Stochastic Nature of Particle Collisions and its Impact on Granular Material Properties

  • Nina GunkelmannEmail author
  • Dan Serero
  • Aldo Glielmo
  • Marina Montaine
  • Michael Heckel
  • Thorsten Pöschel


The dynamics of rapid granular flows is governed by dissipative interactions of particles with each other and with the system walls. To adequately describe these interactions, roughness and particle shape must be taken into account. The coefficient of restitution for arbitrary particles thus depends not only on material properties and impact velocity but also on the angular orientation at the instant of the collision. By measurements of the coefficient of restitution from the sound signal emitted by a sphere bouncing repeatedly off the ground, it was found that small deviations from the perfect shape of the sphere lead to large measurement errors. Using stochastic methods, the effective coefficient of restitution for the collision of a rough sphere with a plane was described as a fluctuating quantity, characterized by a rather uncommon probability density function. It was shown that modelling the coefficient of restitution as a stochastic variable significantly affects the dynamics of particles under rapid granular flows. The decay of temperature of rapid granular flows in the homogeneous cooling state deviates from Haff’s law for gases of particles interacting via a constant coefficient of restitution also from the scaling law for gases of viscoelastic particles.



We acknowledge funding by Deutsche Forschungsgemeinschaft (DFG) through the Cluster of Excellence “Engineering of Advanced Materials” and through project PO 472/25. We thank the colleagues involved in the SPP for intensive discussion and steady support. NG acknowledges support by “Simulation Science Center Clausthal-Göttingen”. AG acknowledges funding from the Engineering and Physical Sciences Research Council (EPSRC) through the Centre for Doctoral Training “Cross Disciplinary Approaches to Non-equilibrium Systems” (CANES, Grant No. EP/L015854/1) and thanks the Deutsche Akademische Austauschdienst for a RISE scholarship.


  1. 1.
    Aguiar, C.E., Laudares, F.: Listening to the coefficient of restitution and the gravitational acceleration of a bouncing balls. Am. J. Phys. 71, 499–501 (2002)CrossRefGoogle Scholar
  2. 2.
    Becker, V., Schwager, T., Pöschel, T.: Coefficient of tangential restitution for the linear dashpot model. Phys. Rev. E 77, 011304 (2008)CrossRefGoogle Scholar
  3. 3.
    Bernstein, A.D.: Listening to the coefficient of restitution. Am. J. Phys. 45, 41–44 (1977)CrossRefGoogle Scholar
  4. 4.
    Bird, G.A.: Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Clarendon Press, Oxford (1994)Google Scholar
  5. 5.
    Brenig, L., Salazar, J.M.: Exact results for the homogeneous cooling state of an inelastic hard-sphere gas. J. Plasma Phys. 59, 639–646 (1998)CrossRefGoogle Scholar
  6. 6.
    Brey, J.J., Prados, A., García, M.I., Maynar, P.: Scaling and aging in the homogeneous cooling state of a granular fluid of hard particles. J. Phys. A Math. Theor. 40, 14331–14342 (2007)CrossRefGoogle Scholar
  7. 7.
    Brey, J.J., Ruiz-Montero, M.J., Cubero, D.: Homogeneous cooling state of a low-density granular flow. Phys. Rev. E 54, 3664 (1996)CrossRefGoogle Scholar
  8. 8.
    Bridges, F.G., Hatzes, A., Lin, D.N.C.: Structure, stability and evolution of saturn’s rings. Nature 309, 333–335 (1984)CrossRefGoogle Scholar
  9. 9.
    Brilliantov, N., Pöschel, T.: Kinetic Theory of Granular Gases. Oxford University Press, Oxford (2003)Google Scholar
  10. 10.
    Brilliantov, N.V., Spahn, F., Hertzsch, J.-M., Pöschel, T.: A model for collisions in granular gases. Phys. Rev. E 53, 5382–5392 (1996)CrossRefGoogle Scholar
  11. 11.
    Ciocca, M., Wang, J.: Watching and listening to the coefficient of restitution. J. Ky. Acad. Sci. 72, 100–104 (2002)Google Scholar
  12. 12.
    Falcon, E., Laroche, C., Fauve, S., Coste, C.: Behavior of one inelastic ball bouncing repeatedly off the ground. Eur. Phys. J. B 3, 45–57 (1998)CrossRefGoogle Scholar
  13. 13.
    Foerster, S.F., Louge, M.Y., Chang, H., Allia, K.: Measurements of the collision properties of small spheres. Phys. Fluids 6, 1108–1115 (1994)CrossRefGoogle Scholar
  14. 14.
    Foong, S.K., Kiang, D., Lee, P., March, R.H., Paton, B.E.: How long does it take a bouncing ball to bounce an infinite number of times? Phys. Educ. 39(1), 40–43 (2004)CrossRefGoogle Scholar
  15. 15.
    Glielmo, A., Gunkelmann, N., Pöschel, T.: Coefficient of restitution of aspherical particles. Phys. Rev. E 90, 052204 (2014)CrossRefGoogle Scholar
  16. 16.
    Goldhirsch, I.: Rapid granular flows. Annu. Rev. Fluid Mech. 35, 267–293 (2003)CrossRefGoogle Scholar
  17. 17.
    Gunkelmann, N., Montaine, M., Pöschel, T.: Stochastic behavior of the coefficient of normal restitution. Phys. Rev. E 89, 022205 (2014)CrossRefGoogle Scholar
  18. 18.
    Gunkelmann, N., Serero, D., Pöschel, T.: Temperature of a granular gas with regard to the stochastic nature of particle interactions. New J. Phys. 15(9), 093030 (2013)CrossRefGoogle Scholar
  19. 19.
    Haff, P.: Grain flow as a fluid-mechanical phenomenon. J. Fluid Mech. 134, 401 (1983)CrossRefGoogle Scholar
  20. 20.
    Heckel, M., Glielmo, A., Gunkelmann, N., Pöschel, T.: Can we obtain the coefficient of restitution from the sound of a bouncing ball? Phys. Rev. E 93, 032901 (2016)CrossRefGoogle Scholar
  21. 21.
    Hodgkinson, E.: On the effect of impact on beams. J. Franklin Inst. 19(2), 140–141 (1835)CrossRefGoogle Scholar
  22. 22.
    Huthmann, M., Orza, J.A.G., Brito, R.: Dynamics of deviations from the gaussian state in a freely cooling homogeneous system of smooth inelastic particles. Gran. Matter 2, 189–199 (2000)CrossRefGoogle Scholar
  23. 23.
    Jiang, Z., Liang, Z., Wu, A., Zheng, R.: Effect of collision duration on the chaotic dynamics of a ball bouncing on a vertically vibrating plate. Physica A Stat. Mech. Appl. 494, 380–388 (2018)CrossRefGoogle Scholar
  24. 24.
    Kawahara, R., Nakanishi, H.: Effects of velocity correlation on early stage of free cooling process of inelastic hard sphere system. J. Phys. Soc. Jpn. 73, 68–75 (2004)CrossRefGoogle Scholar
  25. 25.
    King, H., White, R., Maxwell, I., Menon, N.: Inelastic impact of a sphere on a massive plane: nonmonotonic velocity-dependence of the restitution coefficient. Europhys. Lett. 93, 14002 (2011)CrossRefGoogle Scholar
  26. 26.
    Koller, M.G., Kolsky, H.: Waves produced by the elastic impact of spheres on thick plates. Int. J. Solids Struct. 23, 1387–1400 (1987)CrossRefGoogle Scholar
  27. 27.
    Kollmer, J.E., Sack, A., Heckel, M., Zimber, F., Mueller, P., Bannerman, M.N., Pöschel, T.: Collective granular dynamics in a shaken container at low gravity conditions. AIP Conf. Proc. 1542, 811–814 (2013)CrossRefGoogle Scholar
  28. 28.
    Kuwabara, G., Kono, K.: Restitution coefficient in a collision between two spheres. Jpn. J. Appl. Phys. 26, 1230–1233 (1987)CrossRefGoogle Scholar
  29. 29.
    Labous, L., Rosato, A.D., Dave, R.N.: Measurements of collisional properties of spheres using high-speed video analysis. Phys. Rev. E 56, 5717–5725 (1997)CrossRefGoogle Scholar
  30. 30.
    Leconte, M., Garrabos, Y., Palencia, F., Lecoutre, C., Evesque, P., Beysens, D.: Inelastic ball-plane impact: an accurate way to measure the normal restitution coefficient. Appl. Phys. Lett. 89(24), 243518 (2006)CrossRefGoogle Scholar
  31. 31.
    Lewis, P., Shedler, G.: Simulation of nonhomogeneous poisson processes by thinning. Nav. Res. Logist. Quart. 26, 403 (1979)CrossRefGoogle Scholar
  32. 32.
    Lifshitz, J.M., Kolsky, H.: Some experiments on anelastic rebound. J. Mech. Phys. Solids 12, 35–43 (1964)CrossRefGoogle Scholar
  33. 33.
    Lorenz, A., Tuozzolo, C., Louge, M.Y.: Measurements of impact properties of small, nearly spherical particles. Exp. Mech. 37, 292–298 (1997)CrossRefGoogle Scholar
  34. 34.
    Louge, M.Y., Adams, M.E.: Anomalous behaviour of normal kinematic restitution in the oblique impacts of a hard sphere on an elastoplastic plate. Phys. Rev. E 65, 021303 (2002)CrossRefGoogle Scholar
  35. 35.
    Maaß, C.C., Isert, N., Maret, G., Aegerter, C.M.: Experimental investigation of the freely cooling granular gas. Phys. Rev. Lett. 100, 248001 (2008)CrossRefGoogle Scholar
  36. 36.
    Maynes, K.C., Compton, M.G., Baker, B.: Coefficient of restitution measurements for sport balls: an investigative approach. Phys. Teach. 43(6), 352–354 (2005)CrossRefGoogle Scholar
  37. 37.
    McLaskey, G.C., Glaser, S.D.: Hertzian impact: experimental study of the force pulse and resulting stress waves. J. Acoust. Soc. Am. 128, 1087–1096 (2010)CrossRefGoogle Scholar
  38. 38.
    Montaine, M., Heckel, M., Kruelle, C., Schwager, T., Pöschel, T.: Coefficient of restitution as a fluctuating quantity. Phys. Rev. E 84, 041306 (2011)CrossRefGoogle Scholar
  39. 39.
    Müller, P., Formella, A., Pöschel, T.: Granular jet impact: granular-continuum transition. J. Fluid Mech. (2013)Google Scholar
  40. 40.
    Müller, P., Pöschel, T.: Collision of viscoelastic spheres: compact expressions for the coefficient of normal restitution. Phys. Rev. E 84, 021302 (2011)CrossRefGoogle Scholar
  41. 41.
    Nunn, J.: The bounce meter. Phys. Educ. 49(3), 303–309 (2014)CrossRefGoogle Scholar
  42. 42.
    Pöschel, T., Brilliantov, N.V., Schwager, T.: Violation of molecular chaos in dissipative gases. Int. J. Mod. Phys. C 13, 1263–1272 (2002)CrossRefGoogle Scholar
  43. 43.
    Pöschel, T., Schwager, T.: Computational Granular Dynamics. Models and Algorithms. Springer, New York (2005)Google Scholar
  44. 44.
    Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C, 2nd edn. Cambridge University Press, Cambridge (1992)Google Scholar
  45. 45.
    Raman, C.V.: The photographic study of impact at minimal velocities. Phys. Rev. E 15, 442–447 (1918)CrossRefGoogle Scholar
  46. 46.
    Ramírez, R., Pöschel, T., Brilliantov, N., Schwager, T.: Coefficient of restitution of colliding spheres. Phys. Rev. E 60, 4465–4472 (1999)CrossRefGoogle Scholar
  47. 47.
    Reagle, C.J., Delimont, J.M., Ng, W.F., Ekkad, S.V., Rajendran, V.P.: Measuring the coefficient of restitution of high speed microparticle impacts using a PTV and CFD hybrid technique. Meas. Sci. Technol. 24, 105303 (2013)CrossRefGoogle Scholar
  48. 48.
    Ribeiro, T.C., Romero, J.F.A., Romero, J.A.A.: Novel techniches for experimental determination of the restitution coefficient by means of acoustic signal analysis. ABCM Symp. Ser. Mech. 5, 676–683 (2012)Google Scholar
  49. 49.
    Santos, A., Kremer, G.M., dos Santos, M.: Sonine approximation for collisional moments of granular gases of inelastic rough spheres. Phys. Fluids 23, 030604 (2011)CrossRefGoogle Scholar
  50. 50.
    Schwager, T., Becker, V., Pöschel, T.: Coefficient of tangential restitution for viscoelastic spheres. Eur. Phys. J. E 27, 107 (2008)CrossRefGoogle Scholar
  51. 51.
    Schwager, T., Pöschel, T.: Coefficient of restitution for viscous particles an cooling rate of granular gases. Phys. Rev. E 57, 650–654 (1998)CrossRefGoogle Scholar
  52. 52.
    Schwager, T., Pöschel, T.: Coefficient of restitution for viscoelastic spheres: the effect of delayed recovery. Phys. Rev. E 78, 051304 (2008)CrossRefGoogle Scholar
  53. 53.
    Serero, D., Gunkelmann, N., Pöschel, T.: Hydrodynamics of binary mixtures of granular gases with stochastic coefficient of restitution. J. Fluid Mech. 781, 595621 (2015)CrossRefGoogle Scholar
  54. 54.
    Smith, P.A., Spencer, C.D., Jones, D.E.: Microcomputer listens to the coefficient of restitution. Am. J. Phys. 49, 136–140 (1981)CrossRefGoogle Scholar
  55. 55.
    Sondergaard, R., Chaney, K., Brennen, C.E.: Measurements of solid spheres bouncing off flat plates. J. Appl. Mech. 57, 694–699 (1990)CrossRefGoogle Scholar
  56. 56.
    Stensgaard, I., Lægsgaard, E.: Listening to the coefficient of restitution—revisited. Am. J. Phys. 69, 301–305 (2001)CrossRefGoogle Scholar
  57. 57.
    Tabakoff, W.: Measurements of particles rebound characteristics on materials used in gas turbines. J. Prop. Pow. 7, 805–813 (1993)CrossRefGoogle Scholar
  58. 58.
    Wadhwa, A.: Measuring the coefficient of restitution using a digital oscilloscope. Phys. Educ. 44(5), 517–521 (2009)CrossRefGoogle Scholar
  59. 59.
    Wadhwa, A.: Measuring the rebound resilience of a bouncing ball. Phys. Educ. 47(5), 620–626 (2012)CrossRefGoogle Scholar
  60. 60.
    Wadlund, A.P.R.: A simple method for determining the coefficient of restitution. Am. J. Phys. 7(3), 194–195 (1939)CrossRefGoogle Scholar
  61. 61.
    Wang, J., Ciocca, M.: Watching and listening to the coefficient of restitution. Phys. Teach. 50(8), 503–503 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Nina Gunkelmann
    • 1
    • 2
    Email author
  • Dan Serero
    • 1
  • Aldo Glielmo
    • 3
  • Marina Montaine
    • 1
  • Michael Heckel
    • 1
  • Thorsten Pöschel
    • 1
  1. 1.Institute for Multiscale SimulationsFriedrich-Alexander-UniversitätErlangenGermany
  2. 2.Institute of Applied MechanicsTechnische Universität ClausthalClausthal-ZellerfeldGermany
  3. 3.Department of PhysicsKing’s College LondonLondonUnited Kingdom

Personalised recommendations