Use of CO2 as Source of Carbon for Energy-Rich Cn Products

  • Jiang Xiao
  • Xinwen Guo
  • Chunshan SongEmail author


Catalytic CO2 conversion to clean fuels and chemicals is crucial for mitigating the climate change and reducing the dependence on nonrenewable energy resources. Converting CO2 by hydrogenation using heterogeneous catalysts has been extensively studied in the past decades, and the products distribution can be manipulated by selecting catalysts and reaction conditions. Generally, CO2 conversion to hydrocarbons and to alcohols are the two routes that have been explored the most, and significant advances have been made in developing efficient catalysts and understanding the thermodynamics and kinetics of the two paths. However, effective catalysts and processes are required to selectively maximize CO2 conversion to either C2–C4 olefins, C5+ hydrocarbons, or aromatics and to minimize CH4 and CO. Catalysis for higher alcohols synthesis from CO2 is still in the very early stage and requires more fundamental research due to the lack of understanding the possible reaction pathways and of controlling the key intermediates. This review summarizes the progresses in CO2 conversion via heterogeneous catalysis for the two pathways in the past five years and discusses the origin of the activity and plausible reaction mechanism through a combination of computational, experimental, and analytical studies, along with suggestions for designing improved catalysts in the future.



This work was supported in part by the Pennsylvania State University through the EMS Energy Institute, the Institutes of Energy and the Environment and the Joint Center for Energy Research established between Penn State and Dalian University of Technology.


  1. 1.
    Pontzen F, Liebner W, Gronemann V, Rothaemel M, Ahlers B (2011) Catal Today 171:242–250Google Scholar
  2. 2.
    Song C (2006) Catal Today 115:2–32Google Scholar
  3. 3.
    Gusain R, Kumar P, Sharma OP, Jain SL, Khatri OP (2016) Appl Catal B-Environ 181:352–362Google Scholar
  4. 4.
    Xia S, Meng Y, Zhou X, Xue J, Pan G, Ni Z (2016) Appl. Catal B-Environ 187:122–133Google Scholar
  5. 5.
    Gutiérrez-Guerra N, Moreno-López L, Serrano-Ruiz JC, Valverde JL, de Lucas-Consuegra A (2016) Appl Catal B-Environ 188:272–282Google Scholar
  6. 6.
    Wei J, Ge Q, Yao R, Wen Z, Fang C, Guo L, Xu H, Sun J (2017) Nat Commun 8:15174PubMedPubMedCentralGoogle Scholar
  7. 7.
    Alvarez A, Bansode A, Urakawa A, Bavykina AV, Wezendonk TA, Makkee M, Gascon J, Kapteijn F (2017) Chem Rev 117:9804–9838PubMedPubMedCentralGoogle Scholar
  8. 8.
    Aresta M, Dibenedetto A, Angelini A (2013) J CO2 Util 3–4:65–73Google Scholar
  9. 9.
    He X (2017) Int J Oil Gas Coal Eng 5:145–152Google Scholar
  10. 10.
    Swapnesh A, Srivastava VC, Mall ID (2014) Chem Eng Technol 37:1765–1777Google Scholar
  11. 11.
    Grabow LC, Marvrikakis M (2011) ACS Catal 1:365–384Google Scholar
  12. 12.
    Wang W, Wang S, Ma X, Gong J (2011) Chem Soc Rev 40:3703–3727PubMedGoogle Scholar
  13. 13.
    Ansari MB, Park S-E (2012) Energy Environ Sci 5:9419–9437Google Scholar
  14. 14.
    Li MM-J, Tsang SCE (2018) Catal. Sci Technol 8:3450–3464Google Scholar
  15. 15.
    Li W, Wang H, Jiang X, Zhu J, Liu Z, Guo X, Song C (2018) RSC Adv 8:7651–7669Google Scholar
  16. 16.
    Yang H, Zhang C, Gao P, Wang H, Li X, Zhong L, Wei W, Sun Y (2017) Catal. Sci Technol 7:4580–4598Google Scholar
  17. 17.
    Wang WH, Himeda Y, Muckerman JT, Manbeck GF, Fujita E (2015) Chem Rev 115:12936–12973PubMedGoogle Scholar
  18. 18.
    Gao P, Li S, Bu X, Dang S, Liu Z, Wang H, Zhong L, Qiu M, Yang C, Cai J, Wei W, Sun Y (2017) Nat Chem 9:1019–1024PubMedGoogle Scholar
  19. 19.
    Zhang X, Zhang A, Jiang X, Zhu J, Liu J, Li J, Zhang G, Song C, Guo X (2019) J CO2 Util 29:140–145Google Scholar
  20. 20.
    Li Z, Qu Y, Wang J, Liu H, Li M, Miao S, Li C Joule (2018)Google Scholar
  21. 21.
    Ni Y, Chen Z, Fu Y, Liu Y, Zhu W, Liu Z (2018) Nat Commun 9:3457PubMedPubMedCentralGoogle Scholar
  22. 22.
    Kusama H, Okabe K, Syama K, Arakawa H (1997) Energy 22:343–348Google Scholar
  23. 23.
    Li S, Guo H, Luo C, Zhang H, Xiong L, Chen X, Ma L (2013) Catal Lett 143:345–355Google Scholar
  24. 24.
    Wu J, Huang Y, Ye W, Li Y (2017) Adv Sci (Weinh) 4:1700194Google Scholar
  25. 25.
    Qiao J, Liu Y, Hong F, Zhang J (2014) Chem Soc Rev 43:631–675PubMedGoogle Scholar
  26. 26.
    Francke R, Schille B, Roemelt M (2018) Chem Rev 118:4631–4701PubMedGoogle Scholar
  27. 27.
    Zhao G, Huang X, Wang X, Wang X (2017) J Mater Chem A 5:21625–21649Google Scholar
  28. 28.
    Shi Z, Yang H, Gao P, Li X, Zhong L, Wang H, Liu H, Wei W, Sun Y (2017) Catal Today 311:65–73Google Scholar
  29. 29.
    Nafria R, Genc A, Ibanez M, Arbiol J, de la Piscina PR, Homs N, Cabot A (2016) Langmuir 32:2267–2276PubMedGoogle Scholar
  30. 30.
    Das T, Sengupta S, Deo G (2013) Reac Kinet Mech Cat 110:147–162Google Scholar
  31. 31.
    Zhang Y, Fu D, Liu X, Zhang Z, Zhang C, Shi B, Xu J, Han Y-F (2018) ChemCatChem 10:1272–1276Google Scholar
  32. 32.
    Boreriboon N, Jiang X, Song C, Prasassarakich P (2018) J CO2 Util 25:330–337Google Scholar
  33. 33.
    Riedel T, Claeys M, Schulz H, Schaub G, Nam S-S, Jun K-W, Choi M-J, Kishan G, Lee K-W (1999) Appl Catal A-Gen 186:201–213Google Scholar
  34. 34.
    Ding F, Zhang A, Liu M, Guo X, Song C (2014) RSC Adv 4:8930Google Scholar
  35. 35.
    Numpilai T, Witoon T, Chanlek N, Limphirat W, Bonura G, Chareonpanich M, Limtrakul J (2017) Appl Catal A-Gen 547:219–229Google Scholar
  36. 36.
    Satthawong R, Koizumi N, Song C, Prasassarakich P (2013) J CO2 Util 3–4:102–106Google Scholar
  37. 37.
    Wang W, Jiang X, Wang X, Song C (2018) Ind Eng Chem Res 57:4535–4542Google Scholar
  38. 38.
    Fujiwara M, Kieffer R, Ando H, Souma Y (1995) Appl Catal A-Gen 121:113–124Google Scholar
  39. 39.
    Fujiwara M, Sakurai H, Shiokawa K, Iizuka Y (2015) Catal Today 242:255–260Google Scholar
  40. 40.
    Gao P, Dang S, Li S, Bu X, Liu Z, Qiu M, Yang C, Wang H, Zhong L, Han Y, Liu Q, Wei W, Sun Y (2017) ACS Catal 8:571–578Google Scholar
  41. 41.
    Wang J, Zhang A, Jiang X, Song C, Guo X (2018) J CO2 Util 27:81–88Google Scholar
  42. 42.
    Satthawong R, Koizumi N, Song C, Prasassarakich P (2013) Top Catal 57:588–594Google Scholar
  43. 43.
    Rodemerck U, Holeňa M, Wagner E, Smejkal Q, Barkschat A, Baerns M (2013) ChemCatChem 5:1948–1955Google Scholar
  44. 44.
    Visconti CG, Martinelli M, Falbo L, Infantes-Molina A, Lietti L, Forzatti P, Iaquaniello G, Palo E, Picutti B, Brignoli F (2017) Appl Catal B-Environ 200:530–542Google Scholar
  45. 45.
    Visconti CG, Martinelli M, Falbo L, Fratalocchi L, Lietti L (2016) Catal Today 277:161–170Google Scholar
  46. 46.
    Samanta A, Landau MV, Vidruk-Nehemya R, Herskowitz M (2017) Catal Sci Technol 7:4048–4063Google Scholar
  47. 47.
    Fischer N, Henkel R, Hettel B, Iglesias M, Schaub G, Claeys M (2015) Catal Lett 146:509–517Google Scholar
  48. 48.
    Amoyal M, Vidruk-Nehemya R, Landau MV, Herskowitz M (2017) J Catal 348:29–39Google Scholar
  49. 49.
    Satthawong R, Koizumi N, Song C, Prasassarakich P (2015) Catal Today 251:34–40Google Scholar
  50. 50.
    Riedel T, Claeys M, Shulz H, Schaub G, Nam S-S, Jun K-W, Choi M-J, Kishan G, Lee K (1999) Appl Catal A-Gen 186:201–213Google Scholar
  51. 51.
    Xiao J, Mao D, Guo X, Yu J (2015) Appl Surf Sci 338:146–153Google Scholar
  52. 52.
    Xie T, Wang J, Ding F, Zhang A, Li W, Guo X, Song C (2017) J CO2 Util 19:202–208Google Scholar
  53. 53.
    Ding F, Zhang A, Liu M, Zuo Y, Li K, Guo X, Song C (2014) Ind Eng Chem Res 53:17563–17569Google Scholar
  54. 54.
    Nie X, Wang H, Janik MJ, Guo X, Song C (2016) J Phys Chem C 120:9364–9373Google Scholar
  55. 55.
    Nie X, Wang H, Janik MJ, Chen Y, Guo X, Song C (2017) J Phys Chem C 121:13164–13174Google Scholar
  56. 56.
    Chang CD, Miale JN, Socha RF (1984) J Catal 90:84–87Google Scholar
  57. 57.
    Fujimoto K, Saima H, Tominaga H (1988) Ind Eng Chem Res 27:920–926Google Scholar
  58. 58.
    Arena F, Mezzatesta G, Zafarana G, Trunfio G, Frusteri F, Spadaro L (2013) J Catal 300:141–151Google Scholar
  59. 59.
    Arena F, Mezzatesta G, Zafarana G, Trunfio G, Frusteri F, Spadaro L (2013) Catal Today 210:39–46Google Scholar
  60. 60.
    Liao G, Chen S, Quan X, Yu H, Zhao H (2012) J Mater Chem 22:2721–2726Google Scholar
  61. 61.
    Li MM-J, Zeng Z, Liao F, Hong X, Tsang SCE (2016) J Catal 343:157–167Google Scholar
  62. 62.
    Schumann J, Eichelbaum M, Lunkenbein T, Thomas N, Álvarez Galván MC, Schlögl R, Behrens M (2015) ACS Catal 5:3260–3270Google Scholar
  63. 63.
    Matsumura Y, Shen W-J, Ichihashi Y, Okumura M (2001) J Catal 197:267–272Google Scholar
  64. 64.
    Zhou X, Qu J, Xu F, Hu J, Foord JS, Zeng Z, Hong X, Tsang SC (2013) Chem Commun (Camb) 49:1747–1749Google Scholar
  65. 65.
    Wang X, Shi H, Kwak JH, Szanyi J (2015) ACS Catal 5:6337–6349Google Scholar
  66. 66.
    Koizumi N, Jiang X, Kugai J, Song C (2012) Catal Today 194:16–24Google Scholar
  67. 67.
    Jiang X, Koizumi N, Guo X, Song C (2015) Appl Catal B-Environ 170:173–185Google Scholar
  68. 68.
    Nie X, Jiang X, Wang H, Luo W, Janik MJ, Chen Y, Guo X, Song C (2018) ACS Catal 8:4873–4892Google Scholar
  69. 69.
    Jiang X, Jiao Y, Moran C, Nie X, Gong Y, Guo X, Walton KS, Song C (2018) Catal Commun 118:10–14Google Scholar
  70. 70.
    Jiang X, Wang X, Nie X, Koizumi N, Guo X, Song C (2018) Catal Today 316:62–70Google Scholar
  71. 71.
    Jiang X, Nie X, Wang X, Wang H, Koizumi N, Chen Y, Guo X, Song C (2019) J Catal 369:21–32Google Scholar
  72. 72.
    Bahruji H, Bowker M, Hutchings G, Dimitratos N, Wells P, Gibson E, Jones W, Brookes C, Morgan D, Lalev G (2016) J Catal 343:133–146Google Scholar
  73. 73.
    Bonura G, Migliori M, Frusteri L, Cannilla C, Catizzone E, Giordano G, Frusteri F (2018) J CO2 Util 24:398–406Google Scholar
  74. 74.
    Bonura G, Cannilla C, Frusteri L, Mezzapica A, Frusteri F (2017) Catal Today 281:337–344Google Scholar
  75. 75.
    Zhou X, Su T, Jiang Y, Qin Z, Ji H, Guo Z (2016) Chem Eng Sci 153:10–20Google Scholar
  76. 76.
    Frusteri F, Bonura G, Cannilla C, Drago Ferrante G, Aloise A, Catizzone E, Migliori M, Giordano G (2015) Appl Catal B-Environ 176–177:522–531Google Scholar
  77. 77.
    Ye J, Liu C, Mei D, Ge Q (2013) ACS Catal 3:1296–1306Google Scholar
  78. 78.
    Ye J, Liu C, Ge Q (2012) J Phys Chem C 116:7817–7825Google Scholar
  79. 79.
    Martin O, Martín AJ, Mondelli C, Mitchell S, Segawa TF, Hauert R, Drouilly C, Curulla-Ferré D, Pérez-Ramírez J (2016) Angew Chem Int Ed 55:1–6Google Scholar
  80. 80.
    Frei MS, Capdevila-Cortada M, García-Muelas R, Mondelli C, López N, Stewart JA, Curulla Ferré D, Pérez-Ramírez J (2018) J Catal 361:313–321Google Scholar
  81. 81.
    Gao J, Jia C, Liu B (2017) Catal. Sci Technol 7:5602–5607Google Scholar
  82. 82.
    Cheng K, Gu B, Liu X, Kang J, Zhang Q, Wang Y (2016) Angew Chem Int Ed 55:4725–4728Google Scholar
  83. 83.
    Fujiwara M, Satake T, Shiokawa K, Sakurai H (2015) Appl Catal B-Environ 179:37–43Google Scholar
  84. 84.
    Pham TH, Qi Y, Yang J, Duan X, Qian G, Zhou X, Chen D, Yuan W (2015) ACS Catal 5:2203–2208Google Scholar
  85. 85.
    Cheng J, Hu P, Ellis P, French S, Kelly G, Lok CM (2008) J Phys Chem C 112:6082–6086Google Scholar
  86. 86.
    Li H-J, Chang C-C, Ho J-J (2011) J Phys Chem C 115:11045–11055Google Scholar
  87. 87.
    Lee S-B, Kim J-S, Lee W-Y, Lee K-W, Choi M-J Studies in surface science and catalysis. In: Chang J-S, Park S-E, Kyu-Wan L (eds) Proceedings of 7th the international conference on carbon dioxide utilization, Elsevier, 2004, pp 8–73Google Scholar
  88. 88.
    Chuang SSC, Stevens RW, Khatri R (2005) Top Catal 32:225–232Google Scholar
  89. 89.
    Muhler M, Kaluza S Syngas to methanol and ethanol. In: J Sa (Ed.) Fuel production with heterogeneous catalysis. Taylor & Francis Group, LLC, 2014, pp 169–192Google Scholar
  90. 90.
    Kusama H, Okabe K, Sayama K, Arakawa H (1996) Catal Today 28:261–266Google Scholar
  91. 91.
    Kusama H, Okabe K, Sayama K, Arakawa H (1997) Energy 22:343–348Google Scholar
  92. 92.
    Okabe K, Yamada H, Hanaoka T, Matsuzaki T, Arakawa H, Abe Y (2001) Chem Lett 30:904–905Google Scholar
  93. 93.
    Ando H, Matsumura Y, Souma Y (2000) Appl Organomet Chem 14:831–835Google Scholar
  94. 94.
    Kangvansura P, Chew LM, Saengsui W, Santawaja P, Poo-arporn Y, Muhler M, Schulz H, Worayingyong A (2016) Catal Today 275:59–65Google Scholar
  95. 95.
    Guo H, Li S, Peng F, Zhang H, Xiong L, Huang C, Wang C, Chen X (2014) Catal Lett 145:620–630Google Scholar
  96. 96.
    Ouyang B, Xiong S, Zhang Y, Liu B, Li J (2017) Appl Catal A-Gen 543:189–195Google Scholar
  97. 97.
    Bai S, Shao Q, Wang P, Dai Q, Wang X, Huang X (2017) J Am Chem Soc 139:6827–68300PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Departments of Energy & Mineral Engineering and of Chemical EngineeringPSU-DUT Joint Center for Energy Research, EMS Energy Institute, Pennsylvania State UniversityUniversity ParkUSA
  2. 2.State Key Laboratory of Fine Chemicals, School of Chemical EngineeringPSU-DUT Joint Center for Energy Research, Dalian University of TechnologyDalianChina

Personalised recommendations