Advertisement

Plasma-Based CO2 Conversion

  • Annemie BogaertsEmail author
  • Ramses Snoeckx
Chapter
  • 674 Downloads

Abstract

In this chapter, we will explain why plasma is promising for CO2 conversion. First, we will give a brief introduction on plasma technology (Sect. 8.1), and highlight its unique feature for CO2 conversion (Sect. 8.2). Next, we will briefly illustrate the most common types of plasma reactors, explaining why some plasma types exhibit better energy efficiency than others (Sect. 8.3). In Sect. 8.4, we will present the state-of-the-art on plasma-based CO2 conversion, for pure CO2 splitting and the combined conversion of CO2 with either CH4, H2O or H2, for different types of plasma reactors. To put plasma technology in a broader perspective of emerging technologies for CO2 conversion, we will discuss in Sect. 8.5 its inherent promising characteristics for this application. Finally, in Sect. 8.6 we will summarize the state-of-the-art and the current limitations, and elaborate on future research directions needed to bring plasma-based CO2 conversion into real application.

Keywords

Plasma CO2 conversion Energy efficiency Plasma reactors Plasma catalysis Thermal non-equilibrium 

References

  1. 1.
    Bogaerts A, Neyts E, Gijbels R, Van der Mullen J (2002) Gas discharge plasmas and their applications. Spectrochim Acta B Atom Spectrosc 57:609–658Google Scholar
  2. 2.
    Snoeckx R, Bogaerts A (2017) Plasma technology—a novel solution for CO2 conversion? Chem Soc Rev 46:5805–5863PubMedGoogle Scholar
  3. 3.
    Fridman A (2008) Plasma chemistry. Cambridge University Press, CambridgeGoogle Scholar
  4. 4.
    Fridman A, Chirokov A, Gutsol A (2005) Non-thermal atmospheric pressure discharges. J Phys D Appl Phys 38:R1–R24Google Scholar
  5. 5.
    Kozák T, Bogaerts A (2014) Splitting of CO2 by vibrational excitation in non-equilibrium plasmas: a reaction kinetics model. Plasma Sources Sci Technol 23:045004Google Scholar
  6. 6.
    Kozák T, Bogaerts A (2015) Evaluation of the energy efficiency of CO2 conversion in microwave discharges using a reaction kinetics model. Plasma Sources Sci Technol 24:015024Google Scholar
  7. 7.
    Berthelot A, Bogaerts A (2017) Modeling of CO2 splitting in a microwave plasma: how to improve the conversion and energy efficiency? J Phys Chem C 121:8236–8251Google Scholar
  8. 8.
    Bogaerts A, Berthelot A, Heijkers S, St Kolev, Snoeckx R, Sun SR, Trenchev G, Van Laer K, Wang W (2017) CO2 conversion by plasma technology: insights from modeling the plasma chemistry and plasma reactor design. Plasma Sources Sci Technol 26:063001Google Scholar
  9. 9.
    Bogaerts A, Kozák T, Van Laer K, Snoeckx R (2015) Plasma-based conversion of CO2: current status and future challenges. Faraday Discuss 183:217–232PubMedGoogle Scholar
  10. 10.
    Bogaerts A, Neyts E (2018) Plasma technology: an emerging technology for energy storage. ACS Energy Lett 3:1013–1027Google Scholar
  11. 11.
    Kogelschatz U (2003) Dielectric-barrier discharges: their history, discharge physics, and industrial applications. Plasma Chem Plasma Process 23:1–46Google Scholar
  12. 12.
    Van Laer K, Bogaerts A (2016) Fluid modeling of a packed bed dielectric barrier discharge plasma reactor. Plasma Sources Sci Technol 25:015002Google Scholar
  13. 13.
    Michielsen I, Uytdenhouwen Y, Pype J, Michielsen B, Mertens J, Reniers R, Meynen V, Bogaerts A (2017) CO2 dissociation in a packed bed DBD reactor: first steps towards a better understanding of plasma catalysis. Chem Eng J 326:477–488Google Scholar
  14. 14.
    Uytdenhouwen Y, Van Alphen S, Michielsen I, Meynen V, Cool P, Bogaerts A (2018) A packed-bed DBD micro plasma reactor for CO2 dissociation: does size matter? Chem Eng J 348:557–568Google Scholar
  15. 15.
    Asisov R, Vakar AK, Jivotov VK, Krotov MF, Zinoviev OA, Potapkin BV, Rusanov AA, Rusanov VD, Fridman AA (1983) Non-equilibrium plasma-chemical process of CO2 decomposition in a supersonic microwave discharge. Proc USSR Acad Sci 271:94–97Google Scholar
  16. 16.
    Vermeiren V, Bogaerts A. Paper in preparationGoogle Scholar
  17. 17.
    Nunnally T, Gutsol K, Rabinovich A, Fridman A, Gutsol A, Kemoun A (2011) Dissociation of CO2 in a low current gliding arc plasmatron. J Phys D Appl Phys 44:274009Google Scholar
  18. 18.
    Ramakers M, Trenchev G, Heijkers S, Wang W, Bogaerts A (2017) Gliding arc plasmatron: providing a novel method for CO2 conversion. Chemsuschem 10:2642–2652PubMedGoogle Scholar
  19. 19.
    Cleiren E, Heijkers S, Ramakers M, Bogaerts A (2017) Dry reforming of methane in a gliding arc plasmatron: towards a better understanding of the plasma chemistry. Chemsuschem 10:4025–4036PubMedGoogle Scholar
  20. 20.
    Sun SR, Wang HX, Mei DH, Tu X, Bogaerts A (2017) CO2 conversion in a gliding arc plasma: performance improvement based on chemical reaction modeling. J CO2 Utilization 17:220–234Google Scholar
  21. 21.
    Heijkers S, Bogaerts A (2017) CO2 conversion in a gliding arc plasmatron: elucidating the chemistry through kinetic modelling. J Phys Chem C 121:22644–22655Google Scholar
  22. 22.
    Scapinello M, Martini LM, Dilecce G, Tosi P (2016) Conversion of CH4/CO2 by a nanosecond repetitively pulsed discharge. J Phys D Appl Phys 49:75602Google Scholar
  23. 23.
    Zhu B, Li X, Liu J, Zhu X, Zhu A (2015) Kinetics study on carbon dioxide reforming of methane in kilohertz spark-discharge plasma. Chem Eng J 264:445–452Google Scholar
  24. 24.
    Indarto A, Choi J, Lee H, Song H (2006) Effect of additive gases on methane conversion using gliding arc discharge. Energy 31:2986–2995Google Scholar
  25. 25.
    Trenchev G, Nikiforov A, Wang W, Kolev S, Bogaerts A (2019) Atmospheric pressure glow discharge for CO2 conversion: model-based exploration of the optimum reactor configuration. Chem Eng J 362:830–841Google Scholar
  26. 26.
    Neyts EC, Ostrikov K, Sunkara MK, Bogaerts A (2015) Plasma catalysis: synergistic effects at the nanoscale. Chem Rev 115:13408–13446PubMedGoogle Scholar
  27. 27.
    Whitehead JC (2016) Plasma-catalysis: the known knowns, the known unknowns and the unknown unknowns. J Phys D Appl Phys 49:243001Google Scholar
  28. 28.
    Tu X, Whitehead JC, Nozaki T (eds) (2018) Plasma‐catalysis: fundamentals and applications. Springer, to be publishedGoogle Scholar
  29. 29.
    Lee H, Sekiguchi H (2011) Plasma–catalytic hybrid system using spouted bed with a gliding arc discharge: CH4 reforming as a model reaction. J Phys D Appl Phys 44:274008Google Scholar
  30. 30.
    Blin-Simiand N, Tardivaux P, Risacher A, Jorand F, Pasquiers S (2005) Removal of 2-heptanone by dielectric barrier discharges—the effect of a catalyst support. Plasma Process Polym 2:256–262Google Scholar
  31. 31.
    Hong JP, Chu W, Chernavskii PA, Khodakov AY (2010) Cobalt species and cobalt-support interaction in glow discharge plasma-assisted Fischer-Tropsch catalysts. J Catal 273:9–17Google Scholar
  32. 32.
    Demidyuk V, Whitehead JC (2007) Influence of temperature on gas-phase toluene decomposition in plasma-catalytic system. Plasma Chem Plasma Process 27:85–94Google Scholar
  33. 33.
    Shang S, Liu G, Chai X, Tao X, Li X, Bai M, Chu W, Dai X, Zhao Y, Yin Y (2009) Research on Ni/γ-Al2O3 catalyst for CO2 reforming of CH4 prepared by atmospheric pressure glow discharge plasma jet. Catal Today 148:268–274Google Scholar
  34. 34.
    Tu X, Gallon HJ, Twigg MV, Gorry PA, Whitehead JC (2011) Dry reforming of methane over a Ni/Al2O3 catalyst in a coaxial dielectric barrier discharge reactor. J Phys D Appl Phys 44:274007Google Scholar
  35. 35.
    Liu C-J, Mallison R, Lobban L (1998) Nonoxidative methane conversion to acetylene over zeolite in a low temperature plasma. J Catal 179:326–334Google Scholar
  36. 36.
    Poppe J, Völkening S, Schaak A, Schütz E, Janek J, Imbihl R (1999) Electrochemical promotion of catalytic CO oxidation on Pt/YSZ catalysts under low pressure conditions. Phys Chem Chem Phys 1:5241–5249Google Scholar
  37. 37.
    van Durme J, Dewulf J, Leys C, Van Langenhove H (2008) Combining non-thermal plasma with heterogeneous catalysis in waste gas treatment: a review. Appl Catal B: Environ 78:324–333Google Scholar
  38. 38.
    Liu CJ, Wang JX, Yu KL, Eliasson B, Xia Q, Xue B (2002) Floating double probe characteristics of non-thermal plasmas in the presence of zeolite. J Electrostat 54:149–158Google Scholar
  39. 39.
    Kim HH, Ogata A, Futamura S (2006) Effect of different catalysts on the decomposition of VOCs using flow-type plasma-driven catalysis. IEEE Trans Plasma Sci 34:984–995Google Scholar
  40. 40.
    Löfberg A, Essakhi A, Paul S, Swesi Y, Zanota M-L, Meille V, Pitault I, Supiot P, Mutel B, Le Courtois V, Bordes-Richard E (2011) Use of catalytic oxidation and dehydrogenation of hydrocarbons reactions to highlight improvement of heat transfer in catalytic metallic foams. Chem Eng J 176–177:49–56Google Scholar
  41. 41.
    Guaitella O, Thevenet F, Puzenat E, Guillard C, Rousseau A (2008) C2H2 oxidation by plasma/TiO2 combination: Influence of the porosity, and photocatalytic mechanisms under plasma exposure. Appl Cat B: Environ 80:296–305Google Scholar
  42. 42.
    Kim HH, Ogata A, Futamura S (2008) Oxygen partial pressure-dependent behavior of various catalysts for the total oxidation of VOCs using cycled system of adsorption and oxygen plasma. Appl Catal B: Environ 79:356–367Google Scholar
  43. 43.
    Kim HH, Ogata A (2011) Nonthermal plasma activates catalyst: from current understanding and future prospects. Eur Phys J Appl Phys 55:13806Google Scholar
  44. 44.
    Mei D, Zhu X, He Y, Yan JD, Tu X (2015) Plasma-assisted conversion of CO2 in a dielectric barrier discharge reactor: understanding the effect of packing materials. Plasma Sources Sci Technol 24:015011Google Scholar
  45. 45.
    Shirazi M, Neyts EC, Bogaerts A (2017) DFT study of Ni-catalyzed plasma dry reforming of methane. Appl Cat B: Environ 205:605–614Google Scholar
  46. 46.
    Zhang Q-Z, Bogaerts A (2018) Propagation of a plasma streamer in catalyst pores. Plasma Sources Sci Technol 27:035009Google Scholar
  47. 47.
    Kim HH, Kim J-H, Ogata A (2009) Microscopic observation of discharge plasma on the surface of zeolites supported metal nanoparticles. J Phys D Appl Phys 42:135210Google Scholar
  48. 48.
    Wang W, Kim H-H, Van Laer K, Bogaerts A (2018) Streamer propagation in a packed bed plasma reactor for plasma catalysis applications. Chem Eng J 334:2467–2479Google Scholar
  49. 49.
    Holzer F, Kopinke FD, Roland U (2005) Influence of ferroelectric materials and catalysts on the performance of non-thermal plasma (NTP) for the removal of air pollutants. Plasma Chem Plasma Proc 25:595–611Google Scholar
  50. 50.
    Hensel K, Martisovits V, Machala Z, Janda M, Lestinsky M, Tardiveau P, Mizuno A (2007) Electrical and optical properties of AC microdischarges in porous ceramics. Plasma Process Polym 4:682–693Google Scholar
  51. 51.
    Zhang Y-R, Van Laer K, Neyts EC, Bogaerts A (2016) Can plasma be formed in catalyst pores? A modeling investigation. Appl Cat B: Environm 185:56–67Google Scholar
  52. 52.
    Rousseau A, Guaitella O, Röpcke J, Gatilova LV, Tolmachev YA (2004) Combination of a pulsed microwave plasma with a catalyst for acetylene oxidation. Appl Phys Lett 85:2199–2201Google Scholar
  53. 53.
    Neyts EC, Bogaerts A (2014) Understanding plasma catalysis through modelling and simulation—a review. J Phys D Appl Phys 47:224010Google Scholar
  54. 54.
    Zhang A, Zhu A, Guo J, Xu Y, Shi C (2010) Conversion of greenhouse gases into syngas via combined effects of discharge activation and catalysis. Chem Eng J 156:601–606Google Scholar
  55. 55.
    Kim J, Henao CA, Johnson TA, Dedrick DE, Miller JE, Stechel EB, Maravelias CT (2011) Methanol production from CO2 using solar-thermal energy: process development and techno-economic analysis. Energy Environ Sci 4:3122Google Scholar
  56. 56.
    Aerts R, Somers W, Bogaerts A (2015) Carbon dioxide splitting in a dielectric barrier discharge plasma: a combined experimental and computational study. Chemsuschem 8:702–716PubMedGoogle Scholar
  57. 57.
    Paulussen S, Verheyde B, Tu X, De Bie C, Martens T, Petrovic D, Bogaerts A, Sels B (2010) Conversion of carbon dioxide to value-added chemicals in atmospheric pressure dielectric barrier discharges. Plasma Sources Sci Technol 19:034015Google Scholar
  58. 58.
    Yu Q, Kong M, Liu T, Fei J, Zheng X (2012) Characteristics of the decomposition of CO2 in a dielectric packed-bed plasma reactor. Plasma Chem Plasma Process 32:153–163Google Scholar
  59. 59.
    Ozkan A, Bogaerts A, Reniers F (2017) Routes to increase the conversion and the energy efficiency in the splitting of CO2 by a dielectric barrier discharge. J Phys D Appl Phys 50:084004Google Scholar
  60. 60.
    Ozkan A, Dufour T, Silva T, Britun N, Snyders R, Reniers F, Bogaerts A (2016) DBD in burst mode: solution for more efficient CO2 conversion? Plasma Sources Sci Technol 25:055005Google Scholar
  61. 61.
    Van Laer K, Bogaerts A (2015) Improving the conversion and energy efficiency of carbon dioxide splitting in a zirconia-packed dielectric barrier discharge reactor. Energy Technol 3:1038–1044Google Scholar
  62. 62.
    Mei D, Zhu X, Wu C, Ashford B, Williams PT, Tu X (2016) Plasma-photocatalytic conversion of CO2 at low temperatures: understanding the synergistic effect of plasma-catalysis. Appl Catal B: Environ 182:525–532Google Scholar
  63. 63.
    Duan X, Hu Z, Li Y, Wang B (2015) Effect of dielectric packing materials on the decomposition of carbon dioxide using DBD microplasma reactor. AlChe 61:898–903Google Scholar
  64. 64.
    Rusanov VD, Fridman AA, Sholin GV (1981) The physics of a chemically active plasma with nonequilibrium vibrational excitation of molecules. Uspekhi Fiz Nauk 134:185–235Google Scholar
  65. 65.
    van Rooij GJ, van den Bekerom DCM, den Harder N, Minea T, Berden G, Bongers WW, Engeln R, Graswinckel MF, Zoethout E, van de Sanden MCM (2015) Taming microwave plasma to beat thermodynamics in CO2 dissociation. Faraday Discuss 183:233–248PubMedGoogle Scholar
  66. 66.
    Bongers W, Bouwmeester H, Wolf B, Peeters F, Welzel S, van den Bekerom D, den Harder N, Goede A, Graswinckel M, Groen PW, Kopecki J, Leins M, van Rooij G, Schulz A, Walker M, van de Sanden R (2017) Plasma-driven dissociation of CO2 for fuel synthesis. Plasma Process Polym 14:e1600126Google Scholar
  67. 67.
    Silva T, Britun N, Godfroid T, Snyders R (2014) Optical characterization of a microwave pulsed discharge used for dissociation of CO2. Plasma Sources Sci Technol 23:025009Google Scholar
  68. 68.
    Spencer LF, Gallimore AD (2013) CO2 dissociation in an atmospheric pressure plasma/catalyst system: a study of efficiency. Plasma Sources Sci Technol 22:015019Google Scholar
  69. 69.
    Indarto A, Yang DR, Choi JW, Lee H, Song HK (2007) Gliding arc plasma processing of CO2 conversion. J Hazard Mater 146:309–315PubMedGoogle Scholar
  70. 70.
    Liu JL, Park HW, Chung WJ, Park DW (2016) High-efficient conversion of CO2 in AC-pulsed tornado gliding arc plasma. Plasma Chem Plasma Process 36:437–449Google Scholar
  71. 71.
    Wang W, Mei D, Tu X, Bogaerts A (2017) Gliding arc plasma for CO2 conversion: better insights by a combined experimental and modelling approach. Chem Eng J 330:11–25Google Scholar
  72. 72.
    Wang W, Berthelot A, Berthelot A, Kolev S, Tu X (2016) CO2 conversion in a gliding arc plasma: 1D cylindrical discharge model. Plasma Sources Sci Technol 25:065012Google Scholar
  73. 73.
    Trenchev G, Kolev S, Wang W, Ramakers M, Bogaerts A (2017) CO2 conversion in a gliding arc plasmatron: multi-dimensional modeling for improved efficiency. J Phys Chem C 121:24470–24479Google Scholar
  74. 74.
    Andreev SN, Zakharov VV, Ochkin VN, Savinov SY (2004) Plasma-chemical CO2 decomposition in a non-self-sustained discharge with a controlled electronic component of plasma. Spectrochim Acta A: Mol Biomol Spectrosc 60:3361–3369Google Scholar
  75. 75.
    Aerts R, Snoeckx R, Bogaerts A (2014) In-situ chemical trapping of oxygen after the splitting of carbon dioxide by plasma. Plasma Process Polym 11:985–992Google Scholar
  76. 76.
    Mori S, Matsuura N, Tun LL, Suzuki M (2016) Direct synthesis of carbon nanotubes from only CO2 by a hybrid reactor of dielectric barrier discharge and solid oxide electrolyser cell. Plasma Chem Plasma Process 36:231–239Google Scholar
  77. 77.
    Lavoie JM (2014) Review on dry reforming of methane, a potentially more environmentally-friendly approach to the increasing natural gas exploitation. Front Chem 2:1–17Google Scholar
  78. 78.
    Tao X, Bai M, Li X, Long H, Shang S, Yin Y, Dai X (2011) CH4-CO2 reforming by plasma—challenges and opportunities. Prog Energy Combust Sci 37:113–124Google Scholar
  79. 79.
    Lebouvier A, Iwarere SA, D’Argenlieu P, Ramjugernath D, Fulcheri L (2013) Assessment of carbon dioxide dissociation as a new route for syngas production: a comparative review and potential of plasma-based technologies. Energy Fuels 27:2712–2722Google Scholar
  80. 80.
    Istadi I, Amin NAS (2006) Co-generation of synthesis gas and C2+ hydrocarbons from methane and carbon dioxide in a hybrid catalytic-plasma reactor: a review. Fuel 85:577–592Google Scholar
  81. 81.
    Krawczyk K, Młotek M, Ulejczyk B (2014) Methane conversion with carbon dioxide in plasma-catalytic system. Fuel 117:608–617Google Scholar
  82. 82.
    Chung W, Pan K, Lee H, Chang M (2014) Dry reforming of methane with dielectric barrier discharge and ferroelectric packed-bed reactors. Energy Fuels 28:7621–7631Google Scholar
  83. 83.
    Snoeckx R, Zeng YX, Tu X, Bogaerts A (2015) Plasma-based dry reforming: improving the conversion and energy efficiency in a dielectric barrier discharge. RSC Adv 5:29799–29808Google Scholar
  84. 84.
    Scapinello M, Martini LM, Tosi T (2014) CO2 hydrogenation by CH4 in a dielectric barrier discharge: catalytic effect of Ni and Cu. Plasma Process Polym 11:624–628Google Scholar
  85. 85.
    Wang L, Yi Y, Wu C, Guo H, Tu X (2017) One-step reforming of CO2 and CH4 into high-value liquid chemicals and fuels at room temperature by plasma-driven catalysis. Angew Chem Int Ed 129:13867–13871Google Scholar
  86. 86.
    Wu W, Yan J, Zhang H, Zhang M, Du C, Li X (2014) Study of the dry methane reforming process using a rotating gliding arc reactor. Int J Hydrogen Energy 39:17656–17670Google Scholar
  87. 87.
    Li K, Liu JL, Li XS, Zhu X, Zhu AM (2016) Warm plasma catalytic reforming of biogas in a heat-insulated reactor: dramatic energy efficiency and catalyst auto-reduction. Chem Eng J 288:671–679Google Scholar
  88. 88.
    Tu X, Whitehead JC (2014) Plasma dry reforming of methane in an atmospheric pressure AC gliding arc discharge: Co-generation of syngas and carbon nanomaterials. Int J Hydrogen Energy 39:9658–9669Google Scholar
  89. 89.
    Li K, Liu J-L, Li X-S, Lian H-Y, Zhu X, Bogaerts A, Zhu A-M (2018) Novel power-to-syngas concept for plasma catalytic reforming coupled with water electrolysis. Chem Eng J (submitted)Google Scholar
  90. 90.
    Ghorbanzadeh AM, Norouzi S, Mohammadi T (2005) High energy efficiency in syngas and hydrocarbon production from dissociation of CH4-CO2 mixture in a non-equilibrium pulsed plasma. J Phys D Appl Phys 38:3804–3811Google Scholar
  91. 91.
    Chung WC, Chang MB (2016) Review of catalysis and plasma performance on dry reforming of CH4 and possible synergistic effects. Renew Sustain Energy Rev 62:13–31Google Scholar
  92. 92.
    Li X, Bai M, Tao X, Shang S, Dai X, Yin Y (2009) CO2 reforming of CH4 by atmospheric pressure glow discharge plasma: a high conversion ability. Int J Hydrogen Energy 34:308–313Google Scholar
  93. 93.
    Chen G, Britun N, Godfroid T, Georgieva V, Snyders V, Delplancke-Ogletree M-P (2017) An overview of CO2 conversion in a microwave discharge: the role of plasma-catalysis. J Phys D Appl Phys 50:084001Google Scholar
  94. 94.
    Snoeckx R, Ozkan A, Reniers F, Bogaerts A (2017) The quest for value-added products from carbon dioxide and water in a dielectric barrier discharge plasma: a chemical kinetics study. Chemsuschem 10:409–424PubMedGoogle Scholar
  95. 95.
    Eliasson B, Kogelschatz U, Xue B, Zhou L-M (1998) Hydrogenation of carbon dioxide to methanol with a discharge-activated catalyst. Ind Eng Chem Res 37:3350–3357Google Scholar
  96. 96.
    Mahammadunnisa S, Reddy EL, Ray D, Subrahmanyam C, Whitehead JC (2013) CO2 reduction to syngas and carbon nanofibres by plasma-assisted in situ decomposition of water. Int J Greenhouse Gas Control 16:361–363Google Scholar
  97. 97.
    Jwa E, Lee SB, Lee HW, Mok YS (2013) Plasma-assisted catalytic methanation of CO and CO2 over Ni–zeolite catalysts Fuel Process Technol 108:89–93Google Scholar
  98. 98.
    De Bie C, van Dijk J, Bogaerts A (2016) CO2 hydrogenation in a dielectric barrier discharge plasma revealed. J Phys Chem C 120:25210–25224Google Scholar
  99. 99.
    Wang L, Yi Y, Guo H, Tu X (2018) Atmospheric pressure and room temperature synthesis of methanol through plasma-catalytic hydrogenation of CO2. ACS Catal 8:90–100Google Scholar
  100. 100.
    Centi G, Perathoner S (2009) Opportunities and prospects in the chemical recycling of carbon dioxide to fuels. Catal Today 148:191–205Google Scholar
  101. 101.
    Studt F, Sharafutdinov I, Abild-Pedersen F, Elkjær CF, Hummelshøj JS, Dahl S, Chorkendorff I, Nørskov JK (2014) Discovery of a Ni-Ga catalyst for carbon dioxide reduction to methanol. Nat Chem 6:320–324PubMedGoogle Scholar
  102. 102.
    Jadhav SG, Vaidya PD, Bhanage BM, Joshi JB (2014) Catalytic carbon dioxide hydrogenation to methanol: a review of recent studies. Chem Eng Res Des 92:2557–2567Google Scholar
  103. 103.
    Snoeckx R, Heijkers S, Van Wesenbeeck K, Lenaerts S, Bogaerts A (2016) CO2 conversion in a dielectric barrier discharge plasma: N2 in the mix as helping hand of problematic impurity? Energy Environ Sci 9:999–1011Google Scholar
  104. 104.
    Kim J, Abbott MS, Go DB, Hicks JC (2016) Enhancing C-H bond activation of methane via temperature-controlled, catalyst-plasma interactions. ACS Energy Lett 1:94–99Google Scholar
  105. 105.
    van Rooij GJ, Akse HN, Bongers WA, van de Sanden MCM (2018) Plasma for electrification of chemical industry: a case study on CO2 reduction. Plasma Phys Control Fusion 60:014019Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Research Group PLASMANT, Department of ChemistryUniversity of AntwerpAntwerpBelgium
  2. 2.Physical Science and Engineering Division (PSE), Clean Combustion Research Center (CCRC)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia

Personalised recommendations