grier, D.G.: Methods of digital video microscopy for colloidal studies. J. Colloid Interface Sci. 179, 298–310 (1996)

    Article  CAS  Google Scholar 

  47. Sedgwick, H., Egelhaaf, S.U., Poon, W.C.K.: Clusters and gels in systems of sticky particles. J. Phys.: Condens. Matter 16 (2004)

    CAS  Google Scholar 

  48. Zausch, J., et al.: From equilibrium to steady state: the transient dynamics of colloidal liquids under shear. J. Phys.: Condens. Matter 20, 404210 (2008)

    Google Scholar 

  49. Van Blaaderen, A., Imhof, A., Hage, W., Vrij, A.: Three-dimensional imaging of submicrometer colloidal particles in concentrated suspensions using confocal scanning laser microscopy. Langmuir 8, 1514–1517 (1992). https://doi.org/10.1021/la00042a005

    Article  Google Scholar 

  50. van Blaaderen, A., Wiltzius, P.: Real-space structure of colloidal hard-sphere glasses. Science 270, 1177–1179 (1995)

    Article  Google Scholar 

  51. Roth, M., Franzmann, M., D’Acunzi, M., Kreiter, M., Auernhammer, G.K.: Experimental analysis of single particle deformations and rotations in colloidal and granular systems. arXiv.org 1106, 1106.3623 [cond-mat.soft] (2011)

    Google Scholar 

  52. Roth, M., Schilde, C., Lellig, P., Kwade, A., Auernhammer, G.: Colloidal aggregates tested via nanoindentation and quasi-simultaneous 3D imaging. Eur. Phys. J. E 35, 1–12 (2012). https://doi.org/10.1140/epje/i2012-12124-8

    Article  CAS  Google Scholar 

  53. Roth, M., Schilde, C., Lellig, P., Kwade, A., Auernhammer, G.K.: Simultaneous nanoindentation and 3D imaging on semicrystalline colloidal films. Chem. Lett. 41, 1110–1112 (2012)

    Article  CAS  Google Scholar 

  54. Minsky, M.: Microscopy Apparatus. USA patent (1957)

    Google Scholar 

  55. Minski, M.: Double focussing stage scanning microscope. Scanning 10, 128–138 (1988)

    Article  Google Scholar 

  56. Jenkins, M.C., Haw, M.D., Barker, G.C., Poon, W.C.K., Egelhaaf, S.U.: Finding bridges in packings of colloidal spheres. Soft Matter 7, 684–690 (2011)

    Article  CAS  Google Scholar 

  57. Wenzl, J., Seto, R., Roth, M., Butt, H.-J., Auernhammer, G.: Measurement of rotation of individual spherical particles in cohesive granulates. Granul. Matter 15, 391–400 (2013). https://doi.org/10.1007/s10035-012-0383-7

    Article  Google Scholar 

  58. Van Blaaderen, A., Vrij, A.: Synthesis and characterization of colloidal dispersions of fluorescent, monodisperse silica spheres. Langmuir 8, 2921–2931 (1992). https://doi.org/10.1021/la00048a013

    Article  Google Scholar 

  59. Verhaegh, N.A.M., Blaaderen, A.V.: Dispersions of rhodamine-labeled silica spheres: synthesis, characterization, and fluorescence confocal scanning laser microscopy. Langmuir 10, 1427–1438 (1994). https://doi.org/10.1021/la00017a019

    Article  CAS  Google Scholar 

  60. Wenzl, J.: Wet and Dry Model Granulates Under Mechanical Load : A Confocal Microscopy Study. Johannes Gutenberg-Universität (2014)

    Google Scholar 

  61. Sacanna, S., Rossi, L., Kuipers, B.W.M., Philipse, A.P.: Fluorescent monodisperse silica ellipsoids for optical rotational diffusion studies. Langmuir 22, 1822–1827 (2006). https://doi.org/10.1021/la052484o

    Article  CAS  Google Scholar 

  62. Th, G., Odenbach, S.: Investigation of the motion of particles in magnetorheological elastomers by X-μ CT. Smart Mater. Struct. 23, 105013 (2014)

    Article  Google Scholar 

  63. Gundermann, T., Cremer, P., Löwen, H., Menzel, A.M., Odenbach, S.: Statistical analysis of magnetically soft particles in magnetorheological elastomers. Smart Mater. Struct. 26, 045012 (2017)

    Article  Google Scholar 

  64. Schutter, S., Roller, J., Kick, A., Meijer, J.-M., Zumbusch, A.: Real-space imaging of translational and rotational dynamics of hard spheres from the fluid to the crystal. Soft Matter 13, 8240–8249 (2017). https://doi.org/10.1039/C7SM01400G

    Article  Google Scholar 

  65. Harrington, M., Lin, M., Nordstrom, K.N., Losert, W.: Experimental measurements of orientation and rotation of dense 3D packings of spheres. Granul. Matter 16, 185–191 (2014). https://doi.org/10.1007/s10035-013-0474-0

    Article  Google Scholar 

  66. Anthony, S.M., Hong, L., Kim, M., Granick, S.: Single-particle colloid tracking in four dimensions. Langmuir 22, 9812–9815 (2006)

    Article  CAS  Google Scholar 

  67. Hsiao, L.C., Saha-Dalal, I., Larson, R.G., Solomon, M.J.: Translational and rotational dynamics in dense suspensions of smooth and rough colloids. Soft Matter 13, 9229–9236 (2017). https://doi.org/10.1039/C7SM02115A

    Article  CAS  Google Scholar 

  68. Lettinga, M.P., Koenderink, G.H., Kuipers, B.W.M., Bessels, E., Philipse, A.P.: Rotational dynamics of colloidal spheres probed with fluorescence recovery after photobleaching. J. Chem. Phys. 120, 4517–4529 (2004)

    Article  CAS  Google Scholar 

  69. Dosta, M., et al.: Application of micro computed tomography for adjustment of model parameters for discrete element method. Chem. Eng. Res. Des. 135, 121–128 (2018). https://doi.org/10.1016/j.cherd.2018.05.030

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Doris Vollmer or Günter K. Auernhammer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gilson, L. et al. (2019). Formation, Deformation, Rolling and Sliding of Particles and Particle Aggregates: Mechanisms and Applications. In: Antonyuk, S. (eds) Particles in Contact. Springer, Cham. https://doi.org/10.1007/978-3-030-15899-6_4

Download citation

Publish with us

Policies and ethics