Advertisement

Electrochemical and Photoelectrochemical Transformations of Aqueous CO2

  • Aubrey R. Paris
  • Jessica J. Frick
  • Danrui Ni
  • Michael R. Smith
  • Andrew B. BocarslyEmail author
Chapter
  • 650 Downloads

Abstract

This chapter covers the electrochemical and photoelectrochemical conversion of CO2 in aqueous media. It is divided into sections that consider heterogeneous electrocatalysts on metal electrodes, homogeneous catalysts interacting with metal surfaces, light-driven semiconductor electrodes, and hybrid systems that combine heterogeneous interfaces with surface-confined molecular components.

Notes

Acknowledgements

The electrochemistry sections in this work were supported in part by the US National Science Foundation under Grant No. CHE-1800400. Additionally, ARP and JJF acknowledge funding from the National Science Foundation Graduate Research Fellowship Program under Grant No. DGE-1148900 and Grant No. DGE-1656466. The photoelectrochemistry sections in this work were supported in part by the US Department of Energy, Basic Energy Sciences under Grant No. DE-SC0002133 Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation or the Department of Energy.

References

  1. 1.
    Biello D (2010) Reverse combustion: can CO2 be turned back into fuel? (Video). Sci Am, 23 Sept 2010Google Scholar
  2. 2.
    White JL, Baruch MF, Pander JE III, Hu Y, Fortmeyer IC, Park JE, Zhang T, Liao K, Gu J, Yan Y et al (2015) Light-driven heterogeneous reduction of carbon dioxide: photocatalysts and photoelectrodes. Chem Rev 115(23):12888–12935PubMedGoogle Scholar
  3. 3.
    Gu J, Wuttig A, Krizan JW, Hu Y, Detweiler ZM, Cava RJ, Bocarsly AB (2013) Mg-doped CuFeO2 photocathodes for photoelectrochemical reduction of carbon dioxide. J Phys Chem C 117(24):12415–12422Google Scholar
  4. 4.
    Gu J, Yan Y, Krizan JW, Gibson QD, Detweiler ZM, Cava RJ, Bocarsly AB (2014) P-type CuRhO2 as a self-healing photoelectrode for water reduction under visible light. J Am Chem Soc 136(3):830–833PubMedGoogle Scholar
  5. 5.
    Detweiler ZM, White JL, Bernasek SL, Bocarsly AB (2014) Anodized indium metal electrodes for enhanced carbon dioxide reduction in aqueous electrolyte. Langmuir 30(25):7593–7600PubMedGoogle Scholar
  6. 6.
    White JL, Bocarsly AB (2016) Enhanced carbon dioxide reduction activity on indium-based nanoparticles. J Electrochem Soc 163(6):H410–H416Google Scholar
  7. 7.
    Hawecker J, Lehn J-M, Ziessel R (1984) Electrocatalytic reduction of carbon dioxide mediated by Re(Bipy)(CO)3Cl (Bipy = 2,2’-Bipyridine). J Chem Soc Chem Commun, 328–330Google Scholar
  8. 8.
    Bourrez M, Molton F, Chardon-Noblat S, Deronzier A (2011) [Mn(Bipyridyl)(CO)3Br]: an abundant metal carbonyl complex as efficient electrocatalyst for CO2 reduction. Angewandte Chemie Int Edn 50(42):9903–9906Google Scholar
  9. 9.
    Hori Y, Murata A, Takahashi R, Suzuki S (1988) Enhanced formation of ethylene and alcohols at ambient temperature and pressure in electrochemical reduction of carbon dioxide at a copper electrode. J Chem Soc, Chem Commun 1:17–19Google Scholar
  10. 10.
    Hori Y, Murata A, Takahashi R (1989) Formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution. J Chem Soc Faraday Trans 1 Phys Chem Condens Phases 85(8):2309–2326Google Scholar
  11. 11.
    Hori Y, Wakebe H, Tsukamoto T, Koga O (1994) Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media. Electrochim Acta 39(11–12):1833–1839Google Scholar
  12. 12.
    Ooka H, Figueiredo MC, Koper MTM (2017) Competition between hydrogen evolution and carbon dioxide reduction on copper electrodes in mildly acidic media. Langmuir 33(37):9307–9313PubMedPubMedCentralGoogle Scholar
  13. 13.
    Hori Y, Takahashi I, Koga O, Hoshi N (2002) Selective formation of C2 compounds from electrochemical reduction of CO2 at a series of copper single crystal electrodes. J Phys Chem B 106(1):15–17Google Scholar
  14. 14.
    Kuhl KP, Cave ER, Abram DN, Jaramillo TF (2012) New Insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ Sci 5(5):7050Google Scholar
  15. 15.
    Manthiram K, Beberwyck BJ, Alivisatos AP (2014) Enhanced electrochemical methanation of carbon dioxide with a dispersible nanoscale copper catalyst. J Am Chem Soc 136(38):13319–13325PubMedGoogle Scholar
  16. 16.
    Dutta A, Rahaman M, Luedi NC, Mohos M, Broekmann P (2016) Morphology matters: tuning the product distribution of CO2 electroreduction on oxide-derived Cu foam catalysts. ACS Catal 6(6):3804–3814Google Scholar
  17. 17.
    Ren D, Deng Y, Handoko AD, Chen CS, Malkhandi S, Yeo BS (2015) Selective electrochemical reduction of carbon dioxide to ethylene and ethanol on copper(I) oxide catalysts. ACS Catal 5(5):2814–2821Google Scholar
  18. 18.
    Kas R, Kortlever R, Milbrat A, Koper MTM, Mul G, Baltrusaitis J (2014) Electrochemical CO2 reduction on Cu2O-derived copper nanoparticles: controlling the catalytic selectivity of hydrocarbons. Phys Chem Chem Phys 16(24):12194–12201PubMedGoogle Scholar
  19. 19.
    Sen S, Liu D, Palmore GTR (2014) Electrochemical reduction of CO2 at copper nanofoams. ACS Catal 4(9):3091–3095Google Scholar
  20. 20.
    Loiudice A, Lobaccaro P, Kamali EA, Thao T, Huang BH, Ager JW, Buonsanti R (2016) Tailoring copper nanocrystals towards C2 products in electrochemical CO2 reduction. Angewandte Chemie Int Edn 55(19):5789–5792Google Scholar
  21. 21.
    Reske R, Mistry H, Behafarid F, Roldan Cuenya B, Strasser P (2014) Particle size effects in the catalytic electroreduction of CO2 on Cu nanoparticles. J Am Chem Soc 136(19):6978–6986PubMedGoogle Scholar
  22. 22.
    Roberts FS, Kuhl KP, Nilsson A (2015) High selectivity for ethylene from carbon dioxide reduction over copper nanocube electrocatalysts. Angew Chem 127(17):5268–5271Google Scholar
  23. 23.
    Li Y, Cui F, Ross MB, Kim D, Sun Y, Yang P (2017) Structure-sensitive CO2 electroreduction to hydrocarbons on ultrathin 5-fold twinned copper nanowires. Nano Lett 17(2):1312–1317PubMedGoogle Scholar
  24. 24.
    Verdaguer-Casadevall A, Li CW, Johansson TP, Scott SB, McKeown JT, Kumar M, Stephens IEL, Kanan MW, Chorkendorff I (2015) Probing the active surface sites for CO reduction on oxide-derived copper electrocatalysts. J Am Chem Soc 137(31):9808–9811PubMedGoogle Scholar
  25. 25.
    Ma M, Djanashvili K, Smith WA (2016) Controllable hydrocarbon formation from the electrochemical reduction of CO2 over Cu nanowire arrays. Angewandte Chemie Int Edn 55(23):6680–6684Google Scholar
  26. 26.
    Huang Y, Handoko AD, Hirunsit P, Yeo BS (2017) Electrochemical reduction of CO2 using copper single-crystal surfaces: effects of CO* coverage on the selective formation of ethylene. ACS Catal 7(3):1749–1756Google Scholar
  27. 27.
    Raciti D, Livi KJ, Wang C (2015) Highly dense Cu nanowires for low-overpotential CO2 reduction. Nano Lett 15(10):6829–6835PubMedGoogle Scholar
  28. 28.
    Kas R, Kortlever R, Yilmaz H, Koper MTM, Mul G (2015) Manipulating the hydrocarbon selectivity of copper nanoparticles in CO2 electroreduction by process conditions. ChemElectroChem 2(3):354–358Google Scholar
  29. 29.
    Varela AS, Kroschel M, Reier T, Strasser P (2016) Controlling the selectivity of CO2 electroreduction on copper: the effect of the electrolyte concentration and the importance of the local pH. Catal Today 260:8–13Google Scholar
  30. 30.
    Varela AS, Ju W, Reier T, Strasser P (2016) Tuning the catalytic activity and selectivity of Cu for CO2 electroreduction in the presence of halides. ACS Catal 6(4):2136–2144Google Scholar
  31. 31.
    Resasco J, Lum Y, Clark E, Zeledon JZ, Bell AT (2018) Effects of anion identity and concentration on electrochemical reduction of CO2. ChemElectroChem 5(7):1064–1072Google Scholar
  32. 32.
    Gattrell M, Gupta N, Co A (2006) A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper. J Electroanal Chem 594(1):1–19Google Scholar
  33. 33.
    Lee S, Kim D, Lee J (2015) Electrocatalytic production of C3-C4 compounds by conversion of CO2 on a chloride-induced Bi-phasic Cu2O-Cu catalyst. Angew Chem 127(49):14914–14918Google Scholar
  34. 34.
    Lum Y, Yue B, Lobaccaro P, Bell AT, Ager JW (2017) Optimizing C-C coupling on oxide-derived copper catalysts for electrochemical CO2 reduction. J Phys Chem C 121(26):14191–14203Google Scholar
  35. 35.
    De Luna P, Quintero-Bermudez R, Dinh C-T, Ross MB, Bushuyev OS, Todorović P, Regier T, Kelley SO, Yang P, Sargent EH (2018) Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction. Nat Catal 1(2):103–110Google Scholar
  36. 36.
    Hori Y (2008) Electrochemical CO2 reduction on metal electrodes. In: Gamboa-Aldeco ME (ed) Modern aspects of electrochemistry. Springer, New York, vol 42, pp 89–189Google Scholar
  37. 37.
    Kuhl KP, Hatsukade T, Cave ER, Abram DN, Kibsgaard J, Jaramillo TF (2014) Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces. J Am Chem Soc 136(40):14107–14113PubMedGoogle Scholar
  38. 38.
    Singh MR, Kwon Y, Lum Y, Ager JW, Bell AT (2016) Hydrolysis of electrolyte cations enhances the electrochemical reduction of CO2 over Ag and Cu. J Am Chem Soc 138(39):13006–13012PubMedGoogle Scholar
  39. 39.
    Kim C, Jeon HS, Eom T, Jee MS, Kim H, Friend CM, Min BK, Hwang YJ (2015) Achieving selective and efficient electrocatalytic activity for CO2 reduction using immobilized silver nanoparticles. J Am Chem Soc 137(43):13844–13850PubMedGoogle Scholar
  40. 40.
    Ma M, Trześniewski BJ, Xie J, Smith WA (2016) Selective and efficient reduction of carbon dioxide to carbon monoxide on oxide-derived nanostructured silver electrocatalysts. Angew Chem 128(33):9900–9904Google Scholar
  41. 41.
    Peng X, Karakalos SG, Mustain WE (2018) Preferentially oriented Ag nanocrystals with extremely high activity and faradaic efficiency for CO2 electrochemical reduction to CO. ACS Appl Mater Interfaces 10(2):1734–1742PubMedGoogle Scholar
  42. 42.
    Liu S, Tao H, Zeng L, Liu Q, Xu Z, Liu Q, Luo J-L (2017) Shape-dependent electrocatalytic reduction of CO2 to CO on triangular silver nanoplates. J Am Chem Soc 139(6):2160–2163PubMedGoogle Scholar
  43. 43.
    Rosen J, Hutchings GS, Lu Q, Rivera S, Zhou Y, Vlachos DG, Jiao F (2015) Mechanistic insights into the electrochemical reduction of CO2 to CO on nanostructured Ag surfaces. ACS Catal 5(7):4293–4299Google Scholar
  44. 44.
    Feng X, Jiang K, Fan S, Kanan MW (2015) Grain-boundary-dependent CO2 electroreduction activity. J Am Chem Soc 137(14):4606–4609PubMedGoogle Scholar
  45. 45.
    Zhu W, Zhang Y-J, Zhang H, Lv H, Li Q, Michalsky R, Peterson AA, Sun S (2014) Active and selective conversion of CO2 to CO on ultrathin au nanowires. J Am Chem Soc 136(46):16132–16135PubMedGoogle Scholar
  46. 46.
    Mistry H, Reske R, Zeng Z, Zhao Z-J, Greeley J, Strasser P, Cuenya BR (2014) Exceptional size-dependent activity enhancement in the electroreduction of CO2 over Au nanoparticles. J Am Chem Soc 136(47):16473–16476PubMedGoogle Scholar
  47. 47.
    Gao D, Zhou H, Wang J, Miao S, Yang F, Wang G, Wang J, Bao X (2015) Size-dependent electrocatalytic reduction of CO2 over Pd nanoparticles. J Am Chem Soc 137(13):4288–4291PubMedGoogle Scholar
  48. 48.
    Rosen J, Hutchings GS, Lu Q, Forest RV, Moore A, Jiao F (2015) Electrodeposited Zn dendrites with enhanced CO selectivity for electrocatalytic CO2 reduction. ACS Catal 5(8):4586–4591Google Scholar
  49. 49.
    Gao S, Jiao X, Sun Z, Zhang W, Sun Y, Wang C, Hu Q, Zu X, Yang F, Yang S et al (2016) Ultrathin Co3O4 layers realizing optimized CO2 electroreduction to formate. Angewandte Chemie Int Edn 55(2):698–702Google Scholar
  50. 50.
    Baruch MF, Pander JE, White JL, Bocarsly AB (2015) Mechanistic insights into the reduction of CO2 on tin electrodes using in situ ATR-IR spectroscopy. ACS Catal 5(5):3148–3156Google Scholar
  51. 51.
    Detweiler ZM, Wulfsberg SM, Frith MG, Bocarsly AB, Bernasek SL (2016) The oxidation and surface speciation of indium and indium oxides exposed to atmospheric oxidants. Surf Sci 648:188–195Google Scholar
  52. 52.
    Pander JE, Baruch MF, Bocarsly AB (2016) Probing the mechanism of aqueous CO2 reduction on post-transition-metal electrodes using ATR-IR spectroelectrochemistry. ACS Catal 6(11):7824–7833Google Scholar
  53. 53.
    Li F, Chen L, Knowles GP, MacFarlane DR, Zhang J (2017) Hierarchical mesoporous SnO2 nanosheets on carbon cloth: a robust and flexible electrocatalyst for CO2 reduction with high efficiency and selectivity. Angewandte Chemie Int Edn 56(2):505–509Google Scholar
  54. 54.
    Kumar B, Atla V, Brian JP, Kumari S, Nguyen TQ, Sunkara M, Spurgeon JM (2017) Reduced SnO2 porous nanowires with a high density of grain boundaries as catalysts for efficient electrochemical CO2-into-HCOOH conversion. Angewandte Chemie Int Edn 56(13):3645–3649Google Scholar
  55. 55.
    Zhang S, Kang P, Meyer TJ (2014) Nanostructured tin catalysts for selective electrochemical reduction of carbon dioxide to formate. J Am Chem Soc 136(5):1734–1737PubMedGoogle Scholar
  56. 56.
    Li Q, Fu J, Zhu W, Chen Z, Shen B, Wu L, Xi Z, Wang T, Lu G, Zhu J et al (2017) Tuning Sn-catalysis for electrochemical reduction of CO2 to CO via the core/shell Cu/SnO2 structure. J Am Chem Soc 139(12):4290–4293PubMedGoogle Scholar
  57. 57.
    Luc W, Collins C, Wang S, Xin H, He K, Kang Y, Jiao F (2017) Ag–Sn bimetallic catalyst with a core-shell structure for CO2 reduction. J Am Chem Soc 139(5):1885–1893PubMedGoogle Scholar
  58. 58.
    Hansen HA, Shi C, Lausche AC, Peterson AA, Nørskov JK (2016) Bifunctional alloys for the electroreduction of CO2 and CO. Phys Chem Chem Phys 18(13):9194–9201PubMedGoogle Scholar
  59. 59.
    Ma S, Sadakiyo M, Heima M, Luo R, Haasch RT, Gold JI, Yamauchi M, Kenis PJA (2017) Electroreduction of carbon dioxide to hydrocarbons using bimetallic Cu–Pd catalysts with different mixing patterns. J Am Chem Soc 139(1):47–50PubMedGoogle Scholar
  60. 60.
    Kim D, Xie C, Becknell N, Yu Y, Karamad M, Chan K, Crumlin EJ, Nørskov JK, Yang P (2017) Electrochemical activation of CO2 through atomic ordering transformations of AuCu nanoparticles. J Am Chem Soc 139(24):8329–8336PubMedGoogle Scholar
  61. 61.
    Sarfraz S, Garcia-Esparza AT, Jedidi A, Cavallo L, Takanabe K (2016) Cu–Sn bimetallic catalyst for selective aqueous electroreduction of CO2 to CO. ACS Catal 6(5):2842–2851Google Scholar
  62. 62.
    Rasul S, Anjum DH, Jedidi A, Minenkov Y, Cavallo L, Takanabe K (2015) A highly selective copper-indium bimetallic electrocatalyst for the electrochemical reduction of aqueous CO2 to CO. Angewandte Chemie Int Edn 54(7):2146–2150Google Scholar
  63. 63.
    Kortlever R, Peters I, Koper S, Koper MTM (2015) Electrochemical CO2 reduction to formic acid at low overpotential and with high faradaic efficiency on carbon-supported bimetallic Pd–Pt nanoparticles. ACS Catal 5(7):3916–3923Google Scholar
  64. 64.
    Paris AR, Bocarsly AB (2018, submitted) High-efficiency conversion of CO2 to oxalate in water is possible using a Cr-Ga oxide electrocatalyst. Nat Chem. ACS Catal 2019(9):2324–2333.Google Scholar
  65. 65.
    Amatore C, Saveant JM (1981) Mechanism and kinetic characteristics of the electrochemical reduction of carbon dioxide in media of low proton availability. J Am Chem Soc 103(17):5021–5023Google Scholar
  66. 66.
    Gennaro A, Isse AA, Severin M-G, Vianello E, Bhugun I, Savéant J-M (1996) Mechanism of the electrochemical reduction of carbon dioxide at inert electrodes in media of low proton availability. J Chem Soc Faraday Trans 92(20):3963–3968Google Scholar
  67. 67.
    Studt F, Sharafutdinov I, Abild-Pedersen F, Elkjær CF, Hummelshøj JS, Dahl S, Chorkendorff I, Nørskov JK (2014) Discovery of a Ni-Ga catalyst for carbon dioxide reduction to methanol. Nat Chem 6(4):320–324PubMedGoogle Scholar
  68. 68.
    Torelli DA, Francis SA, Crompton JC, Javier A, Thompson JR, Brunschwig BS, Soriaga MP, Lewis NS (2016) Nickel–gallium-catalyzed electrochemical reduction of CO2 to highly reduced products at low overpotentials. ACS Catal 6(3):2100–2104Google Scholar
  69. 69.
    Paris AR, Chu AT, O’Brien CB, Frick JJ, Francis SA, Bocarsly AB (2018) Tuning the products of CO2 electroreduction on a Ni3Ga catalyst using carbon solid supports. J Electrochem Soc 165(7):H385–H392Google Scholar
  70. 70.
    Paris AR, Bocarsly AB (2017) Ni–Al films on glassy carbon electrodes generate an array of oxygenated organics from CO2. ACS Catal 7(10):6815–6820Google Scholar
  71. 71.
    Ghosh D, Kobayashi K, Kajiwara T, Kitagawa S, Tanaka K (2017) Catalytic hydride transfer to CO2 using Ru-NAD-type complexes under electrochemical conditions. Inorg Chem 56(18):11066–11073PubMedGoogle Scholar
  72. 72.
    Min S, Rasul S, Li H, Grills DC, Takanabe K, Li L-J, Huang K-W (2016) Electrocatalytic reduction of carbon dioxide with a well-defined PN3 − Ru pincer complex. ChemPlusChem 81(2):166–171PubMedGoogle Scholar
  73. 73.
    Boston DJ, Pachón YMF, Lezna RO, de Tacconi NR, MacDonnell FM (2014) Electrocatalytic and photocatalytic conversion of CO2 to methanol using ruthenium complexes with internal pyridyl cocatalysts. Inorg Chem 53(13):6544–6553PubMedGoogle Scholar
  74. 74.
    Francke R, Schille B, Roemelt M (2018) Homogeneously catalyzed electroreduction of carbon dioxide—methods, mechanisms, and catalysts. Chem Rev 118(9):4631–4701PubMedGoogle Scholar
  75. 75.
    Machan CW, Chabolla SA, Yin J, Gilson MK, Tezcan FA, Kubiak CP (2014) Supramolecular assembly promotes the electrocatalytic reduction of carbon dioxide by Re(I) bipyridine catalysts at a lower overpotential. J Am Chem Soc 136(41):14598–14607PubMedGoogle Scholar
  76. 76.
    Sung S, Kumar D, Gil-Sepulcre M, Nippe M (2017) Electrocatalytic CO2 reduction by imidazolium-functionalized molecular catalysts. J Am Chem Soc 139(40):13993–13996PubMedGoogle Scholar
  77. 77.
    Clark ML, Cheung PL, Lessio M, Carter EA, Kubiak CP (2018) Kinetic and mechanistic effects of Bipyridine (Bpy) substituent, Labile Ligand, and Brønsted acid on electrocatalytic CO2 reduction by Re(Bpy) complexes. ACS Catal 8(3):2021–2029Google Scholar
  78. 78.
    Bourrez M, Molton F, Chardon-Noblat S, Deronzier A (2011) [Mn(Bipyridyl)(CO)3Br]: an abundant metal carbonyl complex as efficient electrocatalyst for CO2 reduction. Angewandte Chemie Int Edn 50(42):9903–9906Google Scholar
  79. 79.
    Smieja JM, Sampson MD, Grice KA, Benson EE, Froehlich JD, Kubiak CP (2013) Manganese as a substitute for rhenium in CO2 reduction catalysts: the importance of acids. Inorg Chem 52(5):2484–2491PubMedGoogle Scholar
  80. 80.
    Sampson MD, Nguyen AD, Grice KA, Moore CE, Rheingold AL, Kubiak CP (2014) Manganese catalysts with bulky bipyridine ligands for the electrocatalytic reduction of carbon dioxide: eliminating dimerization and altering catalysis. J Am Chem Soc 136(14):5460–5471PubMedGoogle Scholar
  81. 81.
    Agarwal J, Shaw TW, Schaefer HF, Bocarsly AB (2015) Design of a catalytic active site for electrochemical CO2 reduction with Mn(I)-tricarbonyl species. Inorg Chem 54(11):5285–5294PubMedGoogle Scholar
  82. 82.
    Franco F, Cometto C, Nencini L, Barolo C, Sordello F, Minero C, Fiedler J, Robert M, Gobetto R, Nervi C. Local proton source in electrocatalytic CO2 reduction with [Mn(Bpy–R)(CO)3Br] complexes. Chem Eur J 23(20):4782–4793Google Scholar
  83. 83.
    Tignor SE, Kuo H-Y, Lee TS, Scholes GD, Bocarsly AB (2018, Submitted) manganese based catalysts with varying ligand substituents for the electrochemical reduction of CO2 to CO. OrganometallicsGoogle Scholar
  84. 84.
    Agarwal J, Shaw TW, Stanton CJ, Majetich GF, Bocarsly AB, Schaefer HF. NHC-containing manganese(I) electrocatalysts for the two-electron reduction of CO2. Angewandte Chemie Int Edn 53(20):5152–5155Google Scholar
  85. 85.
    Kang P, Chen Z, Nayak A, Zhang S, Meyer TJ (2014) Single catalyst electrocatalytic reduction of co2 in water to H2 + CO syngas mixtures with water oxidation to O2. Energy Environ Sci 7(12):4007–4012Google Scholar
  86. 86.
    Sheng M, Jiang N, Gustafson S, You B, Ess DH, Sun Y (2015) A nickel complex with a biscarbene pincer-type ligand shows high electrocatalytic reduction of CO2 over H2O. Dalton Trans 44(37):16247–16250PubMedGoogle Scholar
  87. 87.
    Cope JD, Liyanage NP, Kelley PJ, Denny JA, Valente EJ, Webster CE, Delcamp JH, Hollis TK (2017) Electrocatalytic reduction of CO2 with CCC-NHC pincer nickel complexes. Chem Commun 53(68):9442–9445Google Scholar
  88. 88.
    Stanton CJ, Vandezande JE, Majetich GF, Schaefer HF, Agarwal J (2016) Mn-NHC electrocatalysts: increasing π acidity lowers the reduction potential and increases the turnover frequency for CO2 reduction. Inorg Chem 55(19):9509–9512PubMedGoogle Scholar
  89. 89.
    Liyanage NP, Dulaney HA, Huckaba AJ, Jurss JW, Delcamp JH (2016) Electrocatalytic reduction of CO2 to CO with Re-Pyridyl-NHCs: proton source influence on rates and product selectivities. Inorg Chem 55(12):6085–6094PubMedGoogle Scholar
  90. 90.
    Carrington SJ, Chakraborty I, Bernard JML, Mascharak PK (2014) Synthesis and characterization of a “Turn-On” PhotoCORM for trackable CO delivery to biological targets. ACS Med Chem Lett 5(12):1324–1328PubMedPubMedCentralGoogle Scholar
  91. 91.
    Yempally V, Kyran SJ, Raju RK, Fan WY, Brothers EN, Darensbourg DJ, Bengali AA (2014) Thermal and photochemical reactivity of manganese tricarbonyl and tetracarbonyl complexes with a bulky diazabutadiene ligand. Inorg Chem 53(8):4081–4088PubMedGoogle Scholar
  92. 92.
    Takeda H, Koizumi H, Okamoto K, Ishitani O (2014) Photocatalytic CO2 reduction using a Mn complex as a catalyst. Chem Commun 50(12):1491–1493Google Scholar
  93. 93.
    Stor GJ, Morrison SL, Stufkens DJ, Oskam A (1994) The remarkable photochemistry of fac-XMn(CO)3(alpha-diimine) (X = Halide): formation of Mn2(CO)6(alpha-diimine)2 via the mer isomer and photocatalytic substitution of X- in the presence of PR3. Organometallics 13(7):2641–2650Google Scholar
  94. 94.
    Stor GJ, Stufkens DJ, Vernooijs P, Baerends EJ, Fraanje J, Goubitz K (1995) X-ray structure of fac-IMn(CO)3(Bpy) and electronic structures and transitions of the complexes fac-XMn(CO)3(Bpy) (X = Cl, I) and mer-ClMn(CO)3(Bpy). Inorg Chem 34(6):1588–1594Google Scholar
  95. 95.
    Staal LH, Oskam A, Vrieze K (1979) The syntheses and coordination properties of M(CO)3X(DAB) (M = Mn, Re; X = Cl, Br, I; DAB = 1,4-Diazabutadiene). J Organomet Chem 170(2):235–245Google Scholar
  96. 96.
    Rosa A, Ricciardi G, Baerends EJ, Stufkens DJ (1996) Metal-to-ligand charge transfer (MLCT) photochemistry of fac-Mn(Cl)(CO)3(H-DAB): a density functional study. J Phys Chem 100(38):15346–15357Google Scholar
  97. 97.
    Kottelat E, Ruggi A, Zobi F (2016) Red-light activated PhotoCORMs of Mn(I) species bearing electron deficient 2,2′-Azopyridines. Dalton Trans 45(16):6920–6927PubMedGoogle Scholar
  98. 98.
    Kleverlaan CJ, Hartl F, Stufkens DJ (1997) Real-time fourier transform IR (FTIR) spectroscopy in organometallic chemistry: mechanistic aspects of the fac to mer photoisomerization of fac-[Mn(Br)(CO)3(R-DAB)]. J Photochem Photobiol A Chem 103(3):231–237Google Scholar
  99. 99.
    Govender P, Pai S, Schatzschneider U, Smith GS (2013) Next generation PhotoCORMs: polynuclear tricarbonylmanganese(I)-functionalized polypyridyl metallodendrimers. Inorg Chem 52(9):5470–5478PubMedGoogle Scholar
  100. 100.
    Gonzalez MA, Yim MA, Cheng S, Moyes A, Hobbs AJ, Mascharak PK (2012) Manganese carbonyls bearing tripodal polypyridine ligands as photoactive carbon monoxide-releasing molecules. Inorg Chem 51(1):601–608PubMedGoogle Scholar
  101. 101.
    Fei H, Sampson MD, Lee Y, Kubiak CP, Cohen SM (2015) Photocatalytic CO2 reduction to formate using a Mn(I) molecular catalyst in a robust metal-organic framework. Inorg Chem 54(14):6821–6828PubMedGoogle Scholar
  102. 102.
    Amsterdam W (1996) Alkyl-dependent photochemistry of Mn(R)(CO)3(R’-DAB) (R = Me, Bz; R’ = iPr, pTol): homolysis of the Mn-R bond for R = Bz and release of CO for R = Me. Inorg Chim Acta 15Google Scholar
  103. 103.
    Machan CW, Stanton CJ, Vandezande JE, Majetich GF, Schaefer HF, Kubiak CP, Agarwal J (2015) Electrocatalytic reduction of carbon dioxide by Mn(CN)(2,2′-Bipyridine)(CO)3: CN coordination alters mechanism. Inorg Chem 54(17):8849–8856PubMedGoogle Scholar
  104. 104.
    Agarwal J, Iii CJS, Shaw TW, Vandezande JE, Majetich GF, Bocarsly AB, Iii HFS (2015) Exploring the effect of axial ligand substitution (X = Br, NCS, CN) on the photodecomposition and electrochemical activity of [MnX(N–C)(CO)3] complexes. Dalton Trans 44(5):2122–2131PubMedGoogle Scholar
  105. 105.
    Kuo H-Y, Lee TS, Chu AT, Tignor SE, Scholes GD, Bocarsly AB (2018, Submitted) A Cyanide-Bridged Di-Manganese carbonyl complex that photochemically reduces CO2 to CO. Dalton TransGoogle Scholar
  106. 106.
    Froehlich JD, Kubiak CP (2012) Homogeneous CO2 reduction by Ni(Cyclam) at a glassy carbon electrode. Inorg Chem 51(7):3932–3934PubMedGoogle Scholar
  107. 107.
    Beley M, Collin JP, Ruppert R, Sauvage JP (1986) Electrocatalytic reduction of carbon dioxide by nickel Cyclam2+ in water: study of the factors affecting the efficiency and the selectivity of the process. J Am Chem Soc 108(24):7461–7467PubMedGoogle Scholar
  108. 108.
    Song J, Klein EL, Neese F, Ye S (2014) The mechanism of homogeneous CO2 reduction by Ni(Cyclam): product selectivity, concerted proton-electron transfer and C-O bond cleavage. Inorg Chem 53(14):7500–7507PubMedGoogle Scholar
  109. 109.
    Wu Y, Rudshteyn B, Zhanaidarova A, Froehlich JD, Ding W, Kubiak CP, Batista VS (2017) Electrode-ligand interactions dramatically enhance CO2 conversion to CO by the [Ni(Cyclam)](PF6)2 catalyst. ACS Catal 7(8):5282–5288Google Scholar
  110. 110.
    Schneider J, Jia H, Kobiro K, Cabelli DE, Muckerman JT, Fujita E (2012) Nickel(II) macrocycles: highly efficient electrocatalysts for the selective reduction of CO2 to CO. Energy Environ Sci 5(11):9502–9510Google Scholar
  111. 111.
    Neri G, Aldous IM, Walsh JJ, Hardwick LJ, Cowan AJ (2016) A highly active nickel electrocatalyst shows excellent selectivity for CO2 reduction in acidic media. Chem Sci 7(2):1521–1526PubMedGoogle Scholar
  112. 112.
    Froehlich JD, Kubiak CP (2015) The homogeneous reduction of CO2 by [Ni(Cyclam)]+: increased catalytic rates with the addition of a CO scavenger. J Am Chem Soc 137(10):3565–3573PubMedGoogle Scholar
  113. 113.
    Hammouche M, Lexa D, Savéant JM, Momenteau M (1988) Catalysis of the electrochemical reduction of carbon dioxide by Iron(0) porphyrins. J Electroanal Chem Interfacial Electrochem 249(1):347–351Google Scholar
  114. 114.
    Costentin C, Drouet S, Passard G, Robert M, Savéant J-M (2013) Proton-coupled electron transfer cleavage of heavy-atom bonds in electrocatalytic processes. Cleavage of a C–O bond in the catalyzed electrochemical reduction of CO2. J Am Chem Soc 135(24):9023–9031Google Scholar
  115. 115.
    Ambre RB, Daniel Q, Fan T, Chen H, Zhang B, Wang L, Ahlquist MSG, Duan L, Sun L (2016) Molecular engineering for efficient and selective iron porphyrin catalysts for electrochemical reduction of CO2 to CO. Chem Commun 52(100):14478–14481Google Scholar
  116. 116.
    Costentin C, Robert M, Savéant J-M, Tatin A (2015) Efficient and selective molecular catalyst for the CO2-to-CO electrochemical conversion in water. PNAS 112(22):6882–6886PubMedGoogle Scholar
  117. 117.
    Azcarate I, Costentin C, Robert M, Savéant J-M (2016) Through-space charge interaction substituent effects in molecular catalysis leading to the design of the most efficient catalyst of CO2-to-CO electrochemical conversion. J Am Chem Soc 138(51):16639–16644PubMedGoogle Scholar
  118. 118.
    Azcarate I, Costentin C, Robert M, Savéant J-M (2016) Dissection of electronic substituent effects in multielectron–multistep molecular catalysis. Electrochemical CO2-to-CO conversion catalyzed by iron porphyrins. J Phys Chem C 120(51):28951–28960Google Scholar
  119. 119.
    Costentin C, Passard G, Robert M, Savéant J-M (2014) Ultraefficient homogeneous catalyst for the CO2-to-CO electrochemical conversion. Proc Natl Acad Sci U S A 111(42):14990–14994PubMedPubMedCentralGoogle Scholar
  120. 120.
    Mohamed EA, Zahran ZN, Naruta Y (2015) Efficient electrocatalytic CO2 reduction with a molecular cofacial iron porphyrin dimer. Chem Commun 51(95):16900–16903Google Scholar
  121. 121.
    Zahran ZN, Mohamed EA, Naruta Y (2016) Bio-inspired cofacial Fe porphyrin dimers for efficient electrocatalytic CO2 to CO conversion: overpotential tuning by substituents at the porphyrin rings. Sci Rep 6Google Scholar
  122. 122.
    Fukuzumi S, Lee Y-M, Ahn HS, Nam W (2018) Mechanisms of catalytic reduction of CO2 with heme and nonheme metal complexes. Chem Sci 9(28):6017–6034PubMedPubMedCentralGoogle Scholar
  123. 123.
    Loewen ND, Thompson EJ, Kagan M, Banales CL, Myers TW, Fettinger JC, Berben LA (2016) A pendant proton shuttle on [Fe4N(CO)12] alters product selectivity in formate vs. H2 production via the hydride [H–Fe4N(CO)12]. Chem Sci 7(4):2728–2735Google Scholar
  124. 124.
    Taheri A, Thompson EJ, Fettinger JC, Berben LA (2015) An iron electrocatalyst for selective reduction of CO2 to formate in water: including thermochemical insights. ACS Catal 5(12):7140–7151Google Scholar
  125. 125.
    Taheri A, Carr CR, Berben LA (2018) Electrochemical methods for assessing kinetic factors in the reduction of CO2 to formate: implications for improving electrocatalyst design. ACS Catal 8(7):5787–5793Google Scholar
  126. 126.
    Taheri A, Loewen ND, Cluff DB, Berben LA (2018) Considering a possible role for [H-Fe4N(CO)12]2− in selective electrocatalytic CO2 reduction to formate by [Fe4N(CO)12]. Organometallics 37(7):1087–1091Google Scholar
  127. 127.
    Cao Z, Kim D, Hong D, Yu Y, Xu J, Lin S, Wen X, Nichols EM, Jeong K, Reimer JA et al (2016) A molecular surface functionalization approach to tuning nanoparticle electrocatalysts for carbon dioxide reduction. J Am Chem Soc 138(26):8120–8125PubMedGoogle Scholar
  128. 128.
    Chung MW, Cha IY, Ha MG, Na Y, Hwang J, Ham HC, Kim H-J, Henkensmeier D, Yoo SJ, Kim JY et al (2018) Enhanced CO2 reduction activity of polyethylene glycol-modified Au nanoparticles prepared via liquid medium sputtering. Appl Catal B Environ 237:673–680Google Scholar
  129. 129.
    Zhang S, Kang P, Ubnoske S, Brennaman MK, Song N, House RL, Glass JT, Meyer TJ (2014) Polyethylenimine-enhanced electrocatalytic reduction of CO2 to formate at nitrogen-doped carbon nanomaterials. J Am Chem Soc 136(22):7845–7848PubMedGoogle Scholar
  130. 130.
    Maurin A, Robert M (2016) Noncovalent immobilization of a molecular iron-based electrocatalyst on carbon electrodes for selective, efficient CO2-to-CO conversion in water. J Am Chem Soc 138(8):2492–2495PubMedGoogle Scholar
  131. 131.
    Pander JE, Fogg A, Bocarsly AB (2016) Utilization of electropolymerized films of cobalt porphyrin for the reduction of carbon dioxide in aqueous media. ChemCatChem 8(22):3536–3545Google Scholar
  132. 132.
    Shen J, Kortlever R, Kas R, Birdja YY, Diaz-Morales O, Kwon Y, Ledezma-Yanez I, Schouten KJP, Mul G, Koper MTM (2015) Electrocatalytic reduction of carbon dioxide to carbon monoxide and methane at an immobilized cobalt protoporphyrin. Nat Commun 6(1)Google Scholar
  133. 133.
    Morlanés N, Takanabe K, Rodionov V (2016) Simultaneous reduction of CO2 and splitting of H2O by a single immobilized cobalt phthalocyanine electrocatalyst. ACS Catal 6(5):3092–3095Google Scholar
  134. 134.
    Zhang X, Wu Z, Zhang X, Li L, Li Y, Xu H, Li X, Yu X, Zhang Z, Liang Y et al (2017) Highly selective and active CO2 reduction electrocatalysts based on cobalt phthalocyanine/carbon nanotube hybrid structures. Nat Commun 8:14675PubMedPubMedCentralGoogle Scholar
  135. 135.
    Weng Z, Jiang J, Wu Y, Wu Z, Guo X, Materna KL, Liu W, Batista VS, Brudvig GW, Wang H (2016) Electrochemical CO2 reduction to hydrocarbons on a heterogeneous molecular Cu catalyst in aqueous solution. J Am Chem Soc 138(26):8076–8079PubMedGoogle Scholar
  136. 136.
    Farrusseng D, Aguado S, Pinel C (2009) Metal-organic frameworks: opportunities for catalysis. Angewandte Chemie Int Edn 48(41):7502–7513Google Scholar
  137. 137.
    Lin S, Diercks CS, Zhang Y-B, Kornienko N, Nichols EM, Zhao Y, Paris AR, Kim D, Yang P, Yaghi OM et al (2015) Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water. Science 349(6253):1209–1213Google Scholar
  138. 138.
    Kornienko N, Zhao Y, Kley CS, Zhu C, Kim D, Lin S, Chang CJ, Yaghi OM, Yang P (2015) Metal-organic frameworks for electrocatalytic reduction of carbon dioxide. J Am Chem Soc 137(44):14129–14135PubMedGoogle Scholar
  139. 139.
    Zhao C, Dai X, Yao T, Chen W, Wang X, Wang J, Yang J, Wei S, Wu Y, Li Y (2017) Ionic exchange of metal-organic frameworks to access single nickel sites for efficient electroreduction of CO2. J Am Chem Soc 139(24):8078–8081PubMedGoogle Scholar
  140. 140.
    Huan TN, Ranjbar N, Rousse G, Sougrati M, Zitolo A, Mougel V, Jaouen F, Fontecave M (2017) Electrochemical reduction of CO2 catalyzed by Fe-N-C materials: a structure-selectivity study. ACS Catal 7(3):1520–1525Google Scholar
  141. 141.
    Albo J, Vallejo D, Beobide G, Castillo O, Castaño P, Irabien A (2017) Copper-based metal-organic porous materials for CO2 electrocatalytic reduction to alcohols. Chemsuschem 10(6):1100–1109PubMedGoogle Scholar
  142. 142.
    Ghijsen J, Tjeng LH, van Elp J, Eskes H, Westerink J, Sawatzky GA, Czyzyk MT (1988) Electronic structure of Cu2O and CuO. Phys Rev B 38(16):11322–11330Google Scholar
  143. 143.
    Hardee KI, Bard AJX (1977) Photoelectrochemical behavior of several polycrystalline metal oxide electrodes in aqueous solutions. J Electrochem Soc 124(2):10Google Scholar
  144. 144.
    Tennakone K, Jayatissa AH, Punchihewa S (1989) Selective photoreduction of carbon dioxide to methanol with hydrous cuprous oxide. J Photochem Photobiol A Chem 49(3):369–375Google Scholar
  145. 145.
    Janáky C, Hursán D, Endrődi B, Chanmanee W, Roy D, Liu D, de Tacconi NR, Dennis BH, Rajeshwar K (2016) Electro- and photoreduction of carbon dioxide: the twain shall meet at copper oxide/copper interfaces. ACS Energy Lett 1(2):332–338Google Scholar
  146. 146.
    Ba X, Yan L-L, Huang S, Yu J, Xia X-J, Yu Y (2014) New way for CO2 reduction under visible light by a combination of a Cu electrode and semiconductor thin film: Cu2O conduction type and morphology effect. J Phys Chem C 118(42):24467–24478Google Scholar
  147. 147.
    Li CW, Kanan MW (2012) CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films. J Am Chem Soc 134(17):7231–7234PubMedGoogle Scholar
  148. 148.
    Ghadimkhani G, de Tacconi NR, Chanmanee W, Janaky C, Rajeshwar K (2013) Efficient solar photoelectrosynthesis of methanol from carbon dioxide using hybrid CuO–Cu2O semiconductor nanorod arrays. Chem Commun 49(13):1297Google Scholar
  149. 149.
    Kecsenovity E, Endrődi B, Pápa Z, Hernádi K, Rajeshwar K, Janáky C (2016) Decoration of ultra-long carbon nanotubes with Cu2O nanocrystals: a hybrid platform for enhanced photoelectrochemical CO2 reduction. J Mater Chem A 4(8):3139–3147Google Scholar
  150. 150.
    Parkinson BA, Weaver PF (1984) Photoelectrochemical pumping of enzymatic CO2 reduction. Nature 309(5964):148–149Google Scholar
  151. 151.
    Halmann M (1978) Photoelectrochemical reduction of aqueous carbon dioxide on p-type gallium phosphide in liquid junction solar cells. Nature 275(5676):115–116Google Scholar
  152. 152.
    Kočí K, Obalová L, Matějová L, Plachá D, Lacný Z, Jirkovský J, Šolcová O (2009) Effect of TiO2 particle size on the photocatalytic reduction of CO2. Appl Catal B Environ 89(3):494–502Google Scholar
  153. 153.
    Lo C-C, Hung C-H, Yuan C-S, Wu J-F (2007) Photoreduction of carbon dioxide with H2 and H2O over TiO2 and ZrO2 in a circulated photocatalytic reactor. Solar Energy Mater Solar Cells 91(19):1765–1774Google Scholar
  154. 154.
    Perini JAL, Cardoso JC, de Brito JF, Zanoni MVB (2018) Contribution of thin films of ZrO2 on TiO2 nanotubes electrodes applied in the photoelectrocatalytic CO2 conversion. J CO2 Utilization 25:254–263Google Scholar
  155. 155.
    Morterra C, Orio L (1990) Surface characterization of zirconium oxide. II. The interaction with carbon dioxide at ambient temperature. Mater Chem Phys 24(3):247–268Google Scholar
  156. 156.
    Bachiller-Baeza B, Rodriguez-Ramos I, Guerrero-Ruiz A (1998) Interaction of carbon dioxide with the surface of zirconia polymorphs. Langmuir 14(13):3556–3564Google Scholar
  157. 157.
    Shen Q, Chen Z, Huang X, Liu M, Zhao G (2015) High-yield and selective photoelectrocatalytic reduction of CO2 to formate by metallic copper decorated Co3O4 nanotube arrays. Environ Sci Technol 49(9):5828–5835PubMedGoogle Scholar
  158. 158.
    Jang J-W, Cho S, Magesh G, Jang YJ, Kim JY, Kim WY, Seo JK, Kim S, Lee K-H, Lee JS (2014) Aqueous-solution route to zinc telluride films for application to CO2 reduction. Angewandte Chemie Int Edn 53(23):5852–5857Google Scholar
  159. 159.
    Jang YJ, Jang J-W, Lee J, Kim JH, Kumagai H, Lee J, Minegishi T, Kubota J, Domen K, Lee JS (2015) Selective CO production by Au coupled ZnTe/ZnO in the photoelectrochemical CO2 reduction system. Energy Environ Sci 8(12):3597–3604Google Scholar
  160. 160.
    Gu J, Wuttig A, Krizan JW, Hu Y, Detweiler ZM, Cava RJ, Bocarsly AB (2013) Mg-doped CuFeO2 photocathodes for photoelectrochemical reduction of carbon dioxide. J Phys Chem C 117(24):12415–12422Google Scholar
  161. 161.
    Kang U, Choi SK, Ham DJ, Ji SM, Choi W, Han DS, Abdel-Wahab A, Park H (2015) Photosynthesis of formate from CO2 and water at 1% energy efficiency via copper iron oxide catalysis. Energy Environ Sci 8(9):2638–2643Google Scholar
  162. 162.
    Jeong HW, Jeon TH, Jang JS, Choi W, Park H (2013) Strategic modification of BiVO4 for improving photoelectrochemical water oxidation performance. J Phys Chem C 117(18):9104–9112Google Scholar
  163. 163.
    Kang U, Park H (2017) A facile synthesis of CuFeO2 and CuO composite photocatalyst films for the production of liquid formate from CO2 and water over a month. J Mater Chem A 5(5):2123–2131Google Scholar
  164. 164.
    Kamimura S, Murakami N, Tsubota T, Ohno T (2015) Fabrication and characterization of a p-type Cu3Nb2O8 photocathode toward photoelectrochemical reduction of carbon dioxide. Appl Catal B Environ 174–175:471–476Google Scholar
  165. 165.
    Boettcher SW, Warren EL, Putnam MC, Santori EA, Turner-Evans D, Kelzenberg MD, Walter MG, McKone JR, Brunschwig BS, Atwater HA et al (2011) Photoelectrochemical hydrogen evolution using Si microwire arrays. J Am Chem Soc 133(5):1216–1219PubMedGoogle Scholar
  166. 166.
    Choi SK, Kang U, Lee S, Ham DJ, Ji SM, Park H (2014) Sn-coupled p-Si nanowire arrays for solar formate production from CO2. Adv Energy Mater 4(11):1301614Google Scholar
  167. 167.
    Hinogami R, Nakamura Y, Yae S, Nakato Y (1998) An approach to ideal semiconductor electrodes for efficient photoelectrochemical reduction of carbon dioxide by modification with small metal particles. J Phys Chem B 102(6):974–980Google Scholar
  168. 168.
    Kuang Y, Di Vece M, Rath JK, van Dijk L, Schropp REI (2013) Elongated nanostructures for radial junction solar cells, vol 76Google Scholar
  169. 169.
    Ohno T, Murakami N, Koyanagi T, Yang Y (2014) Photocatalytic reduction of CO2 over a hybrid photocatalyst composed of WO3 and graphitic carbon nitride (g-C3N4) under visible light. J CO2 Utilization 6:17–25Google Scholar
  170. 170.
    Sagara N, Kamimura S, Tsubota T, Ohno T (2016) Photoelectrochemical CO2 reduction by a p-type boron-doped g-C3N4 electrode under visible light. Appl Catal B Environ 192:193–198Google Scholar
  171. 171.
    Wang Y, Li H, Yao J, Wang X, Antonietti M (2011) Synthesis of boron doped polymeric carbon nitride solids and their use as metal-free catalysts for aliphatic C-H bond oxidation. Chem Sci 2(3):446–450Google Scholar
  172. 172.
    Zhang Y, Sethuraman V, Michalsky R, Peterson AA. Competition between CO2 reduction and H2 evolution on transition-metal electrocatalystsGoogle Scholar
  173. 173.
    Tinnemans AHA, Koster TPM, Thewissen DHMW, Mackor A. Tetraaza-macrocyclic cobalt(II) and nickel(II) complexes as electron-transfer agents in the photo(electro)chemical and electrochemical reduction of carbon dioxide. Recueil des Travaux Chimiques des Pays-Bas 103(10):288–295Google Scholar
  174. 174.
    Jeon JH, Mareeswaran PM, Choi CH, Woo SI (2014) Synergism between CdTe semiconductor and pyridine—photoenhanced electrocatalysis for CO2 reduction to formic acid. RSC Adv 4(6):3016–3019Google Scholar
  175. 175.
    Barton Cole E, Lakkaraju PS, Rampulla DM, Morris AJ, Abelev E, Bocarsly AB (2010) Using a one-electron shuttle for the multielectron reduction of CO2 to methanol: kinetic, mechanistic, and structural insights. J Am Chem Soc 132(33):11539–11551Google Scholar
  176. 176.
    Barton EE, Rampulla DM, Bocarsly AB (2008) Selective solar-driven reduction of CO2 to methanol using a catalyzed p-GaP based photoelectrochemical cell. J Am Chem Soc 130(20):6342–6344PubMedGoogle Scholar
  177. 177.
    Cole EB, Bocarsly AB (2010) Photochemical, electrochemical, and photoelectrochemical reduction of carbon dioxide. In: Carbon dioxide as chemical feedstock. Wiley-Blackwell, pp 291–316Google Scholar
  178. 178.
    Keets K, Morris A, Zeitler E, Lakkaraju P, Bocarsly A (2010) Catalytic conversion of carbon dioxide to methanol and higher order alcohols at a photoelectrochemical interface. In: Proceedings of SPIE—the international society for optical engineering 7770Google Scholar
  179. 179.
    Bocarsly AB, Gibson QD, Morris AJ, L’Esperance RP, Detweiler ZM, Lakkaraju PS, Zeitler EL, Shaw TW (2012) Comparative study of imidazole and pyridine catalyzed reduction of carbon dioxide at illuminated iron pyrite electrodes. ACS Catal 2(8):1684–1692Google Scholar
  180. 180.
    Ganesh I, Kumar PP, Annapoorna I, Sumliner JM, Ramakrishna M, Hebalkar NY, Padmanabham G, Sundararajan G (2014) Preparation and characterization of Cu-doped TiO2 materials for electrochemical, photoelectrochemical, and photocatalytic applications. Appl Surf Sci 293:229–247Google Scholar
  181. 181.
    Bak T, Nowotny J, Rekas M, Sorrell CC (2002) Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects. Int J Hydrogen Energy 27(10):991–1022Google Scholar
  182. 182.
    Zeng G, Qiu J, Li Z, Pavaskar P, Cronin SB (2014) CO2 reduction to methanol on TiO2-passivated GaP photocatalysts. ACS Catal 4(10):3512–3516Google Scholar
  183. 183.
    Yan Y, Zeitler EL, Gu J, Hu Y, Bocarsly AB (2013) Electrochemistry of aqueous pyridinium: exploration of a key aspect of electrocatalytic reduction of CO2 to methanol. J Am Chem Soc 135(38):14020–14023PubMedGoogle Scholar
  184. 184.
    Yuan J, Hao C (2013) Solar-driven photoelectrochemical reduction of carbon dioxide to methanol at CuInS2 thin film photocathode. Solar Energy Mater Solar Cells 108:170–174Google Scholar
  185. 185.
    Yuan J, Wang P, Hao C, Yu G (2016) Photoelectrochemical reduction of carbon dioxide at CuInS2/graphene hybrid thin film electrode. Electrochim Acta 193:1–6Google Scholar
  186. 186.
    Zhang N, Long R, Gao C, Xiong Y (2018) Recent progress on advanced design for photoelectrochemical reduction of CO2 to fuels. Sci China Mater 61(6):771–805Google Scholar
  187. 187.
    Bachmeier A, Hall S, Ragsdale SW, Armstrong FA (2014) Selective visible-light-driven CO2 reduction on a p-Type dye-sensitized NiO photocathode. J Am Chem Soc 136(39):13518–13521PubMedPubMedCentralGoogle Scholar
  188. 188.
    Kumagai H, Sahara G, Maeda K, Higashi M, Abe R, Ishitani O (2017) Hybrid photocathode consisting of a CuGaO2 p-type semiconductor and a Ru(II)–Re(I) supramolecular photocatalyst: non-biased visible-light-driven CO2 reduction with water oxidation. Chem Sci 8(6):4242–4249PubMedPubMedCentralGoogle Scholar
  189. 189.
    Hye Won D, Chung J, Hyeon Park S, Kim E-H, Ihl Woo S (2015) Photoelectrochemical production of useful fuels from carbon dioxide on a polypyrrole-coated p-ZnTe photocathode under visible light irradiation. J Mater Chem A 3(3):1089–1095Google Scholar
  190. 190.
    Sekizawa K, Sato S, Arai T, Morikawa T (2018) Solar-driven photocatalytic CO2 reduction in water utilizing a ruthenium complex catalyst on p-type Fe2O3 with a multiheterojunction. ACS Catal 8(2):1405–1416Google Scholar
  191. 191.
    Guzmán D, Isaacs M, Osorio-Román I, García M, Astudillo J, Ohlbaum M (2015) Photoelectrochemical reduction of carbon dioxide on quantum-dot-modified electrodes by electric field directed layer-by-layer assembly methodology. ACS Appl Mater Interfaces 7(36):19865–19869PubMedGoogle Scholar
  192. 192.
    White JL, Baruch MF, Pander JE, Hu Y, Fortmeyer IC, Park JE, Zhang T, Liao K, Gu J, Yan Y et al (2015) Light-driven heterogeneous reduction of carbon dioxide: photocatalysts and photoelectrodes. Chem Rev 115(23):12888–12935PubMedGoogle Scholar
  193. 193.
    Cheng J, Zhang M, Wu G, Wang X, Zhou J, Cen K (2014) Photoelectrocatalytic reduction of CO2 into chemicals using Pt-modified reduced graphene oxide combined with Pt-modified TiO2 nanotubes. Environ Sci Technol 48(12):7076–7084PubMedGoogle Scholar
  194. 194.
    Cheng J, Zhang M, Wu G, Wang X, Zhou J, Cen K (2015) Optimizing CO2 reduction conditions to increase carbon atom conversion using a Pt-RGO||Pt-TNT photoelectrochemical cell. Solar Energy Mater Solar Cells 132:606–614Google Scholar
  195. 195.
    Cheng J, Zhang M, Liu J, Zhou J, Cen K (2015) A Cu foam cathode used as a Pt–RGO catalyst matrix to improve CO2 reduction in a photoelectrocatalytic cell with a TiO2 photoanode. J Mater Chem A 3(24):12947–12957Google Scholar
  196. 196.
    Chang X, Wang T, Zhang P, Wei Y, Zhao J, Gong J. Stable aqueous photoelectrochemical CO2 reduction by a Cu2O dark cathode with improved selectivity for carbonaceous products. Angewandte Chemie Int Edn 55(31):8840–8845Google Scholar
  197. 197.
    Magesh G, Kim ES, Kang HJ, Banu M, Kim JY, Kim JH, Lee JS (2014) A versatile photoanode-driven photoelectrochemical system for conversion of CO2 to fuels with high faradaic efficiencies at low bias potentials. J Mater Chem A 2(7):2044Google Scholar
  198. 198.
    Song JT, Iwasaki T, Hatano M (2015) Photoelectrochemical CO2 reduction on 3C-SiC photoanode in aqueous solution. Jpn J Appl Phys 54(4S):04DR05Google Scholar
  199. 199.
    Zhang Y, Luc W, Hutchings GS, Jiao F (2016) Photoelectrochemical carbon dioxide reduction using a nanoporous Ag cathode. ACS Appl Mater Interfaces 8(37):24652–24658PubMedGoogle Scholar
  200. 200.
    May PW (2000) Diamond thin films: a 21st-century material. Philos Trans R Soc Lond A Math Phys Eng Sci 358(1766):473–495Google Scholar
  201. 201.
    Ekimov EA, Sidorov VA, Bauer ED, Mel’nik NN, Curro NJ, Thompson JD, Stishov SM (2004) Superconductivity in diamond. Nature 428(6982):542–545Google Scholar
  202. 202.
    Balasubramanian G, Neumann P, Twitchen D, Markham M, Kolesov R, Mizuochi N, Isoya J, Achard J, Beck J, Tissler J et al (2009) Ultralong spin coherence time in isotopically engineered diamond. Nat Mater 8(5):383–387PubMedGoogle Scholar
  203. 203.
    Liu Y, Chen S, Quan X, Yu H (2015) Efficient electrochemical reduction of carbon dioxide to acetate on nitrogen-doped nanodiamond. J Am Chem Soc 137(36):11631–11636PubMedGoogle Scholar
  204. 204.
    Roy N, Hirano Y, Kuriyama H, Sudhagar P, Suzuki N, Katsumata K, Nakata K, Kondo T, Yuasa M, Serizawa I et al (2016) Boron-doped diamond semiconductor electrodes: efficient photoelectrochemical CO2 reduction through surface modification. Sci Rep 6(1)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Aubrey R. Paris
    • 1
  • Jessica J. Frick
    • 1
  • Danrui Ni
    • 1
  • Michael R. Smith
    • 1
  • Andrew B. Bocarsly
    • 1
    Email author
  1. 1.Department of ChemistryPrinceton UniversityPrincetonUSA

Personalised recommendations