Advertisement

Bioelectrochemical Syntheses

  • Suman Bajracharya
  • Nabin Aryal
  • Heleen De Wever
  • Deepak PantEmail author
Chapter

Abstract

Bioelectrosynthesis from CO2 offers the prospect to reuse CO2 emissions as a feedstock and generate fuels and value-added chemicals from CO2 and its derivatives working in water. The technology has environmental advantages due to its sustainability, renewability and environmentally friendly qualities. The future potential of these systems can be associated to the framework of CO2 biorefineries, the power-to-gas concept, or biogas upgrading, thus helping to step-up in the desired global transition from fossil fuel-based to electricity-based economy.

Notes

Acknowledgements

Nabin Aryal is supported by a FutureGas project from Innovation Fund Denmark-Innovationfonden.

References

  1. 1.
    Addo PK et al (2011) Methanol production via bioelectrocatalytic reduction of carbon dioxide: role of carbonic anhydrase in improving electrode performance. Electrochem Solid-State Lett 14(4):E9–E13.  https://doi.org/10.1149/1.3537463CrossRefGoogle Scholar
  2. 2.
    Agler MT et al (2011) Waste to bioproduct conversion with undefined mixed cultures: the carboxylate platform. Trends Biotechnol 29(2):70–8 (Elsevier Ltd).  https://doi.org/10.1016/j.tibtech.2010.11.006
  3. 3.
    Alqahtani MF et al (2018) Porous hollow fiber nickel electrodes for effective supply and reduction of carbon dioxide to methane through microbial electrosynthesis. Adv Funct Mater, 1804860 (Wiley).  https://doi.org/10.1002/adfm.201804860
  4. 4.
    Alvarez-Gallego Y et al (2012) Development of gas diffusion electrodes for cogeneration of chemicals and electricity. Electrochim Acta 82:415–426.  https://doi.org/10.1016/j.electacta.2012.06.096 (Pergamon-Elsevier Science Ltd)CrossRefGoogle Scholar
  5. 5.
    Amao Y, Shuto N (2014) Formate dehydrogenase–viologen-immobilized electrode for CO2 conversion, for development of an artificial photosynthesis system. Res Chem Intermed 40(9):3267–3276.  https://doi.org/10.1007/s11164-014-1832-1CrossRefGoogle Scholar
  6. 6.
    Amao Y, Watanabe T (2007) Photochemical and enzymatic synthesis of methanol from formaldehyde with alcohol dehydrogenase from Saccharomyces cerevisiae and water-soluble zinc porphyrin. J Mol Catal B Enzym 44(1):27–31.  https://doi.org/10.1016/J.MOLCATB.2006.08.001 (Elsevier)CrossRefGoogle Scholar
  7. 7.
    Ammam F et al (2016) Effect of tungstate on acetate and ethanol production by the electrosynthetic bacterium Sporomusa ovata. Biotechnol Biofuels BioMed Central 9(1):1–10.  https://doi.org/10.1186/s13068-016-0576-0CrossRefGoogle Scholar
  8. 8.
    Arends JBA et al (2017) Continuous long-term electricity-driven bioproduction of carboxylates and isopropanol from CO2 with a mixed microbial community. J CO2 Utilization 20:141–149.  https://doi.org/10.1016/j.jcou.2017.04.014 (Elsevier)CrossRefGoogle Scholar
  9. 9.
    Aresta M, Dibenedetto A, Quaranta E (2016) Enzymatic conversion of CO2 (carboxylation reactions and reduction to energy-rich C1 molecules). In: Reaction mechanisms in carbon dioxide conversion. Springer, Heidelberg, pp 347–371.  https://doi.org/10.1007/978-3-662-46831-9_9
  10. 10.
    Aryal N et al (2016) Enhanced microbial electrosynthesis with three-dimensional graphene functionalized cathodes fabricated via solvothermal synthesis. Electrochim Acta 217:117–122.  https://doi.org/10.1016/j.electacta.2016.09.063 (Elsevier Ltd)CrossRefGoogle Scholar
  11. 11.
    Aryal N, Ammam F et al (2017) An overview of cathode materials for microbial electrosynthesis of chemicals from carbon dioxide. Green Chem 19:5748–5760.  https://doi.org/10.1039/C7GC01801KCrossRefGoogle Scholar
  12. 12.
    Aryal N, Halder A et al (2017) Freestanding and flexible graphene papers as bioelectrochemical cathode for selective and efficient CO2 conversion. Sci Rep 7(1):1–8.  https://doi.org/10.1038/s41598-017-09841-7 (Springer, US)CrossRefGoogle Scholar
  13. 13.
    Aryal N, Tremblay P-L et al (2017) Performance of different Sporomusa species for the microbial electrosynthesis of acetate from carbon dioxide. Bioresour Technol 233:184–190.  https://doi.org/10.1016/j.biortech.2017.02.128 (Elsevier Ltd)CrossRefPubMedGoogle Scholar
  14. 14.
    Aryal N, Kvist T et al (2018) An overview of microbial biogas enrichment. Bioresour Technol 264:359–369.  https://doi.org/10.1016/J.BIORTECH.2018.06.013 (Elsevier)CrossRefPubMedGoogle Scholar
  15. 15.
    Aryal N, Tremblay P-L, et al (2018) Highly conductive poly (3,4-ethylenedioxythiophene) polystyrene sulfonate polymer coated cathode for the microbial electrosynthesis of acetate from carbon dioxide. Front Energy Res, 18–20.  https://doi.org/10.3389/fenrg.2018.00072
  16. 16.
    Aryal N, Kvist T (2018) Alternative of biogas injection into the Danish gas grid system—a study from demand perspective. ChemEngineering 2(3):43.  https://doi.org/10.3390/chemengineering2030043CrossRefGoogle Scholar
  17. 17.
    Baca M et al (2016) Microbial electrochemical systems with future perspectives using advanced nanomaterials and microfluidics. Adv Energy Mater 6(23):1600690.  https://doi.org/10.1002/aenm.201600690 (Wiley-Blackwell)CrossRefGoogle Scholar
  18. 18.
    Bajracharya S et al (2015) CO2 reduction by mixed and pure cultures in microbial electrosynthesis using an assembly of graphite felt and stainless steel as a cathode. Bioresour Technol 15:14–24.  https://doi.org/10.1016/j.biortech.2015.05.081 (Elsevier Ltd)CrossRefGoogle Scholar
  19. 19.
    Bajracharya S, Sharma M et al (2016) An overview on emerging bioelectrochemical systems (BESs): technology for sustainable electricity, waste remediation, resource recovery, chemical production and beyond. Renew Energy 98:153–170.  https://doi.org/10.1016/j.renene.2016.03.002CrossRefGoogle Scholar
  20. 20.
    Bajracharya S, Vanbroekhoven K et al (2016) Application of gas diffusion biocathode in microbial electrosynthesis from carbon dioxide. Environ Sci Pollut Res 23(22):22292–22308.  https://doi.org/10.1007/s11356-016-7196-xCrossRefGoogle Scholar
  21. 21.
    Bajracharya S, Srikanth S et al (2017) Biotransformation of carbon dioxide in bioelectrochemical systems: state of the art and future prospects. J Power Sources 356.  https://doi.org/10.1016/j.jpowsour.2017.04.024
  22. 22.
    Bajracharya S, van den Burg B et al (2017) In situ acetate separation in microbial electrosynthesis from CO2 using ion-exchange resin. Electrochim Acta 237.  https://doi.org/10.1016/j.electacta.2017.03.209
  23. 23.
    Bajracharya S, Yuliasni R et al (2017) Long-term operation of microbial electrosynthesis cell reducing CO2 to multi-carbon chemicals with a mixed culture avoiding methanogenesis. Bioelectrochemistry 113:26–34.  https://doi.org/10.1016/j.bioelechem.2016.09.001CrossRefPubMedGoogle Scholar
  24. 24.
    Bajracharya S, Vanbroekhoven K et al (2017) Bioelectrochemical conversion of CO2 to chemicals: CO2 as a next generation feedstock for electricity-driven bioproduction in batch and continuous modes. Faraday Discuss 202:433–449.  https://doi.org/10.1039/C7FD00050B
  25. 25.
    Bar-Even A, Noor E, Milo R (2012) A survey of carbon fixation pathways through a quantitative lens. J Exp Bot 63(6):2325–2342.  https://doi.org/10.1093/jxb/err417CrossRefPubMedGoogle Scholar
  26. 26.
    Bassegoda A et al (2014) Reversible interconversion of CO2 and formate by a molybdenum-containing formate dehydrogenase. J Am Chem Soc 136(44):15473–15476.  https://doi.org/10.1021/ja508647uCrossRefPubMedGoogle Scholar
  27. 27.
    Batlle-vilanova P et al (2017) Bioelectrochemistry microbial electrosynthesis of butyrate from carbon dioxide: production and extraction. 117:57–64.  https://doi.org/10.1016/j.bioelechem.2017.06.004
  28. 28.
    Batlle-Vilanova P et al (2015) Deciphering the electron transfer mechanisms for biogas upgrading to biomethane within a mixed culture biocathode. RSC Adv.  https://doi.org/10.1039/c5ra09039c
  29. 29.
    Bi C et al (2013) Development of a broad-host synthetic biology toolbox for Ralstonia eutropha and its application to engineering hydrocarbon biofuel production. Microbial Cell Fact 12(1):107.  https://doi.org/10.1186/1475-2859-12-107CrossRefGoogle Scholar
  30. 30.
    Bian B, Alqahtani MF et al (2018) Porous nickel hollow fiber cathodes coated with CNTs for efficient microbial electrosynthesis of acetate from CO2 using Sporomusa ovata. J Mater Chem A 6:17201–17211.  https://doi.org/10.1039/c8ta05322g (Royal Society of Chemistry)CrossRefGoogle Scholar
  31. 31.
    Carbajosa S et al (2010) Electrochemical growth of Acidithiobacillus ferrooxidans on a graphite electrode for obtaining a biocathode for direct electrocatalytic reduction of oxygen. Biosens Bioelectron 26(2):877–880.  https://doi.org/10.1016/J.BIOS.2010.07.037 (Elsevier)CrossRefPubMedGoogle Scholar
  32. 32.
    Chen L et al (2016) Electrosynthesis of acetate from CO2 by a highly structured biofilm assembled with reduced graphene oxide–tetraethylene pentamine. J Mater Chem A 4:8395–8401.  https://doi.org/10.1039/C6TA02036D (Royal Society of Chemistry)CrossRefGoogle Scholar
  33. 33.
    Cheng S et al (2009) Direct biological conversion of electrical current into methane by electromethanogenesis. Environ Sci Technol 43(10):3953–3958. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19544913
  34. 34.
    Choe H et al (2014) Efficient CO2-reducing activity of NAD-dependent formate dehydrogenase from thiobacillus sp. KNK65MA for formate production from CO2 gas. PLoS ONE 9(7):1–10.  https://doi.org/10.1371/journal.pone.0103111 (Public Library of Science)CrossRefGoogle Scholar
  35. 35.
    Christodoulou X, Velasquez-Orta SB (2016) Microbial electrosynthesis and anaerobic fermentation: an economic evaluation for acetic acid production from CO2 and CO. Environ Sci Technol 50(20).  https://doi.org/10.1021/acs.est.6b02101
  36. 36.
    Cui M et al (2017) Three-dimensional hierarchical metal oxide-carbon electrode material for high efficient microbial electrosynthesis. Sustain Energy Fuels, 1–3.  https://doi.org/10.1039/c7se00073a
  37. 37.
    Deutzmann J, Sahin M, Spormann A (2015) Extracellular enzymes facilitate electron uptake in biocorrosion and bioelectrosynthesis. mBio 6(2):1–8.  https://doi.org/10.1128/mbio.00496-15.editor
  38. 38.
    Dürre P, Eikmanns BJ (2015) C1-carbon sources for chemical and fuel production by microbial gas fermentation. Curr Opin Biotechnol 35:63–72.  https://doi.org/10.1016/J.COPBIO.2015.03.008 (Elsevier Current Trends)CrossRefPubMedGoogle Scholar
  39. 39.
    Van Eerten-Jansen MCAA et al (2013) Bioelectrochemical production of caproate and caprylate from acetate by mixed cultures. ACS Sustain Chem Eng 1(5):513–518.  https://doi.org/10.1021/sc300168zCrossRefGoogle Scholar
  40. 40.
    ElMekawy A et al (2016) Technological advances in CO2 conversion electro-biorefinery: a step towards commercialization. Bioresour Technol 215:357–370.  https://doi.org/10.1016/j.biortech.2016.03.023CrossRefPubMedGoogle Scholar
  41. 41.
    Escapa A et al (2015) Scaling-up of membraneless microbial electrolysis cells (MECs) for domestic wastewater treatment: Bottlenecks and limitations. Bioresour Technol 180:72–78.  https://doi.org/10.1016/J.BIORTECH.2014.12.096 (Elsevier)CrossRefPubMedGoogle Scholar
  42. 42.
    Fast AG, Papoutsakis ET (2012) ‘Stoichiometric and energetic analyses of non-photosynthetic CO2-fixation pathways to support synthetic biology strategies for production of fuels and chemicals. Curr Opin Chem Eng 1(4):380–395.  https://doi.org/10.1016/j.coche.2012.07.005 (Elsevier Ltd)CrossRefGoogle Scholar
  43. 43.
    Ganigué R et al (2015) Microbial electrosynthesis of butyrate from carbon dioxide. Chem Commun 51:3235–3238.  https://doi.org/10.1039/C4CC10121ACrossRefGoogle Scholar
  44. 44.
    Geppert F et al (2016) Bioelectrochemical power-to-gas: state of the art and future perspectives. Trends Biotechnol 34(11):879–894.  https://doi.org/10.1016/J.TIBTECH.2016.08.010 (Elsevier Current Trends)CrossRefPubMedGoogle Scholar
  45. 45.
    Giddings CGS et al (2015) Simplifying microbial electrosynthesis reactor design. Front Microbiol 6(MAY):1–6.  https://doi.org/10.3389/fmicb.2015.00468CrossRefGoogle Scholar
  46. 46.
    Gildemyn S et al (2015) Integrated production, extraction, and concentration of acetic acid from CO2 through microbial electrosynthesis. Environ Sci Technol Lett 2(11):325–328.  https://doi.org/10.1021/acs.estlett.5b00212 (American Chemical Society)CrossRefGoogle Scholar
  47. 47.
    Gong Y et al (2013) Sulfide-driven microbial electrosynthesis Environ Sci Technol 47(1):568–573.  https://doi.org/10.1021/es303837j
  48. 48.
    Guo K et al (2015) Engineering electrodes for microbial electrocatalysis. Curr Opin Biotechnol 33:149–156.  https://doi.org/10.1016/j.copbio.2015.02.014CrossRefPubMedGoogle Scholar
  49. 49.
    Hawkins AS et al (2011) Extremely thermophilic routes to microbial electrofuels. ACS Catal 1(9):1043–1050.  https://doi.org/10.1021/cs2003017 (American Chemical Society)CrossRefGoogle Scholar
  50. 50.
    Hoffmeister S et al (2016) Acetone production with metabolically engineered strains of Acetobacterium woodii. Metab Eng 36:37–47.  https://doi.org/10.1016/J.YMBEN.2016.03.001 (Academic Press)CrossRefPubMedGoogle Scholar
  51. 51.
    Hori Y (2008) Electrochemical CO2 reduction on metal electrodes. In: Vayenas CG, White RE, Gamboa-Aldeco ME (eds) Modern aspects of electrochemistry. Springer, New York, pp 89–189CrossRefGoogle Scholar
  52. 52.
    Hu P et al (2016) Integrated bioprocess for conversion of gaseous substrates to liquids. In: Proc Natl Acad Sci 113(14):3773 LP-3778. Available at: http://www.pnas.org/content/113/14/3773.abstract
  53. 53.
    Jeoung J-H, Dobbek H (2007) Carbon dioxide activation at the Ni,Fe-cluster of anaerobic carbon monoxide dehydrogenase. Science 318(5855):1461 LP-1464. Available at: http://science.sciencemag.org/content/318/5855/1461.abstract
  54. 54.
    Jhong H-R, Ma S, Kenis PJ (2013) Electrochemical conversion of CO2 to useful chemicals: current status, remaining challenges, and future opportunities. Curr Opin Chem Eng 2(2):191–199.  https://doi.org/10.1016/j.coche.2013.03.005 (Elsevier Ltd)CrossRefGoogle Scholar
  55. 55.
    Jiang Y et al (2018) Electrochemical control of redox potential arrests methanogenesis and regulates products in mixed culture electro-fermentation. ACS Sustain Chem Eng 6(7):8650–8658.  https://doi.org/10.1021/acssuschemeng.8b00948 (American Chemical Society)CrossRefGoogle Scholar
  56. 56.
    Jourdin L et al (2014) A novel carbon nanotube modified scaffold as an efficient biocathode material for improved microbial electrosynthesis. J Mater Chem A 2(32):13093–13102.  https://doi.org/10.1039/C4TA03101FCrossRefGoogle Scholar
  57. 57.
    Jourdin L et al (2015) High acetic acid production rate obtained by microbial electrosynthesis from carbon dioxide. Environ Sci Technol 49(22):13566–13574.  https://doi.org/10.1021/acs.est.5b03821CrossRefPubMedGoogle Scholar
  58. 58.
    Jourdin L, Lu Y et al (2016) Biologically-induced hydrogen production drives high rate/high efficiency microbial electrosynthesis of acetate from carbon dioxide. ChemElectroChem 3(4):581–591.  https://doi.org/10.1002/celc.201500530CrossRefGoogle Scholar
  59. 59.
    Jourdin L, Freguia S et al (2016) Bringing high-rate, CO2-based microbial electrosynthesis closer to practical implementation through improved electrode design and operating conditions. Environ Sci Technol 50:1982–1989.  https://doi.org/10.1021/acs.est.5b04431CrossRefPubMedGoogle Scholar
  60. 60.
    Jourdin L et al (2018) Critical biofilm growth throughout unmodified carbon felts allows continuous bioelectrochemical chain elongation from CO2 up to caproate at high current density. Front Energy Res 6:7.  https://doi.org/10.3389/fenrg.2018.00007CrossRefGoogle Scholar
  61. 61.
    Kato S, Hashimoto K, Watanabe K (2012) Methanogenesis facilitated by electric syntrophy via (semi)conductive iron-oxide minerals. Environ Microbiol 14(7):1646–1654.  https://doi.org/10.1111/j.1462-2920.2011.02611.xCrossRefPubMedGoogle Scholar
  62. 62.
    Katuri KP et al (2018) Dual-function electrocatalytic and macroporous hollow-fiber cathode for converting waste streams to valuable resources using microbial electrochemical systems. Adv Mater 30(26):1707072.  https://doi.org/10.1002/adma.201707072CrossRefGoogle Scholar
  63. 63.
    Kernan T et al (2015) Engineering the iron-oxidizing chemolithoautotroph Acidithiobacillus ferrooxidans for biochemical production. Biotechnol Bioeng 113(1):189–197.  https://doi.org/10.1002/bit.25703 (Wiley-Blackwell)CrossRefPubMedGoogle Scholar
  64. 64.
    Khunjar WO et al (2012) Biomass production from electricity using ammonia as an electron carrier in a reverse microbial fuel cell. PloS one 7(9):e44846.  https://doi.org/10.1371/journal.pone.0044846
  65. 65.
    Kim S-H et al (2016) Electrochemical NADH regeneration and electroenzymatic CO2 reduction on Cu nanorods/glassy carbon electrode prepared by cyclic deposition. Electrochim Acta 210:837–845.  https://doi.org/10.1016/J.ELECTACTA.2016.06.007 (Pergamon)CrossRefGoogle Scholar
  66. 66.
    Kim S et al (2014) Conversion of CO2 to formate in an electroenzymatic cell using Candida boidinii formate dehydrogenase. J Mol Cataly B Enzym 102:9–15 (Elsevier B.V.).  https://doi.org/10.1016/j.molcatb.2014.01.007
  67. 67.
    Köpke M et al (2010) Clostridium ljungdahlii represents a microbial production platform based on syngas. Proc Natl Acad Sci U S A 107(29):13087–13092.  https://doi.org/10.1073/pnas.1004716107
  68. 68.
    Köpke M et al (2011) 2,3-Butanediol production by acetogenic bacteria, an alternative route to chemical synthesis, using industrial waste gas. Appl Environ Microbiol 77(15):5467–5475.  https://doi.org/10.1128/aem.00355-11
  69. 69.
    Krieg T et al (2011) Gas diffusion electrode as novel reaction system for an electro-enzymatic process with chloroperoxidase. Green Chem 13(10):2686–2689.  https://doi.org/10.1039/c1gc15391aCrossRefGoogle Scholar
  70. 70.
    Kuwabata S, Tsuda R, Yoneyama H (1994) Electrochemical conversion of carbon dioxide to methanol with the assistance of formate dehydrogenase and methanol dehydrogenase as biocatalysts. J Am Chem Soc 116(12):5437–5443 (ACS Publications)CrossRefGoogle Scholar
  71. 71.
    Laane C, Weyland A, Franssen M (1986) Bioelectrosynthesis of halogenated compounds using chloroperoxidase. Enzyme Microbial Technol 8(6):345–348.  https://doi.org/10.1016/0141-0229(86)90133-X (Elsevier)CrossRefGoogle Scholar
  72. 72.
    LaBelle EV et al (2014) Influence of acidic pH on hydrogen and acetate production by an electrosynthetic microbiome. PLoS ONE 9(10):e109935 (Public Library of Science). Available at: http://dx.doi.org/10.1371%252Fjournal.pone.0109935
  73. 73.
    LaBelle EV, May HD (2017) Energy efficiency and productivity enhancement of microbial electrosynthesis of acetate. Front Microbiol 8:756.  https://doi.org/10.3389/fmicb.2017.00756CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Lee SY et al (2016) Light-driven highly selective conversion of CO2 to formate by electrosynthesized enzyme/cofactor thin film electrode. Adv Energy Mater 6(11):1502207.  https://doi.org/10.1002/aenm.201502207CrossRefGoogle Scholar
  75. 75.
    Lepage G et al (2014) Multifactorial evaluation of the electrochemical response of a microbial fuel cell. RSC Adv 4(45):23815–23825.  https://doi.org/10.1039/C4RA03879GCrossRefGoogle Scholar
  76. 76.
    Li H et al (2012) Integrated electromicrobial conversion of CO2 to higher alcohols. Science 335(6076):1596 (New York, N.Y.).  https://doi.org/10.1126/science.1217643
  77. 77.
    Li X, Angelidaki I, Zhang Y (2018) Salinity-gradient energy driven microbial electrosynthesis of value-added chemicals from CO2 reduction. Water Res 142:396–404.  https://doi.org/10.1016/J.WATRES.2018.06.013 (Pergamon)CrossRefPubMedGoogle Scholar
  78. 78.
    Lienemann M et al (2018) Mediator-free enzymatic electrosynthesis of formate by the Methanococcus maripaludis heterodisulfide reductase supercomplex. Bioresour Technol 254:278–283.  https://doi.org/10.1016/J.BIORTECH.2018.01.036 (Elsevier)CrossRefPubMedGoogle Scholar
  79. 79.
    Liu C et al (2015) Nanowire–bacteria hybrids for unassisted solar carbon dioxide fixation to value-added chemicals. Nano Lett 15(5):3634–3639.  https://doi.org/10.1021/acs.nanolett.5b01254 (American Chemical Society)CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Liu C, Ziesack M, Silver PA (2016) Water splitting—biosynthetic system with CO2 reduction efficiencies exceeding photosynthesis. Science 352(6290):1210–1213.  https://doi.org/10.1126/science.aaf5039CrossRefPubMedGoogle Scholar
  81. 81.
    Liu F et al (2012) Promoting direct interspecies electron transfer with activated carbon. Energy Environ Sci 5(10):8982–8989.  https://doi.org/10.1039/C2EE22459C (The Royal Society of Chemistry)CrossRefGoogle Scholar
  82. 82.
    Lovley DR (2011) Powering microbes with electricity: direct electron transfer from electrodes to microbes. Environ Microbiol Rep 3(1):27–35.  https://doi.org/10.1111/j.1758-2229.2010.00211.x
  83. 83.
    Lovley DR, Nevin KP (2013) Electrobiocommodities: powering microbial production of fuels and commodity chemicals from carbon dioxide with electricity. Curr Opin Biotechnol 24(3):385–390.  https://doi.org/10.1016/J.COPBIO.2013.02.012 (Elsevier Current Trends)CrossRefPubMedGoogle Scholar
  84. 84.
    Lu J et al (2012) Studies on the production of branched-chain alcohols in engineered Ralstonia eutropha. Appl Microbiol Biotechnol 96(1):283–297.  https://doi.org/10.1007/s00253-012-4320-9CrossRefPubMedGoogle Scholar
  85. 85.
    Majumdar P et al (2018) Enzymatic Electrocatalysis of CO2 reduction. In: Wandelt K (ed) Encyclopedia of interfacial chemistry: surface science and electrochemistry. Elsevier Inc.  https://doi.org/10.1016/b978-0-12-409547-2.13353-0
  86. 86.
    Marshall CW et al (2012) Electrosynthesis of commodity chemicals by an autotrophic microbial community. Appl Environ Microbiol 78(23):8412–8420.  https://doi.org/10.1128/aem.02401-12
  87. 87.
    Marshall CW et al (2013) Long-term operation of microbial electrosynthesis systems improves acetate production by autotrophic microbiomes. Environ Sci Technol 47(11):6023–6029.  https://doi.org/10.1021/es400341bCrossRefPubMedGoogle Scholar
  88. 88.
    Marshall CW et al (2017) Metabolic reconstruction and modeling microbial electrosynthesis. Sci Rep 7(1):1–12.  https://doi.org/10.1038/s41598-017-08877-z (Springer, US)CrossRefGoogle Scholar
  89. 89.
    Marshall CW, LaBelle EV, May HD (2013) Production of fuels and chemicals from waste by microbiomes. Curr Opin Biotechnol 24(3):391–397.  https://doi.org/10.1016/J.COPBIO.2013.03.016 (Elsevier Current Trends)CrossRefPubMedGoogle Scholar
  90. 90.
    Mohanakrishna G et al (2015) An enriched electroactive homoacetogenic biocathode for the microbial electrosynthesis of acetate through carbon dioxide reduction. Faraday Discuss.  https://doi.org/10.1039/c5fd00041f
  91. 91.
    Mondal B et al (2015) Bio-inspired mechanistic insights into CO2 reduction. Curr Opin Chem Biol 25:103–109.  https://doi.org/10.1016/J.CBPA.2014.12.022 (Elsevier Current Trends)CrossRefPubMedGoogle Scholar
  92. 92.
    Morita M et al (2011) Potential for direct interspecies electron transfer in methanogenic wastewater digester aggregates. In: Casadevall A (ed) mBio, vol 2, issue 4. Available at: http://mbio.asm.org/content/2/4/e00159-11.abstract
  93. 93.
    Moscoviz R et al (2016) Electro-fermentation: how to drive fermentation using electrochemical systems. Trends Biotechnol 34(11):856–865.  https://doi.org/10.1016/J.TIBTECH.2016.04.009 (Elsevier Current Trends)CrossRefPubMedGoogle Scholar
  94. 94.
    Nam DH et al (2016) Enzymatic photosynthesis of formate from carbon dioxide coupled with highly efficient photoelectrochemical regeneration of nicotinamide cofactors. Green Chem 18(22):5989–5993.  https://doi.org/10.1039/C6GC02110G (The Royal Society of Chemistry)CrossRefGoogle Scholar
  95. 95.
    Nevin KP et al (2010) Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic. mBio 1(2):e00103-10-.  https://doi.org/10.1128/mbio.00103-10.editor
  96. 96.
    Nevin KP et al (2011) Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms. Appl Environ Microbiol 77(9):2882–2886.  https://doi.org/10.1128/aem.02642-10
  97. 97.
    Nichols EM et al (2015) Hybrid bioinorganic approach to solar-to-chemical conversion. Proc Natl Acad Sci 112(37):11461 LP-11466. Available at: http://www.pnas.org/content/112/37/11461.abstract
  98. 98.
    Nie H et al (2013) Improved cathode for high efficient microbial-catalyzed reduction in microbial electrosynthesis cells. Phys Chem Chem Phys PCCP 15(34):14290–14294.  https://doi.org/10.1039/c3cp52697fCrossRefPubMedGoogle Scholar
  99. 99.
    Nybo SE et al (2015) Metabolic engineering in chemolithoautotrophic hosts for the production of fuels and chemicals. Metab Eng 30:105–120.  https://doi.org/10.1016/J.YMBEN.2015.04.008 (Academic Press)CrossRefPubMedGoogle Scholar
  100. 100.
    Pant D et al (2010) Use of novel permeable membrane and air cathodes in acetate microbial fuel cells. Electrochim Acta 55(26):7710–7716.  https://doi.org/10.1016/j.electacta.2009.11.086 (Pergamon-Elsevier Science Ltd)CrossRefGoogle Scholar
  101. 101.
    Pant D et al (2011) An introduction to the life cycle assessment (LCA) of bioelectrochemical systems (BES) for sustainable energy and product generation: relevance and key aspects. Renew Sustain Energy Rev 15(2):1305–1313.  https://doi.org/10.1016/j.rser.2010.10.005 (Elsevier Ltd)CrossRefGoogle Scholar
  102. 102.
    Pant D et al (2012) Bioelectrochemical systems (BES) for sustainable energy production and product recovery from organic wastes and industrial wastewaters. RSC Adv 2(4):1248.  https://doi.org/10.1039/c1ra00839k (Royal Soc Chemistry)CrossRefGoogle Scholar
  103. 103.
    Parkin A et al (2007) Rapid and efficient electrocatalytic CO2/CO interconversions by carboxydothermus hydrogenoformans CO dehydrogenase i on an electrode. J Am Chem Soc 129(34):10328–10329.  https://doi.org/10.1021/ja073643o (American Chemical Society)CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Parkinson BA, Weaver PF (1984) Photoelectrochemical pumping of enzymatic CO2 reduction. Nature 309:148 (Nature Publishing Group). Available at: http://dx.doi.org/10.1038/309148a0
  105. 105.
    Patil SA et al (2015) Selective enrichment establishes a stable performing community for microbial electrosynthesis of acetate from CO2. Environ Sci Technol 49(14):8833–8843.  https://doi.org/10.1021/es506149dCrossRefPubMedGoogle Scholar
  106. 106.
    Pearson RJ et al (2012) Energy storage via carbon-neutral fuels made from CO2, water, and renewable energy. Proc IEEE 100(2):440–460.  https://doi.org/10.1109/JPROC.2011.2168369CrossRefGoogle Scholar
  107. 107.
    Pepè Sciarria T et al (2018) Bio-electrorecycling of carbon dioxide into bioplastics. Green Chem 20(17):4058–4066.  https://doi.org/10.1039/C8GC01771A (The Royal Society of Chemistry)CrossRefGoogle Scholar
  108. 108.
    Rabaey K, Rozendal RA (2010) Microbial electrosynthesis—revisiting the electrical route for microbial production.pdf. Nat Rev Microbiol 8(10):706–716.  https://doi.org/10.1038/nrmicro2422 (Nature Publishing Group)CrossRefPubMedGoogle Scholar
  109. 109.
    Raes SMT et al (2016) Continuous long-term bioelectrochemical chain elongation to butyrate. ChemElectroChem 4(2):386–395.  https://doi.org/10.1002/celc.201600587CrossRefGoogle Scholar
  110. 110.
    Ragsdale SW, Pierce E (2008) Acetogenesis and the Wood-Ljungdahl pathway of CO2 fixatio. Biochim Biophys Acta Proteins Proteomics 1784(12):1873–1898.  https://doi.org/10.1016/J.BBAPAP.2008.08.012 (Elsevier)CrossRefGoogle Scholar
  111. 111.
    Reda T et al (2008) Reversible interconversion of carbon dioxide and formate by an electroactive enzyme. Proc Natl Acad Sci U S A 105(31):10654–10658.  https://doi.org/10.1073/pnas.0801290105
  112. 112.
    Rosenbaum M et al (2011) Cathodes as electron donors for microbial metabolism: Which extracellular electron transfer mechanisms are involved? Bioresour Technol 102(1):324–333.  https://doi.org/10.1016/j.biortech.2010.07.008 (Elsevier Ltd)CrossRefPubMedGoogle Scholar
  113. 113.
    Ross DE et al (2011) Towards electrosynthesis in Shewanella: energetics of reversing the Mtr pathway for reductive metabolism. PLoS ONE 6(2).  https://doi.org/10.1371/journal.pone.0016649
  114. 114.
    Sakai K et al (2016) Efficient bioelectrocatalytic CO2 reduction on gas-diffusion-type biocathode with tungsten-containing formate dehydrogenase. Electrochem Commun 73:85–88.  https://doi.org/10.1016/J.ELECOM.2016.11.008 (Elsevier)CrossRefGoogle Scholar
  115. 115.
    Schiel-Bengelsdorf B, Dürre P (2012) Pathway engineering and synthetic biology using acetogens. FEBS Lett 586(15):2191–2198.  https://doi.org/10.1016/j.febslet.2012.04.043 (Federation of European Biochemical Societies)CrossRefPubMedGoogle Scholar
  116. 116.
    Schlager S et al (2015) Direct electrochemical addressing of immobilized alcohol dehydrogenase for the heterogeneous bioelectrocatalytic reduction of butyraldehyde to butanol. ChemCatChem 7(6):967–971.  https://doi.org/10.1002/cctc.201402932 (Wiley-Blackwell)CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Schlager S, Haberbauer M et al (2016) Bio-electrocatalytic application of microorganisms for carbon dioxide reduction to methane. Chemsuschem 10(1):226–233.  https://doi.org/10.1002/cssc.201600963 (Wiley-Blackwell)CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Schlager S, Dumitru LM et al (2016) Electrochemical reduction of carbon dioxide to methanol by direct injection of electrons into immobilized enzymes on a modified electrode. Chemsuschem 9(6):631–635.  https://doi.org/10.1002/cssc.201501496 (Wiley-Blackwell)CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Seedorf H et al (2008) The genome of Clostridium kluyveri, a strict anaerobe with unique metabolic features. Proc Natl Acad Sci 105(6):2128 LP-2133. Available at: http://www.pnas.org/content/105/6/2128.abstract
  120. 120.
    Sharma M et al (2013) Bioelectrocatalyzed reduction of acetic and butyric acids via direct electron transfer using a mixed culture of sulfate-reducers drives electrosynthesis of alcohols and acetone. Chem Commun 49(58):6495–6497 (Cambridge, England).  https://doi.org/10.1039/c3cc42570c
  121. 121.
    Shi J et al (2012) ‘Constructing spatially separated multienzyme system through bioadhesion-assisted bio-inspired mineralization for efficient carbon dioxide conversion. Bioresour Technol 118:359–366.  https://doi.org/10.1016/J.BIORTECH.2012.04.099 (Elsevier)CrossRefPubMedGoogle Scholar
  122. 122.
    Shin W et al (2003) Highly selective electrocatalytic conversion of CO2 to CO at −0.57 V (NHE) by carbon monoxide dehydrogenase from moorella thermoacetica. J Am Chem Soc 125(48):14688–14689 (American Chemical Society).  https://doi.org/10.1021/ja037370i
  123. 123.
    Srikanth S et al (2014) Enzymatic electrosynthesis of formate through CO2 sequestration/reduction in a bioelectrochemical system (BES). Bioresour Technol 165:350–354.  https://doi.org/10.1016/j.biortech.2014.01.129 (Elsevier Ltd)CrossRefPubMedGoogle Scholar
  124. 124.
    Srikanth S et al (2017) Enzymatic electrosynthesis of formic acid through carbon dioxide reduction in a bioelectrochemical system: effect of immobilization and carbonic anhydrase addition. ChemPhysChem 18(22):3174–3181.  https://doi.org/10.1002/cphc.201700017CrossRefPubMedGoogle Scholar
  125. 125.
    Srikanth S et al (2018) Electro-biocatalytic conversion of carbon dioxide to alcohols using gas diffusion electrode. Bioresour Technol 265(February):45–51.  https://doi.org/10.1016/j.biortech.2018.02.058 (Elsevier)CrossRefPubMedGoogle Scholar
  126. 126.
    Steidl R, Lampa-Pastirk S, Reguera G (2016) Mechanistic stratification in electroactive biofilms of Geobacter sulfurreducens mediated by pilus nanowires. Nat Comm (submitted).  https://doi.org/10.1038/ncomms12217
  127. 127.
    Steinbusch KJJ et al (2011) Biological formation of caproate and caprylate from acetate: fuel and chemical production from low grade biomass. Energy Environ Sci 4(1):216–224.  https://doi.org/10.1039/C0EE00282HCrossRefGoogle Scholar
  128. 128.
    Sultana S et al (2016) A review of harvesting clean fuels from enzymatic CO2 reduction. RSC Adv 6(50):44170–44194.  https://doi.org/10.1039/c6ra05472b (Royal Society of Chemistry)CrossRefGoogle Scholar
  129. 129.
    Sydow A et al (2014) Electroactive bacteria-molecular mechanisms and genetic tools. Appl Microbiol Biotechnol, 8481–8495.  https://doi.org/10.1007/s00253-014-6005-z
  130. 130.
    Thauer RK et al (2008) Methanogenic archaea: ecologically relevant differences in energy conservation. Nat Rev Microbiol 6:579 (Nature Publishing Group). Available at: http://dx.doi.org/10.1038/nrmicro1931
  131. 131.
    Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41(3):809. Available at: http://www.ncbi.nlm.nih.gov/pubmed/16350228
  132. 132.
    Torella JP et al (2015) Efficient solar-to-fuels production from a hybrid microbial–water-splitting catalyst system. Proc Natl Acad Sci 112(12):201503606–201503607.  https://doi.org/10.1073/pnas.1503606112CrossRefGoogle Scholar
  133. 133.
    Tremblay P-L, Angenent LT, Zhang T (2017) Extracellular electron uptake: among autotrophs and mediated by surfaces. Trends Biotechnol 35(4):360–371.  https://doi.org/10.1016/J.TIBTECH.2016.10.004 (Elsevier Current Trends)CrossRefPubMedGoogle Scholar
  134. 134.
    Ueki T et al (2014) Converting carbon dioxide to butyrate with an engineered strain of Clostridium ljungdahlii. mBio 5(5).  https://doi.org/10.1128/mbio.01636-14
  135. 135.
    Vassilev I et al (2018) Microbial electrosynthesis of isobutyric, butyric, caproic acids, and corresponding alcohols from carbon dioxide, pp 4–12.  https://doi.org/10.1021/acssuschemeng.8b00739
  136. 136.
    Villano M et al (2010) Bioelectrochemical reduction of CO(2) to CH(4) via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic culture. Bioresour Technol 101(9):3085–3090 (Elsevier Ltd).  https://doi.org/10.1016/j.biortech.2009.12.077
  137. 137.
    Villano M et al (2011) Electrochemically assisted methane production in a biofilm reactor. J Power Sources 196(22):9467–9472 (Elsevier B.V.).  https://doi.org/10.1016/j.jpowsour.2011.07.016
  138. 138.
    Wang H, Ren ZJ (2013) A comprehensive review of microbial electrochemical systems as a platform technology. Biotechnol Adv 31(8):1796–1807.  https://doi.org/10.1016/J.BIOTECHADV.2013.10.001 (Elsevier)CrossRefPubMedGoogle Scholar
  139. 139.
    Xiang Y et al (2017) High-efficient acetate production from carbon dioxide using a bioanode microbial electrosynthesis system with bipolar membrane. Bioresour Technol 233:227–235.  https://doi.org/10.1016/j.biortech.2017.02.104 (Elsevier Ltd)CrossRefPubMedGoogle Scholar
  140. 140.
    Zaybak Z et al (2013) Enhanced start-up of anaerobic facultatively autotrophic biocathodes in bioelectrochemical systems. J Biotechnol 168:478–485 (Elsevier B.V.).  https://doi.org/10.1016/j.jbiotec.2013.10.001
  141. 141.
    Zhang T et al (2013) Improved cathode materials for microbial electrosynthesis. Energy Environ Sci 6(1):217.  https://doi.org/10.1039/c2ee23350aCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Suman Bajracharya
    • 1
  • Nabin Aryal
    • 2
    • 3
  • Heleen De Wever
    • 4
  • Deepak Pant
    • 4
    Email author
  1. 1.Water Desalination and Reuse CenterKing Abdullah University of Science and TechnologyThuwalSaudi Arabia
  2. 2.Biological and Chemical EngineeringAarhus UniversityAarhus NDenmark
  3. 3.Danish Gas Technology CentreHorsholmDenmark
  4. 4.Separation and Conversion TechnologyFlemish Institute for Technological Research (VITO)MolBelgium

Personalised recommendations