Catalytic CO2 Conversion to Added-Value Energy Rich C1 Products

  • Jangam Ashok
  • Leonardo Falbo
  • Sonali Das
  • Nikita Dewangan
  • Carlo Giorgio ViscontiEmail author
  • Sibudjing KawiEmail author


Carbon-dioxide emission from various sources is the primary cause of rapid climate change. Its utilization and storage are becoming a pivotal issue to reduce the risk of future devastating effect. The conversion of carbon-dioxide as an abundant and inexpensive feedstock to valuable chemicals is a challenging contemporary issue having multi-facets. There is a need to elucidate the process of utilizing CO2 to gain a fundamental understanding to overcome the challenges. This chapter focuses on converting CO2 to C1 valuable chemicals via hydrogenation (methane, methanol, syngas, formic acid) and reforming reactions (syngas). The first four parts of this chapter cover the production of methane, methanol and formic acid via hydrogenation reaction and syngas via reverse water gas shift reaction. Moreover, the last part of the chapters consists of reforming whereby CO2 acts as a mild oxidant for the production of syngas (CO + H2). The chapter covers different aspects, including the current challenges in the process, the state of the art and design of catalysts, and mechanistic consideration, all of which are critically evaluated to give the insight into each reaction.


  1. 1.
    Álvarez A, Bansode A, Urakawa A, Bavykina AV, Wezendonk TA, Makkee M, Gascon J, Kapteijn F (2017) Challenges in the greener production of formates/formic acid, methanol, and DME by heterogeneously catalyzed CO2 hydrogenation processes. Chem Rev 117:9804–9838PubMedPubMedCentralGoogle Scholar
  2. 2.
    Kawi S, Kathiraser Y (2015) CO2 as an oxidant for high-temperature reactions. Front Energy Res 3:13Google Scholar
  3. 3.
    Dorner RW, Hardy DR, Williams FW, Willauer HD (2010) Heterogeneous catalytic CO2 conversion to value-added hydrocarbons. Energy Environ Sci 3:884–890Google Scholar
  4. 4.
    Götz M, Lefebvre J, Mörs F, McDaniel Koch A, Graf F, Bajohr S, Reimert R, Kolb T (2016) Renewable power-to-gas: a technological and economic review. Renew Energy 85:1371–1390Google Scholar
  5. 5.
    Lehner, RTM, Steinmüller, H, Koppe, M (2014) Power-to-gas: technology and business models. Springer briefs in energy. Springer, ChamGoogle Scholar
  6. 6.
    Specht JBM, Frick V, Sturmer B, Zuberbuhler U (2016) Technical realization of power-to-gas technology (P2G): production of substitute natural gas by catalytic methanation of H2/CO2. In: Van Basshuysen R (ed) Natural gas and renewable methane for powertrains: future strategies for a climate-neutral mobility. Springer, Cham, pp 141–167Google Scholar
  7. 7.
    Rönsch S, Schneider J, Matthischke S, Schlüter M, Götz M, Lefebvre J, Prabhakaran P, Bajohr S (2016) Review on methanation—from fundamentals to current projects. Fuel 166:276–296Google Scholar
  8. 8.
    Barbarossa CBV, Deiana P, Vanga G (2013) CO2 conversion to CH4. In: de Falco M, Iaquaniello G, Centi G (eds) CO2 a valuable source carbon. Springer, London, pp 123–145Google Scholar
  9. 9.
    Kopyscinski J, Schildhauer TJ, Biollaz SMA (2010) Production of synthetic natural gas (SNG) from coal and dry biomass—a technology review from 1950 to 2009. Fuel 89:1763–1783Google Scholar
  10. 10.
    Mazza A, Bompard E, Chicco G (2018) Applications of power to gas technologies in emerging electrical systems. Renew Sustain Energy Rev 92:794–806Google Scholar
  11. 11.
    Meylan FD, Moreau V, Erkman S (2016) Material constraints related to storage of future European renewable electricity surpluses with CO2 methanation. Energy Policy 94:366–376Google Scholar
  12. 12.
    Napp TA, Gambhir A, Hills TP, Florin N, Fennell PS (2014) A review of the technologies, economics and policy instruments for decarbonising energy-intensive manufacturing industries. Renew Sustain Energy Rev 30:616–640Google Scholar
  13. 13.
    Sabatier P (1902) New synthesis of methane. Comptes Rendus 134:514–516Google Scholar
  14. 14.
    Mills GA, Steffgen FW (1974) Catalytic methanation. Catal Rev 8:159–210Google Scholar
  15. 15.
    Weatherbee GD, Bartholomew CH (1981) Hydrogenation of CO2 on group VIII metals: I. Specific activity of NiSiO2. J Catal 68:67–76Google Scholar
  16. 16.
    Bian, Z, Chan, YM, Yu, Y, Kawi, S (2018) Morphology dependence of catalytic properties of Ni/CeO2 for CO2 methanation: a kinetic and mechanism study. Catal Today (in press)Google Scholar
  17. 17.
    Visconti CG, Lietti L, Tronconi E, Forzatti P, Zennaro R, Finocchio E (2009) Fischer-tropsch synthesis on a Co/Al2O3 catalyst with CO2 containing syngas. Appl Catal A 355:61–68Google Scholar
  18. 18.
    Mutschler R, Moioli E, Luo W, Gallandat N, Züttel A (2018) CO2 hydrogenation reaction over pristine Fe Co, Ni, Cu and Al2O3 supported Ru: comparison and determination of the activation energies. J Catal 366:139–149Google Scholar
  19. 19.
    Solymosi F, Erdőhelyi A (1980) Hydrogenation of CO2 to CH4 over alumina-supported noble metals. J Mol Catal 8:471–474Google Scholar
  20. 20.
    Panagiotopoulou P (2017) Hydrogenation of CO2 over supported noble metal catalysts. Appl Catal A 542:63–70Google Scholar
  21. 21.
    Visconti CG, Martinelli M, Falbo L, Infantes-Molina A, Lietti L, Forzatti P, Iaquaniello G, Palo E, Picutti B, Brignoli F (2017) CO2 hydrogenation to lower olefins on a high surface area K-promoted bulk Fe-catalyst. Appl Catal B 200:530–542Google Scholar
  22. 22.
    Visconti CG, Martinelli M, Falbo L, Fratalocchi L, Lietti L (2016) CO2 hydrogenation to hydrocarbons over Co and Fe-based Fischer-Tropsch catalysts. Catal Today 277:161–170Google Scholar
  23. 23.
    Wei W, Jinlong G (2011) Methanation of carbon dioxide: an overview. Front Chem Sci Eng 5:2–10Google Scholar
  24. 24.
    Riani P, Garbarino G, Lucchini MA, Canepa F, Busca G (2014) Unsupported versus alumina-supported Ni nanoparticles as catalysts for steam/ethanol conversion and CO2 methanation. J Mol Catal A: Chem 383:10–16Google Scholar
  25. 25.
    Lee GD, Moon MJ, Park JH, Park SS, Hong SS (2005) Raney Ni catalysts derived from different alloy precursors part II. CO and CO2 methanation activity. Korean J Chem Eng 22:541–546Google Scholar
  26. 26.
    Koschany F, Schlereth D, Hinrichsen O (2016) On the kinetics of the methanation of carbon dioxide on coprecipitated NiAl(O)x. Appl Catal B 181:504–516Google Scholar
  27. 27.
    Mirodatos C, Praliaud H, Primet M (1987) Deactivation of nickel-based catalysts during CO methanation and disproportionation. J Catal 107:275–287Google Scholar
  28. 28.
    Agnelli, M, Kolb M, Nicot C, Mirodatos C (1991) Sintering of a Ni-based catalyst during CO hydrogenation: kinetics and modeling. In: Studies in surface science and catalysis. Elsevier, pp 605–612Google Scholar
  29. 29.
    Miao B, Ma SSK, Wang X, Su H, Chan SH (2016) Catalysis mechanisms of CO2 and CO methanation. Catal Sci Technol 6:4048–4058Google Scholar
  30. 30.
    Czekaj I, Loviat F, Raimondi F, Wambach J, Biollaz S, Wokaun A (2007) Characterization of surface processes at the Ni-based catalyst during the methanation of biomass-derived synthesis gas: X-ray photoelectron spectroscopy (XPS). Appl Catal A 329:68–78Google Scholar
  31. 31.
    McCarty J, Wise H (1979) Hydrogenation of surface carbon on alumina-supported nickel. J Catal 57:406–416Google Scholar
  32. 32.
    Lunde PJ, Kester FL (1973) Rates of methane formation from carbon dioxide and hydrogen over a ruthenium catalyst. J Catal 30:423–429Google Scholar
  33. 33.
    Bartholomew CH (2001) Mechanisms of catalyst deactivation. Appl Catal A 212:17–60Google Scholar
  34. 34.
    Abrevaya H, Cohn M, Targos W, Robota H (1990) Structure sensitive reactions over supported ruthenium catalysts during Fischer-Tropsch synthesis. Catal Lett 7:183–195Google Scholar
  35. 35.
    Goodwin J Jr, Goa D, Erdal S, Rogan F (1986) Reactive metal volatilization from Ru/Al2O3 as a result of ruthenium carbonyl formation. Appl Catal 24:199–209Google Scholar
  36. 36.
    Dalla Betta R, Piken A, Shelef M (1975) Heterogeneous methanation: steady-state rate of CO hydrogenation on supported ruthenium, nickel and rhenium. J Cataly 40:173–183Google Scholar
  37. 37.
    Bowman RM, Bartholomew CH (1983) Deactivation by carbon of Ru/Al2O3 during CO hydrogenation. Appl Catal 7:179–187Google Scholar
  38. 38.
    Mukkavilli S, Wittmann C, Tavlarides LL (1986) Carbon deactivation of Fischer-Tropsch ruthenium catalyst. Ind Eng Chem Process Des Dev 25:487–494Google Scholar
  39. 39.
    Dalla Betta R, Shelef M (1977) Heterogeneous methanation: in situ infrared spectroscopic study of RuAl2O3 during the hydrogenation of CO. J Catal 48:111–119Google Scholar
  40. 40.
    Ekerdt JG, Bell AT (1979) Synthesis of hydrocarbons from CO and H2 over silica-supported Ru: reaction rate measurements and infrared spectra of adsorbed species. J Catal 58:170–187Google Scholar
  41. 41.
    Gao J, Liu Q, Gu F, Liu B, Zhong Z, Su F (2015) Recent advances in methanation catalysts for the production of synthetic natural gas. RSC Adv 5:22759–22776Google Scholar
  42. 42.
    Wang X, Shi H, Szanyi J (2017) Controlling selectivities in CO2 reduction through mechanistic understanding. Nat Commun 8:513PubMedPubMedCentralGoogle Scholar
  43. 43.
    Lin Q, Liu XY, Jiang Y, Wang Y, Huang Y, Zhang T (2014) Crystal phase effects on the structure and performance of ruthenium nanoparticles for CO2 hydrogenation. Catal Sci Technol 4:2058–2063Google Scholar
  44. 44.
    Aziz M, Jalil A, Triwahyono S, Ahmad A (2015) CO2 methanation over heterogeneous catalysts: recent progress and future prospects. Green Chem 17:2647–2663Google Scholar
  45. 45.
    Zhang G, Sun T, Peng J, Wang S, Wang S (2013) A comparison of Ni/SiC and Ni/Al2O3 catalyzed total methanation for production of synthetic natural gas. Appl Catal A 462:75–81Google Scholar
  46. 46.
    Wang W, Wang S, Ma X, Gong J (2011) Recent advances in catalytic hydrogenation of carbon dioxide. Chem Soc Rev 40:3703–3727PubMedGoogle Scholar
  47. 47.
    Bartholomew CH, Vance CK (1985) Effects of support on the kinetics of carbon hydrogenation on nickel. J Catal 91:78–84Google Scholar
  48. 48.
    Yu Y, Chan YM, Bian ZF, Song FJ, Wang J, Zhong Q, Kawi S (2018) Enhanced performance and selectivity of CO2 methanation over g-C3N4 assisted synthesis of Ni-CeO2 catalyst: kinetics and DRIFTS studies. Int J Hydrogen Energy 43:15191–15204Google Scholar
  49. 49.
    Ashok J, Ang ML, Kawi S (2017) Enhanced activity of CO2 methanation over Ni/CeO2–ZrO2 catalysts: influence of preparation methods. Catal Today 281:304–311Google Scholar
  50. 50.
    Kwak JH, Kovarik L, Szanyi JN (2013) Heterogeneous catalysis on atomically dispersed supported metals: CO2 reduction on multifunctional Pd catalysts. ACS Catal 3:2094–2100Google Scholar
  51. 51.
    Aldana PU, Ocampo F, Kobl K, Louis B, Thibault-Starzyk F, Daturi M, Bazin P, Thomas S, Roger A (2013) Catalytic CO2 valorization into CH4 on Ni-based ceria-zirconia. Reaction mechanism by operando IR spectroscopy. Catal Today 215:201–207Google Scholar
  52. 52.
    Marwood M, Doepper R, Prairie M, Renken A (1994) Transient drift spectroscopy for the determination of the surface reaction kinetics of CO2 methanation. Chem Eng Sci 49:4801–4809Google Scholar
  53. 53.
    Marwood M, Doepper R, Renken A (1997) In-situ surface and gas phase analysis for kinetic studies under transient conditions. The catalytic hydrogenation of CO2. Appl Catal A 151:223–246Google Scholar
  54. 54.
    Wang X, Hong Y, Shi H, Szanyi J (2016) Kinetic modeling and transient DRIFTS–MS studies of CO2 methanation over Ru/Al2O3 catalysts. J Catal 343:185–195Google Scholar
  55. 55.
    Garbarino G, Riani P, Magistri L, Busca G (2014) A study of the methanation of carbon dioxide on Ni/Al2O3 catalysts at atmospheric pressure. Int J Hydrogen Energy 39:11557–11565Google Scholar
  56. 56.
    Swapnesh A, Srivastava VC, Mall ID (2014) Comparative study on thermodynamic analysis of CO2 utilization reactions. Chem Eng Technol 37:1765–1777Google Scholar
  57. 57.
    Ruterana P, Buffat P-A, Thampi K, Graetzel M (1990) The structure of ruthenium supported on titania: a catalyst for low-temperature methanation of carbon dioxide. Ultramicroscopy 34:66–72Google Scholar
  58. 58.
    Panagiotopoulou P, Verykios XE (2017) Mechanistic study of the selective methanation of CO over Ru/TiO2 catalysts: effect of metal crystallite size on the nature of active surface species and reaction pathways. J Phys Chem C 121:5058–5068Google Scholar
  59. 59.
    Shashidhara G, Ravindram M (1992) Methanation of CO2 over Ru–SiO2 catalyst. React Kinet Catal Lett 46:365–372Google Scholar
  60. 60.
    Sharma S, Hu Z, Zhang P, McFarland EW, Metiu H (2011) CO2 methanation on Ru-doped ceria. J Catal 278:297–309Google Scholar
  61. 61.
    Upham DC, Derk AR, Sharma S, Metiu H, McFarland EW (2015) CO2 methanation by Ru-doped ceria: the role of the oxidation state of the surface. Catal Sci Technol 5:1783–1791Google Scholar
  62. 62.
    Yu Y, Bian ZF, Song FJ, Wang J, Zhong Q, Kawi S (2018) Influence of calcination temperature on activity and selectivity of Ni–CeO2 and Ni–Ce0.8Zr0.2O2 catalysts for CO2 methanation. Top Catal 61:1514–1527Google Scholar
  63. 63.
    Xu J, Lin Q, Su X, Duan H, Geng H, Huang Y (2016) CO2 methanation over TiO2–Al2O3 binary oxides supported Ru catalysts. Chin J Chem Eng 24:140–145Google Scholar
  64. 64.
    Ocampo F, Louis B, Roger A-C (2009) Methanation of carbon dioxide over nickel-based Ce0.72Zr0.28O2 mixed oxide catalysts prepared by sol–gel method. Appl Catal A Gen 369:90–96Google Scholar
  65. 65.
    Tada S, Ochieng OJ, Kikuchi R, Haneda T, Kameyama H (2014) Promotion of CO2 methanation activity and CH4 selectivity at low temperatures over Ru/CeO2/Al2O3 catalysts. Int J Hydrogen Energy 39:10090–10100Google Scholar
  66. 66.
    Li K, Peng B, Peng T (2016) Recent advances in heterogeneous photocatalytic CO2 conversion to solar fuels. ACS Catal 6:7485–7527Google Scholar
  67. 67.
    Fechete I, Vedrine J (2015) Nanoporous materials as new engineered catalysts for the synthesis of green fuels. Molecules 20:5638–5666PubMedPubMedCentralGoogle Scholar
  68. 68.
    Zhen W, Li B, Lu G, Ma J (2015) Enhancing catalytic activity and stability for CO2 methanation on Ni@ MOF-5 via control of active species dispersion. Chem Commun 51:1728–1731Google Scholar
  69. 69.
    Hwang S, Hong UG, Lee J, Baik JH, Koh DJ, Lim H, Song IK (2012) Methanation of carbon dioxide over mesoporous nickel–M–alumina (M=Fe, Zr, Ni, Y, and Mg) xerogel catalysts: effect of second metal. Catal Lett 142:860–868Google Scholar
  70. 70.
    Zhi G, Guo X, Wang Y, Jin G, Guo X (2011) Effect of La2O3 modification on the catalytic performance of Ni/SiC for methanation of carbon dioxide. Catal Commun 16:56–59Google Scholar
  71. 71.
    Schuurman Y, Mirodatos C, Ferreira-Aparicio P, Rodriguez-Ramos I, Guerrero-Ruiz A (2000) Bifunctional pathways in the carbon dioxide reforming of methane over MgO-promoted Ru/C catalysts. Catal Lett 66:33–37Google Scholar
  72. 72.
    Park J-N, McFarland EW (2009) A highly dispersed Pd–Mg/SiO2 catalyst active for methanation of CO2. J Catal 266:92–97Google Scholar
  73. 73.
    Falconer JL, Zaǧli AE (1980) Adsorption and methanation of carbon dioxide on a nickel/silica catalyst. J Catal 62:280–285Google Scholar
  74. 74.
    Eckle S, Anfang H-G, Behm R Jr (2010) Reaction intermediates and side products in the methanation of CO and CO2 over supported Ru catalysts in H2-rich reformate gases. J Phys Chem C 115:1361–1367Google Scholar
  75. 75.
    Traa Y, Weitkamp J (1999) Kinetics of the methanation of carbon dioxide over ruthenium on titania. Chem Eng Technol Ind Chem Plant Equip Process Eng Biotechnol 22:291–293Google Scholar
  76. 76.
    Vannice M (1976) The catalytic synthesis of hydrocarbons from carbon monoxide and hydrogen. Catal Rev Sci Eng 14:153–191Google Scholar
  77. 77.
    Lim JY, McGregor J, Sederman A, Dennis J (2016) Kinetic studies of CO2 methanation over a Ni/γ-Al2O3 catalyst using a batch reactor. Chem Eng Sci 141:28–45Google Scholar
  78. 78.
    Weatherbee GD, Bartholomew CH (1982) Hydrogenation of CO2 on group VIII metals: II. Kinetics and mechanism of CO2 hydrogenation on nickel. J Catal 77:460–472Google Scholar
  79. 79.
    Xu J, Froment GF (1989) Methane steam reforming, methanation and water-gas shift: I. Intrinsic kinetics. AIChE J 35:88–96Google Scholar
  80. 80.
    Schlereth D, Hinrichsen O (2014) A fixed-bed reactor modeling study on the methanation of CO2. Chem Eng Res Des 92:702–712Google Scholar
  81. 81.
    Falbo L, Martinelli M, Visconti CG, Lietti L, Bassano C, Deiana P (2018) Kinetics of CO2 methanation on a Ru-based catalyst at process conditions relevant for power-to-gas applications. Appl Catal B 225:354–363Google Scholar
  82. 82.
    Kiewidt L, Thöming J (2015) Predicting optimal temperature profiles in single-stage fixed-bed reactors for CO2-methanation. Chem Eng Sci 132:59–71Google Scholar
  83. 83.
    Seemann MC, Schildhauer TJ, Biollaz SM (2010) Fluidized bed methanation of wood-derived producer gas for the production of synthetic natural gas. Ind Eng Chem Res 49:7034–7038Google Scholar
  84. 84.
    Brooks KP, Hu J, Zhu H, Kee RJ (2007) Methanation of carbon dioxide by hydrogen reduction using the Sabatier process in microchannel reactors. Chem Eng Sci 62:1161–1170Google Scholar
  85. 85.
    Frey M, Romero T, Roger A-C, Edouard D (2016) Open cell foam catalysts for CO2 methanation: presentation of coating procedures and in situ exothermicity reaction study by infrared thermography. Catal Today 273:83–90Google Scholar
  86. 86.
    Pastor-Pérez L, Baibars F, Le Sache E, Arellano-García H, Gu S, Reina TR (2017) CO2 valorisation via reverse water-gas shift reaction using advanced Cs doped Fe–Cu/Al2O3 catalysts. J CO2 Utiliz 21:423–428Google Scholar
  87. 87.
    Centi G, Quadrelli EA, Perathoner S (2013) Catalysis for CO2 conversion: a key technology for rapid introduction of renewable energy in the value chain of chemical industries. Energy Environ Sci 6:1711–1731Google Scholar
  88. 88.
    Centi G, Perathoner SJCT (2009) Opportunities and prospects in the chemical recycling of carbon dioxide to fuels. Catal Today 148:191–205Google Scholar
  89. 89.
    Oshima K, Shinagawa T, Nogami Y, Manabe R, Ogo S, Sekine Y (2014) Low temperature catalytic reverse water gas shift reaction assisted by an electric field. Catal Today 232:27–32Google Scholar
  90. 90.
    Maneerung T, Hidajat K, Kawi S (2017) K-doped LaNiO3 perovskite for high-temperature water-gas shift of reformate gas: Role of potassium on suppressing methanation. Int J Hydrogen Energy 42:9840–9857Google Scholar
  91. 91.
    Ang ML, Miller JT, Cui Y, Mo L, Kawi S (2016) Bimetallic Ni-Cu alloy nanoparticles supported on silica for the water-gas shift reaction: activating surface hydroxyls via enhanced CO adsorption. Catal Sci Technol 6:3394–3409Google Scholar
  92. 92.
    Saw ET, Oemar U, Ang ML, Hidajat K, Kawi S (2015) Highly active and stable bimetallic Nickel-Copper core–ceria shell catalyst for high-temperature water-gas shift reaction. ChemCatChem 7:3358–3367Google Scholar
  93. 93.
    Ang ML, Oemar U, Kathiraser Y, Saw ET, Lew CHK, Du Y, Borgna A, Kawi S (2015) High-temperature water-gas shift reaction over Ni/xK/CeO2 catalysts: Suppression of methanation via formation of bridging carbonyls. J Catal 329:130–143Google Scholar
  94. 94.
    Nakamura J, Campbell JM, Campbell CT (1990) Kinetics and mechanism of the water-gas shift reaction catalysed by the clean and Cs-promoted Cu(110) surface: a comparison with Cu(111). J Chem Soc, Faraday Trans 86:2725–2734Google Scholar
  95. 95.
    Wambach J, Baiker A, Wokaun A (1999) CO2 hydrogenation over metal/zirconia catalysts. Phys Chem Chem Phys 1:5071–5080Google Scholar
  96. 96.
    Saw ET, Oemar U, Ang ML, Kus H, Kawi S (2016) High-temperature water gas shift reaction on Ni–Cu/CeO2 catalysts: effect of ceria nanocrystal size on carboxylate formation. Catal Sci Technol 6:5336–5349Google Scholar
  97. 97.
    Saw ET, Oemar U, Tan XR, Du Y, Borgna A, Hidajat K, Kawi S (2014) Bimetallic Ni-Cu catalyst supported on CeO2 for high-temperature water-gas shift reaction: Methane suppression via enhanced CO adsorption. J Catal 314:32–46Google Scholar
  98. 98.
    Oemar U, Bian Z, Hidajat K, Kawi S (2016) Sulfur resistant LaxCe1−xNi0.5Cu0.5O3 catalysts for an ultra-high temperature water gas shift reaction. Catal Sci Technol 6:6569–6580Google Scholar
  99. 99.
    Ang ML, Oemar U, Saw ET, Mo L, Kathiraser Y, Chia BH, Kawi S (2014) Highly active Ni/xNa/CeO2 catalyst for the water gas shift reaction: effect of sodium on methane suppression. ACS Catal 4:3237–3248Google Scholar
  100. 100.
    Bian ZF, Li ZW, Ashok J, Kawi S (2015) A highly active and stable Ni–Mg phyllosilicate nanotubular catalyst for ultrahigh temperature water-gas shift reaction. Chem Commun 51:16324–16326Google Scholar
  101. 101.
    Mo LY, Kawi S (2014) An in situ self-assembled core-shell precursor route to prepare ultrasmall copper nanoparticles on silica catalysts. J Mater Chem A 2:7837–7844Google Scholar
  102. 102.
    Ashok J, Wai MH, Kawi S (2018) Nickel-based catalysts for high-temperature water gas shift reaction-methane suppression. ChemCatChem 10:3927–3942Google Scholar
  103. 103.
    Pati, S, Jangam, A, Zhigang, W, Dewangan, N, Ming Hui, W, Kawi, S (2018) Catalytic Pd0.77Ag0.23 alloy membrane reactor for high temperature water-gas shift reaction: methane suppression. Chem Eng J (2018) (in press)Google Scholar
  104. 104.
    Dai B, Zhou G, Ge S, Xie H, Jiao Z, Zhang G, Xiong K (2017) CO2 reverse water-gas shift reaction on mesoporous M-CeO2 catalysts. Can J Chem Eng 95:634–642Google Scholar
  105. 105.
    Choi S, Sang B-I, Hong J, Yoon KJ, Son J-W, Lee J-H, Kim B-K, Kim H (2017) Catalytic behavior of metal catalysts in high-temperature RWGS reaction: in-situ FT-IR experiments and first-principles calculations. Sci Rep 7:41207PubMedPubMedCentralGoogle Scholar
  106. 106.
    Chen X, Su X, Duan H, Liang B, Huang Y, Zhang T (2017) Catalytic performance of the Pt/TiO2 catalysts in reverse water gas shift reaction: controlled product selectivity and a mechanism study. Catal Today 281:312–318Google Scholar
  107. 107.
    Yu W, Porosoff MD, Chen JG (2012) Review of Pt-based bimetallic catalysis: from model surfaces to supported catalysts. Chem Rev 112:5780–5817PubMedGoogle Scholar
  108. 108.
    Zhang P, Chi M, Sharma S, McFarland E (2010) Silica encapsulated heterostructure catalyst of Pt nanoclusters on hematite nanocubes: synthesis and reactivity. J Mater Chem 20:2013–2017Google Scholar
  109. 109.
    Ro I, Sener C, Stadelman TM, Ball MR, Venegas JM, Burt SP, Hermans I, Dumesic JA, Huber GW (2016) Measurement of intrinsic catalytic activity of Pt monometallic and Pt-MoOx interfacial sites over visible light enhanced PtMoOx/SiO2 catalyst in reverse water gas shift reaction. J Catal 344:784–794Google Scholar
  110. 110.
    Wang LC, Tahvildar Khazaneh M, Widmann D, Behm RJ (2013) TAP reactor studies of the oxidizing capability of CO2 on a Au/CeO2 catalyst—a first step toward identifying a redox mechanism in the reverse water–gas shift reaction. J Catal 302:20–30Google Scholar
  111. 111.
    Yang X, Su X, Chen X, Duan H, Liang B, Liu Q, Liu X, Ren Y, Huang Y, Zhang T (2017) Promotion effects of potassium on the activity and selectivity of Pt/zeolite catalysts for reverse water gas shift reaction. Appl Catal B 216:95–105Google Scholar
  112. 112.
    Kunkes EL, Studt F, Abild-Pedersen F, Schlögl R, Behrens M (2015) Hydrogenation of CO2 to methanol and CO on Cu/ZnO/Al2O3: is there a common intermediate or not? J Catal 328:43–48Google Scholar
  113. 113.
    Mo LY, Saw ET, Kathiraser Y, Ang ML, Kawi S (2018) Preparation of highly dispersed Cu/SiO2 doped with CeO2 and its application for high temperature water gas shift reaction. Int J Hydrogen Energy 43:15891–15897Google Scholar
  114. 114.
    Matsubu JC, Yang VN, Christopher P (2015) Isolated metal active site concentration and stability control catalytic CO2 reduction selectivity. J Am Chem Soc 137:3076–3084PubMedGoogle Scholar
  115. 115.
    Kwak JH, Kovarik L, Szanyi J (2013) CO2 reduction on supported Ru/Al2O3 catalysts: cluster size dependence of product selectivity. ACS Catal 3:2449–2455Google Scholar
  116. 116.
    Park S-W, Joo O-S, Jung K-D, Kim H, Han S-H (2001) Development of ZnO/Al2O3 catalyst for reverse-water-gas-shift reaction of CAMERE (carbon dioxide hydrogenation to form methanol via a reverse-water-gas-shift reaction) process. Appl Catal A 211:81–90Google Scholar
  117. 117.
    Yang L, Pastor-Pérez L, Gu S, Sepúlveda-Escribano A, Reina TR (2018) Highly efficient Ni/CeO2–Al2O3 catalysts for CO2 upgrading via reverse water-gas shift: effect of selected transition metal promoters. Appl Catal B 232:464–471Google Scholar
  118. 118.
    Lin F, Delmelle R, Vinodkumar T, Reddy BM, Wokaun A, Alxneit I (2015) Correlation between the structural characteristics, oxygen storage capacities and catalytic activities of dual-phase Zn-modified ceria nanocrystals. Catal Sci Technol 5:3556–3567Google Scholar
  119. 119.
    Silva-Calpa LDR, Zonetti PC, Rodrigues CP, Alves OC, Appel LG, de Avillez RR (2016) The ZnxZr1−xO2−y solid solution on m-ZrO2: creating O vacancies and improving the m-ZrO2 redox properties. J Mol Catal A Chem 425:166–173Google Scholar
  120. 120.
    Zonetti PC, Letichevsky S, Gaspar AB, Sousa-Aguiar EF, Appel LG (2014) The NixCe0.75Zr0.25−xO2 solid solution and the RWGS. Appl Catal A General 475:48–54Google Scholar
  121. 121.
    Hare BJ, Maiti D, Ramani S, Ramos AE, Bhethanabotla VR, Kuhn JN (2018) Thermochemical conversion of carbon dioxide by reverse water-gas shift chemical looping using supported perovskite oxides. Catal Today 323:225–232Google Scholar
  122. 122.
    Daza YA, Maiti D, Kent RA, Bhethanabotla VR, Kuhn JN (2015) Isothermal reverse water gas shift chemical looping on La0.75Sr0.25Co(1−Y)FeYO3 perovskite-type oxides. Catal Today 258:691–698Google Scholar
  123. 123.
    Viana HDAL, Irvine JTS (2007) Catalytic properties of the proton conductor materials: Sr3CaZr0.5Ta1.5O8.75, BaCe0.9Y0.1O2.95 and Ba3Ca1.18Nb1.82O8.73 for reverse water gas shift. Solid State Ionics 178:717–722Google Scholar
  124. 124.
    Zakowsky N, Williamson S, Irvine JTS (2005) Elaboration of CO2 tolerance limits of BaCe0.9Y0.1O3−δ electrolytes for fuel cells and other applications. Solid State Ionics 176:3019–3026Google Scholar
  125. 125.
    Levy RB, Boudart M (1973) Platinum-like behavior of tungsten carbide in surface catalysis. Science 181:547PubMedGoogle Scholar
  126. 126.
    Burghaus U (2014) Surface chemistry of CO2—adsorption of carbon dioxide on clean surfaces at ultrahigh vacuum. Prog Surf Sci 89:161–217Google Scholar
  127. 127.
    Freund HJ, Roberts MW (1996) Surface chemistry of carbon dioxide. Surf Sci Rep 25:225–273Google Scholar
  128. 128.
    Porosoff MD, Yang X, Boscoboinik JA, Chen JG (2014) Molybdenum carbide as alternative catalysts to precious metals for highly selective reduction of CO2 to CO. Angew Chem Int Ed 53:6705–6709Google Scholar
  129. 129.
    Posada-Pérez S, Ramírez PJ, Evans J, Viñes F, Liu P, Illas F, Rodriguez JA (2016) Highly active Au/δ-MoC and Cu/δ-MoC catalysts for the conversion of CO2: the metal/C ratio as a key factor defining activity, selectivity, and stability. J Am Chem Soc 138:8269–8278PubMedGoogle Scholar
  130. 130.
    Zhang X, Zhu X, Lin L, Yao S, Zhang M, Liu X, Wang X, Li Y-W, Shi C, Ma D (2017) Highly dispersed copper over β-Mo2C as an efficient and stable catalyst for the reverse water gas shift (RWGS) reaction. ACS Catal 7:912–918Google Scholar
  131. 131.
    Sharma S, Hilaire S, Vohs JM, Gorte RJ, Jen HW (2000) Evidence for oxidation of ceria by CO2. J Catal 190:199–204Google Scholar
  132. 132.
    Chen CS, Wu JH, Lai TW (2010) Carbon dioxide hydrogenation on Cu nanoparticles. J Phys Chem C 114:15021–15028Google Scholar
  133. 133.
    Ginés MJL, Marchi AJ, Apesteguía CR (1997) Kinetic study of the reverse water-gas shift reaction over CuO/ZnO/Al2O3 catalysts. Appl Catal A 154:155–171Google Scholar
  134. 134.
    Fujita S-I, Usui M, Takezawa N (1992) Mechanism of the reverse water gas shift reaction over Cu/ZnO catalyst. J Catal 134:220–225Google Scholar
  135. 135.
    Ferri D, Bürgi T, Baiker A (2002) Probing boundary sites on a Pt/Al2O3 model catalyst by CO2 hydrogenation and in situ ATR-IR spectroscopy of catalytic solid–liquid interfaces. Phys Chem Chem Phys 4:2667–2672Google Scholar
  136. 136.
    Goguet A, Meunier FC, Tibiletti D, Breen JP, Burch R (2004) Spectrokinetic investigation of reverse water-gas-shift reaction intermediates over a Pt/CeO2 catalyst. J Phys Chem B 108:20240–20246Google Scholar
  137. 137.
    Arunajatesan V, Subramaniam B, Hutchenson KW, Herkes FE (2007) In situ FTIR investigations of reverse water gas shift reaction activity at supercritical conditions. Chem Eng Sci 62:5062–5069Google Scholar
  138. 138.
    Olah GA (2005) Beyond oil and gas: the methanol economy. Angew Chem Int Ed 44:2636–2639Google Scholar
  139. 139.
    Albo J, Alvarez-Guerra M, Castaño P, Irabien A (2015) Towards the electrochemical conversion of carbon dioxide into methanol. Green Chem 17:2304–2324Google Scholar
  140. 140.
    Lorenz T, Bertau M, Schmidt F, Plass L (2014) Methanol: the basic chemical and energy feedstock of the future. In Bertau M, Offermanns H, Plass L, Schmidt F, Wernicke H (Ed) Section 4.8Google Scholar
  141. 141.
    Kagan JV, Rozovskij AJ, Lin G, Slivinskij E, Lo ktev SM, Liberov LG, Bash Kirov AN (1975) Mechanism for the synthesis of methanol from carbon dioxide and hydrogen. Kinet Katal 16:809 Google Scholar
  142. 142.
    Bahruji H, Esquius JR, Bowker M, Hutchings G, Armstrong RD, Jones W (2018) Solvent free synthesis of PdZn/TiO2 catalysts for the Hydrogenation of CO2 to methanol. Top Catal 61:144–153PubMedPubMedCentralGoogle Scholar
  143. 143.
    Behrens M (2015) Chemical hydrogen storage by methanol: challenges for the catalytic methanol synthesis from CO2. Recycl Catal 2:78–86Google Scholar
  144. 144.
    Sahibzada M, Metcalfe I, Chadwick D (1998) Methanol synthesis from CO/CO2/H2 over Cu/ZnO/Al2O3 at differential and finite conversions. J Catal 174:111–118Google Scholar
  145. 145.
    Lee S (1990) Methanol synthesis technology. CRC Press Inc., Boca Raton, FLGoogle Scholar
  146. 146.
    Baltes C, Vukojević S, Schüth F (2008) Correlations between synthesis, precursor, and catalyst structure and activity of a large set of CuO/ZnO/Al2O3 catalysts for methanol synthesis. J Catal 258:334–344Google Scholar
  147. 147.
    Zander S, Kunkes EL, Schuster ME, Schumann J, Weinberg G, Teschner D, Jacobsen N, Schlögl R, Behrens M (2013) The role of the oxide component in the development of copper composite catalysts for methanol synthesis. Angew Chem Int Ed 52:6536–6540Google Scholar
  148. 148.
    Schumann J, Eichelbaum M, Lunkenbein T, Thomas N, Alvarez Galvan MC, Schlögl R, Behrens M (2015) Promoting strong metal support interaction: doping ZnO for enhanced activity of Cu/ZnO: M (M=Al, Ga, Mg) catalysts. ACS Catal 5:3260–3270Google Scholar
  149. 149.
    Arena F, Barbera K, Italiano G, Bonura G, Spadaro L, Frusteri F (2007) Synthesis, characterization and activity pattern of Cu–ZnO/ZrO2 catalysts in the hydrogenation of carbon dioxide to methanol. J Catal 249:185–194Google Scholar
  150. 150.
    Kühl S, Tarasov A, Zander S, Kasatkin I, Behrens M (2014) Cu-based catalyst resulting from a Cu, Zn, Al hydrotalcite-like compound: a microstructural, thermoanalytical, and in situ XAS study. Chem Eur J 20:3782–3792PubMedGoogle Scholar
  151. 151.
    Wu J, Saito M, Takeuchi M, Watanabe T (2001) The stability of Cu/ZnO-based catalysts in methanol synthesis from a CO2-rich feed and from a CO-rich feed. Appl Catal A 218:235–240Google Scholar
  152. 152.
    Saito M, Fujitani T, Takeuchi M, Watanabe T (1996) Development of copper/zinc oxide-based multicomponent catalysts for methanol synthesis from carbon dioxide and hydrogen. Appl Catal A 138:311–318Google Scholar
  153. 153.
    Hayward JS, Smith PJ, Kondrat SA, Bowker M, Hutchings GJ (2017) The effects of secondary oxides on copper-based catalysts for green methanol synthesis. ChemCatChem 9:1655–1662PubMedPubMedCentralGoogle Scholar
  154. 154.
    Bahruji H, Bowker M, Hutchings G, Dimitratos N, Wells P, Gibson E, Jones W, Brookes C, Morgan D, Lalev G (2016) Pd/ZnO catalysts for direct CO2 hydrogenation to methanol. J Catal 343:133–146Google Scholar
  155. 155.
    Conant T, Karim AM, Lebarbier V, Wang Y, Girgsdies F, Schlögl R, Datye A (2008) Stability of bimetallic Pd–Zn catalysts for the steam reforming of methanol. J Catal 257:64–70Google Scholar
  156. 156.
    Bahruji H, Bowker M, Jones W, Hayward J, Esquius JR, Morgan D, Hutchings G (2017) PdZn catalysts for CO2 hydrogenation to methanol using chemical vapour impregnation (CVI). Faraday Discuss 197:309–324PubMedGoogle Scholar
  157. 157.
    Martin O, Martín AJ, Mondelli C, Mitchell S, Segawa TF, Hauert R, Drouilly C, Curulla-Ferré D, Pérez-Ramírez J (2016) Indium oxide as a superior catalyst for methanol synthesis by CO2 hydrogenation. Angew Chem Int Ed 55:6261–6265Google Scholar
  158. 158.
    Dou M, Zhang M, Chen Y, Yu Y (2018) DFT study of In2O3-catalyzed methanol synthesis from CO2 and CO hydrogenation on the defective site. New J Chem 42:3293–3300Google Scholar
  159. 159.
    Frei MS, Capdevila-Cortada M, García-Muelas R, Mondelli C, López N, Stewart JA, Ferré DC, Pérez-Ramírez J (2018) Mechanism and microkinetics of methanol synthesis via CO2 hydrogenation on indium oxide. J Catal 361:313–321Google Scholar
  160. 160.
    García-Trenco A, Regoutz A, White ER, Payne DJ, Shaffer MS, Williams CK (2018) PdIn intermetallic nanoparticles for the hydrogenation of CO2 to methanol. Appl Catal B 220:9–18Google Scholar
  161. 161.
    Grabowski R, Słoczyński J, Sliwa M, Mucha D, Socha R, Lachowska M, Skrzypek J (2011) Influence of polymorphic ZrO2 phases and the silver electronic state on the activity of Ag/ZrO2 catalysts in the hydrogenation of CO2 to methanol. ACS Catal 1:266–278Google Scholar
  162. 162.
    Tada S, Watanabe F, Kiyota K, Shimoda N, Hayashi R, Takahashi M, Nariyuki A, Igarashi A, Satokawa S (2017) Ag addition to CuO–ZrO2 catalysts promotes methanol synthesis via CO2 hydrogenation. J Catal 351:107–118Google Scholar
  163. 163.
    Inui T, Takeguchi T, Kohama A, Tanida K (1992) Effective conversion of carbon dioxide to gasoline. Energy Convers Manag 33:513–520Google Scholar
  164. 164.
    Marlin DS, Sarron E, Sigurbjörnsson Ó (2018) Process advantages of direct CO2 to methanol synthesis. Front Chem 6:446PubMedPubMedCentralGoogle Scholar
  165. 165.
    Lurgi (1994) 207th national meeting of the American Chemical Society, San Diego, CA, Mar 1994Google Scholar
  166. 166.
    Saito M (1998) R&D activities in Japan on methanol synthesis from CO2 and H2. Catal Surv Asia 2:175–184Google Scholar
  167. 167.
    Grasemann M, Laurenczy G (2012) Formic acid as a hydrogen source—recent developments and future trends. Energy Environ Sci 5:8171–8181Google Scholar
  168. 168.
    Maihom T, Wannakao S, Boekfa B, Limtrakul J (2013) Production of formic acid via hydrogenation of CO2 over a copper-alkoxide-functionalized MOF: a mechanistic study. J Phys Chem C 117:17650–17658Google Scholar
  169. 169.
    Peng G, Sibener SJ, Schatz GC, Ceyer ST, Mavrikakis M (2012) CO2 hydrogenation to formic acid on Ni(111). J Phys Chem C 116:3001–3006Google Scholar
  170. 170.
    Qin G, Zhang Y, Ke X, Tong X, Sun Z, Liang M, Xue S (2013) Photocatalytic reduction of carbon dioxide to formic acid, formaldehyde, and methanol using dye-sensitized TiO2 film. Appl Catal B 129:599–605Google Scholar
  171. 171.
    Jessop PG, Ikariya T, Noyori R (1994) Homogeneous catalytic hydrogenation of supercritical carbon dioxide. Nature 368:231Google Scholar
  172. 172.
    Reutemann W, Kieczka H (2011) Formic Acid, Ullmann’s encyclopedia of industrial chemistry, Wiley‐VCH Verlag GmbH & CoGoogle Scholar
  173. 173.
    Yoshio I, Hitoshi I, Yoshiyuki S, Harukichi H (1976) Catalytic fixation of carbon dioxide to formic acid by transition-metal complexes under mild conditions. Chem Lett 5:863–864Google Scholar
  174. 174.
    Onishi N, Laurenczy G, Beller M, Himeda Y (2018) Recent progress for reversible homogeneous catalytic hydrogen storage in formic acid and in methanol. Coord Chem Rev 373:317–332Google Scholar
  175. 175.
    Schlenk W, Appenrodt J, Michael A, Thal A (1914) Über metalladditionen an mehrfache bindungen. Ber Dtsch Chem Ges 47:473–490Google Scholar
  176. 176.
    Farlow MW, Adkins H (1935) The hydrogenation of carbon dioxide and a correction of the reported synthesis of urethans. J Am Chem Soc 57:2222–2223Google Scholar
  177. 177.
    Takahashi H, Liu LH, Yashiro Y, Ioku K, Bignall G, Yamasaki N, Kori T (2006) CO2 reduction using hydrothermal method for the selective formation of organic compounds. JMater Sci 41:1585–1589Google Scholar
  178. 178.
    Jin F, Gao Y, Jin Y, Zhang Y, Cao J, Wei Z, Smith RL Jr (2011) High-yield reduction of carbon dioxide into formic acid by zero-valent metal/metal oxide redox cycles. Energy Environ Sci 4:881–884Google Scholar
  179. 179.
    Filonenko GA, Vrijburg WL, Hensen EJM, Pidko EA (2016) On the activity of supported Au catalysts in the liquid phase hydrogenation of CO2 to formates. J Catal 343:97–105Google Scholar
  180. 180.
    Srivastava V (2014) In situ generation of Ru nanoparticles to catalyze CO2 hydrogenation to formic acid. Catal Lett 144:1745–1750Google Scholar
  181. 181.
    Umegaki T, Enomoto Y, Kojima Y (2016) Metallic ruthenium nanoparticles for hydrogenation of supercritical carbon dioxide. Catal Sci Technol 6:409–412Google Scholar
  182. 182.
    Stalder CJ, Chao S, Summers DP, Wrighton MS (1983) Supported palladium catalysts for the reduction of sodium bicarbonate to sodium formate in aqueous solution at room temperature and one atmosphere of hydrogen. J Am Chem Soc 105:6318–6320Google Scholar
  183. 183.
    Su J, Yang L, Lu M, Lin H (2015) Highly efficient hydrogen storage system based on ammonium bicarbonate/formate redox equilibrium over palladium nanocatalysts. ChemSusChem 8:813–816PubMedGoogle Scholar
  184. 184.
    Bi Q-Y, Lin J-D, Liu Y-M, Du X-L, Wang J-Q, He H-Y, Cao Y (2014) An aqueous rechargeable formate-based hydrogen battery driven by heterogeneous Pd catalysis. Angew Chem Int Ed 53:13583–13587Google Scholar
  185. 185.
    Song H, Zhang N, Zhong C, Liu Z, Xiao M, Gai H (2017) Hydrogenation of CO2 into formic acid using a palladium catalyst on chitin. New J Chem 41:9170–9177Google Scholar
  186. 186.
    Hao C, Wang S, Li M, Kang L, Ma X (2011) Hydrogenation of CO2 to formic acid on supported ruthenium catalysts. Catal Today 160:184–190Google Scholar
  187. 187.
    Nguyen LTM, Park H, Banu M, Kim JY, Youn DH, Magesh G, Kim WY, Lee JS (2015) Catalytic CO2 hydrogenation to formic acid over carbon nanotube-graphene supported PdNi alloy catalysts. RSC Adv 5:105560–105566Google Scholar
  188. 188.
    Thongnuam W, Maihom T, Choomwattana S, Injongkol Y, Boekfa B, Treesukol P, Limtrakul J (2018) Theoretical study of CO2 hydrogenation into formic acid on Lewis acid zeolites. Phys Chem Chem Phys 20:25179–25185PubMedGoogle Scholar
  189. 189.
    Eseafili MD, Dinparast L (2017) A DFT study on the catalytic hydrogenation of CO2 to formic acid over Ti-doped graphene nanoflake. Chem Phys Lett 682:49–54Google Scholar
  190. 190.
    Hietala J, Vuori A, Johnsson P, Pollari I, Rewtemann W, Kieczka H (2016) Formic acid. Ullmann’s encyclopedia of industrial chemistry, Wiley‐VCH Verlag GmbH & CoGoogle Scholar
  191. 191.
    Bavykina A, Goesten M, Kapteijn F, Makkee M, Gascon J (2015) Efficient production of hydrogen from formic acid using a covalent triazine framework supported molecular catalyst. ChemSusChem 8:809–812PubMedGoogle Scholar
  192. 192.
    Pakhare D, Spivey J (2014) A review of dry (CO2) reforming of methane over noble metal catalysts. Chem Soc Rev 43:7813–7837PubMedGoogle Scholar
  193. 193.
    Wang S, Lu GQ, Millar GJ (1996) Carbon dioxide reforming of methane to produce synthesis gas over metal-supported catalysts: state of the art. Energy Fuels 10:896–904Google Scholar
  194. 194.
    Yabe T, Sekine Y (2018) Methane conversion using carbon dioxide as an oxidizing agent: a review. Fuel Process Technol 181:187–198Google Scholar
  195. 195.
    Jones G, Jakobsen JG, Shim SS, Kleis J, Andersson MP, Rossmeisl J, Abild-Pedersen F, Bligaard T, Helveg S, Hinnemann B, Rostrup-Nielsen JR, Chorkendorff I, Sehested J, Nørskov JK (2008) First principles calculations and experimental insight into methane steam reforming over transition metal catalysts. J Catal 259:147–160Google Scholar
  196. 196.
    Bian ZF, Das S, Wai MH, Hongmanorom P, Kawi S (2017) A review on bimetallic nickel-based catalysts for CO2 reforming of methane. ChemPhysChem 18:3117–3134PubMedGoogle Scholar
  197. 197.
    García-Diéguez M, Pieta IS, Herrera MC, Larrubia MA, Alemany LJ (2010) Improved Pt-Ni nanocatalysts for dry reforming of methane. Appl Catal A 377:191–199Google Scholar
  198. 198.
    Elsayed NH, Roberts NRM, Joseph B, Kuhn JN (2015) Low temperature dry reforming of methane over Pt–Ni–Mg/ceria–zirconia catalysts. Appl Catal B 179:213–219Google Scholar
  199. 199.
    Li L, Zhou L, Ould-Chikh S, Anjum DH, Kanoun MB, Scaranto J, Hedhili MN, Khalid S, Laveille PV, D’Souza L, Clo A, Basset J-M (2015) Controlled surface segregation leads to efficient coke-resistant nickel/platinum bimetallic catalysts for the dry reforming of methane. ChemCatChem 7:819–829Google Scholar
  200. 200.
    Li B, Kado S, Mukainakano Y, Miyazawa T, Miyao T, Naito S, Okumura K, Kunimori K, Tomishige K (2007) Surface modification of Ni catalysts with trace Pt for oxidative steam reforming of methane. J Catal 245:144–155Google Scholar
  201. 201.
    Kawi S, Kathiraser Y, Ni J, Oemar U, Li ZW, Saw ET (2015) Progress in synthesis of highly active and stable nickel-based catalysts for carbon dioxide reforming of methane. ChemSusChem 8:3556–3575PubMedGoogle Scholar
  202. 202.
    Li Z, Das S, Hongmanorom P, Dewangan N, Wai MH, Kawi S (2018) Silica-based micro- and mesoporous catalysts for dry reforming of methane. Catal Sci Technol 8:2763–2778Google Scholar
  203. 203.
    Li Z, Wang Z, Kawi S (2018) Sintering and coke resistant core/yolk shell catalyst for hydrocarbon reforming. ChemCatChem (in press)Google Scholar
  204. 204.
    Li M, van Veen AC (2018) Tuning the catalytic performance of Ni-catalysed dry reforming of methane and carbon deposition via Ni–CeO2−x interaction. Appl Catal B 237:641–648Google Scholar
  205. 205.
    Kathiraser Y, Thitsartarn W, Sutthiumporn K, Kawi S (2013) Inverse NiAl2O4 on LaAlO3–Al2O3: unique catalytic structure for stable CO2 reforming of methane. J Phys Chem C 117:8120–8130Google Scholar
  206. 206.
    Sigl M, Bradford MCJ, Knözinger H, Vannice MA (1999) CO2 reforming of methane over vanadia-promoted Rh/SiO2 catalysts. Top Catal 8:211–222Google Scholar
  207. 207.
    Pan Y-X, Kuai P, Liu Y, Ge Q, Liu C-J (2010) Promotion effects of Ga2O3 on CO2 adsorption and conversion over a SiO2-supported Ni catalyst. Energy Environ Sci 3:1322–1325Google Scholar
  208. 208.
    Zhang G, Liu J, Xu Y, Sun Y (2018) A review of CH4–CO2 reforming to synthesis gas over Ni-based catalysts in recent years (2010–2017). Int J Hydrogen Energy 43:15030–15054Google Scholar
  209. 209.
    Sutthiumporn K, Kawi S (2011) Promotional effect of alkaline earth over Ni–La2O3 catalyst for CO2 reforming of CH4: role of surface oxygen species on H2 production and carbon suppression. Int J Hydrogen Energy 36:14435–14446Google Scholar
  210. 210.
    Ni J, Chen LW, Lin JY, Kawi S (2012) Carbon deposition on borated alumina supported nano-sized Ni catalysts for dry reforming of CH4. Nano Energy 1:674–686Google Scholar
  211. 211.
    Yu M, Zhu Y-A, Lu Y, Tong G, Zhu K, Zhou X (2015) The promoting role of Ag in Ni–CeO2 catalyzed CH4–CO2 dry reforming reaction. Appl Catal B 165:43–56Google Scholar
  212. 212.
    Bitter JH, Seshan K, Lercher JA (1998) Mono and bifunctional pathways of CO2/CH4 reforming over Pt and Rh based catalysts. J Catal 176:93–101Google Scholar
  213. 213.
    Kathiraser Y, Oemar U, Saw ET, Li Z, Kawi S (2015) Kinetic and mechanistic aspects for CO2 reforming of methane over Ni based catalysts. Chem Eng J 278:62–78Google Scholar
  214. 214.
    Oemar U, Kathiraser Y, Mo L, Ho XK, Kawi S (2016) CO2 reforming of methane over highly active La-promoted Ni supported on SBA-15 catalysts: mechanism and kinetic modelling. Catal Sci Technol 6:1173–1186Google Scholar
  215. 215.
    Wang HY, Ruckenstein E (1999) CH4/CD4 isotope effect and the mechanism of partial oxidation of methane to synthesis gas over Rh/γ-Al2O3 catalyst. J Phys Chem B 103:11327–11331Google Scholar
  216. 216.
    Wei J, Iglesia E (2004) Isotopic and kinetic assessment of the mechanism of reactions of CH4 with CO2 or H2O to form synthesis gas and carbon on nickel catalysts. J Catal 224:370–383Google Scholar
  217. 217.
    Usman M, Wan Daud WMA, Abbas HF (2015) Dry reforming of methane: influence of process parameters—a review. Renew Sustain Energy Rev 45:710–744Google Scholar
  218. 218.
    Chen X, Honda K, Zhang Z-G (2005) CO2–CH4 reforming over NiO/γ-Al2O3 in fixed/fluidized-bed multi-switching mode. Appl Catal A 279:263–271Google Scholar
  219. 219.
    García-García FR, Soria MA, Mateos-Pedrero C, Guerrero-Ruiz A, Rodríguez-Ramos I, Li K (2013) Dry reforming of methane using Pd-based membrane reactors fabricated from different substrates. J Membr Sci 435:218–225Google Scholar
  220. 220.
    Chung W-C, Chang M-B (2016) Review of catalysis and plasma performance on dry reforming of CH4 and possible synergistic effects. Renew Sustain Energy Rev 62:13–31Google Scholar
  221. 221.
    Pakhare D, Shaw C, Haynes D, Shekhawat D, Spivey J (2013) Effect of reaction temperature on activity of Pt- and Ru-substituted lanthanum zirconate pyrochlores (La2Zr2O7) for dry (CO2) reforming of methane (DRM). J CO2 Utiliz 1:37–42Google Scholar
  222. 222.
    Kathiraser Y, Wang Z, Ang ML, Mo L, Li Z, Oemar U, Kawi S (2017) Highly active and coke resistant Ni/SiO2 catalysts for oxidative reforming of model biogas: effect of low ceria loading. J CO2 Utiliz 19:284–295Google Scholar
  223. 223.
    Oemar U, Hidajat K, Kawi S (2017) High catalytic stability of Pd-Ni/Y2O3 formed by interfacial Cl for oxy-CO2 reforming of CH4. Catal Today 281:276–294Google Scholar
  224. 224.
    Oemar U, Hidajat K, Kawi S (2015) Pd-Ni catalyst over spherical nanostructured Y2O3 support for oxy-CO2 reforming of methane: Role of surface oxygen mobility. Int J Hydrogen Energy 40:12227–12238Google Scholar
  225. 225.
    Ashok J, Bian Z, Wang Z, Kawi S (2018) Ni-phyllosilicate structure derived Ni–SiO2–MgO catalysts for bi-reforming applications: acidity, basicity and thermal stability. Catal Sci Technol 8:1730–1742Google Scholar
  226. 226.
    Oemar U, Hidajat K, Kawi S (2011) Role of catalyst support over PdO–NiO catalysts on catalyst activity and stability for oxy-CO2 reforming of methane. Appl Catal Gen 402:176–187Google Scholar
  227. 227.
    Kathiraser Y, Wang Z, Kawi S (2013) Oxidative CO2 reforming of methane in La0.6Sr0.4Co0.8Ga0.2O3−δ (LSCG) hollow fiber membrane reactor. Environ Sci Technol 47:14510–14517PubMedGoogle Scholar
  228. 228.
    Yang N-T, Kathiraser Y, Kawi S (2013) La0.6Sr0.4Co0.8Ni0.2O3−δ hollow fiber membrane reactor: Integrated oxygen separation—CO2 reforming of methane reaction for hydrogen production. Int J Hydrogen Energy 38:4483–4491Google Scholar
  229. 229.
    Su Y-J, Pan K-L, Chang M-B (2014) Modifying perovskite-type oxide catalyst LaNiO3 with Ce for carbon dioxide reforming of methane. Int J Hydrogen Energy 39:4917–4925Google Scholar
  230. 230.
    Laosiripojana N, Assabumrungrat S (2005) Methane steam reforming over Ni/Ce–ZrO2 catalyst: Influences of Ce–ZrO2 support on reactivity, resistance toward carbon formation, and intrinsic reaction kinetics. Appl Catal A 290:200–211Google Scholar
  231. 231.
    Ni J, Chen LW, Lin JY, Schreyer MK, Wang Z, Kawi S (2013) High performance of Mg–La mixed oxides supported Ni catalysts for dry reforming of methane: the effect of crystal structure. Int J Hydrogen Energy 38:13631–13642Google Scholar
  232. 232.
    Sutthiumporn K, Maneerung T, Kathiraser Y, Kawi S (2012) CO2 dry-reforming of methane over La0.8Sr0.2Ni0.8M0.2O3 perovskite (M=Bi Co, Cr, Cu, Fe): roles of lattice oxygen on C-H activation and carbon suppression. Int J Hydrogen Energy 37:11195–11207Google Scholar
  233. 233.
    Ni J, Zhao J, Chen LW, Lin JY, Kawi S (2016) Lewis acid sites stabilized nickel catalysts for dry (CO2) reforming of methane. ChemCatChem 8:3732–3739Google Scholar
  234. 234.
    Kim J-H, Suh DJ, Park T-J, Kim K-L (2000) Effect of metal particle size on coking during CO2 reforming of CH4 over Ni–alumina aerogel catalysts. Appl Catal A 197:191–200Google Scholar
  235. 235.
    Mo LY, Leong KKM, Kawi S (2014) A highly dispersed and anti-coking Ni-La2O3/SiO2 catalyst for syngas production from dry carbon dioxide reforming of methane. Catal Sci Technol 4:2107–2114Google Scholar
  236. 236.
    Yang W, He D (2016) Role of poly(N-vinyl-2-pyrrolidone) in Ni dispersion for highly-dispersed Ni/SBA-15 catalyst and its catalytic performance in carbon dioxide reforming of methane. Appl Catal A 524:94–104Google Scholar
  237. 237.
    Gao XY, Ashok J, Widjaja S, Hidajat K, Kawi S (2015) Ni/SiO2 catalyst prepared via Ni-aliphatic amine complexation for dry reforming of methane: Effect of carbon chain number and amine concentration. Appl Catal A 503:34–42Google Scholar
  238. 238.
    Gao X, Liu H, Hidajat K, Kawi S (2015) Anti-Coking Ni/SiO2 catalyst for dry reforming of methane: role of oleylamine/oleic acid organic pair. ChemCatChem 7:4188–4196Google Scholar
  239. 239.
    Gao X, Tan Z, Hidajat K, Kawi S (2017) Highly reactive Ni–Co/SiO2 bimetallic catalyst via complexation with oleylamine/oleic acid organic pair for dry reforming of methane. Catal Today 281:250–258Google Scholar
  240. 240.
    Gao XY, Hidajat K, Kawi S (2016) Facile synthesis of Ni/SiO2 catalyst by sequential hydrogen/air treatment: a superior anti-coking catalyst for dry reforming of methane. J CO2 Utiliz 15:146–153Google Scholar
  241. 241.
    Mo LY, Saw ET, Du YH, Borgna A, Ang ML, Kathiraser Y, Li ZW, Thitsartarn W, Lin M, Kawi S (2015) Highly dispersed supported metal catalysts prepared via in-situ self-assembled core-shell precursor route. Int J Hydrogen Energy 40:13388–13398Google Scholar
  242. 242.
    Bian Z, Kawi S (2017) Highly carbon-resistant Ni–Co/SiO2 catalysts derived from phyllosilicates for dry reforming of methane. J CO2 Utiliz 18:345–352Google Scholar
  243. 243.
    Bian Z, Kawi S (2018) Preparation, characterization and catalytic application of phyllosilicate: a review. Catal Today. Available online 13 December 2018.
  244. 244.
    Dębek R, Motak M, Duraczyska D, Launay F, Galvez ME, Grzybek T, Da Costa P (2016) Methane dry reforming over hydrotalcite-derived Ni–Mg–Al mixed oxides: the influence of Ni content on catalytic activity, selectivity and stability. Catal Sci Technol 6:6705–6715Google Scholar
  245. 245.
    Zhang S, Muratsugu S, Ishiguro N, Tada M (2013) Ceria-doped Ni/SBA-16 catalysts for dry reforming of methane. ACS Catal 3:1855–1864Google Scholar
  246. 246.
    Li Z, Li M, Bian Z, Kathiraser Y, Kawi S (2016) Design of highly stable and selective core/yolk–shell nanocatalysts—a review. Appl Catal B 188:324–341Google Scholar
  247. 247.
    Li ZW, Mo LY, Kathiraser Y, Kawi S (2014) Yolk-satellite-shell structured Ni-Yolk@Ni@SiO2 nanocomposite: superb catalyst toward methane CO2 reforming reaction. ACS Catal 4:1526–1536Google Scholar
  248. 248.
    Bian Z, Suryawinata IY, Kawi S (2016) Highly carbon resistant multicore-shell catalyst derived from Ni–Mg phyllosilicate nanotubes@silica for dry reforming of methane. Appl Catal B 195:1–8Google Scholar
  249. 249.
    Li Z, Kawi S (2018) Multi-Ni@Ni phyllosilicate hollow sphere for CO2 reforming of CH4: influence of Ni precursors on structure, sintering, and carbon resistance. Catal Sci Technol 8:1915–1922Google Scholar
  250. 250.
    Das S, Ashok J, Bian Z, Dewangan N, Wai MH, Du Y, Borgna A, Hidajat K, Kawi S (2018) Silica-ceria sandwiched Ni core-shell catalyst for low temperature dry reforming of biogas: coke resistance and mechanistic insights. Appl Catal B 230:220–236Google Scholar
  251. 251.
    Zhao Y, Li H, Li H (2018) NiCo@SiO2 core-shell catalyst with high activity and long lifetime for CO2 conversion through DRM reaction. Nano Energy 45:101–108Google Scholar
  252. 252.
    Han JW, Kim C, Park JS, Lee H (2014) Highly coke-resistant Ni nanoparticle catalysts with minimal sintering in dry reforming of methane. ChemSusChem 7:451–456PubMedGoogle Scholar
  253. 253.
    Li Z, Jiang B, Wang Z, Kawi S (2018) High carbon resistant Ni@Ni phyllosilicate@SiO2 core shell hollow sphere catalysts for low temperature CH4 dry reforming. J CO2 Utiliz 27:238–246Google Scholar
  254. 254.
    Bian Z, Kawi S (2018) Sandwich-like Silica@Ni@Silica multicore-shell catalyst for the low-temperature dry reforming of methane: confinement effect against carbon formation. ChemCatChem 10:320–328Google Scholar
  255. 255.
    Li Z, Wang Z, Jiang B, Kawi S (2018) Sintering resistant Ni nanoparticles exclusively confined within SiO2 nanotubes for CH4 dry reforming. Catal Sci Technol 8:3363–3371Google Scholar
  256. 256.
    Li Z, Kathiraser Y, Ashok J, Oemar U, Kawi S (2014) Simultaneous tuning porosity and basicity of Nickel@Nickel–magnesium phyllosilicate core-shell catalysts for CO2 reforming of CH4. Langmuir 30:14694–14705PubMedGoogle Scholar
  257. 257.
    Li Z, Kathiraser Y, Kawi S (2015) Facile synthesis of high surface area yolk–shell Ni@Ni embedded SiO2 via Ni phyllosilicate with enhanced performance for CO2 reforming of CH4. ChemCatChem 7:160–168Google Scholar
  258. 258.
    Lim Z-Y, Wu C, Wang WG, Choy K-L, Yin H (2016) Porosity effect on ZrO2 hollow shells and hydrothermal stability for catalytic steam reforming of methane. J Mater Chem A 4:153–159Google Scholar
  259. 259.
    Fan X, Liu Z, Zhu Y-A, Tong G, Zhang J, Engelbrekt C, Ulstrup J, Zhu K, Zhou X (2015) Tuning the composition of metastable CoxNiyMg100−xy(OH)(OCH3) nanoplates for optimizing robust methane dry reforming catalyst. J Catal 330:106–119Google Scholar
  260. 260.
    Kim SM, Abdala PM, Margossian T, Hosseini D, Foppa L, Armutlulu A, van Beek W, Comas-Vives A, Copéret C, Müller C (2017) Cooperativity and dynamics increase the performance of nife dry reforming catalysts. J Am Chem Soc 139:1937–1949PubMedGoogle Scholar
  261. 261.
    Liu J, Zeng X, Cheng M, Yun J, Li Q, Jing Z, Jin F (2012) Reduction of formic acid to methanol under hydrothermal conditions in the presence of Cu and Zn. Biores Technol 114:658–662Google Scholar
  262. 262.
    Aresta M, Dibenedetto A, Quaranta E (2016) Reaction mechanisms in carbon dioxide conversion. Springer, Berlin, HeidelbergGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jangam Ashok
    • 1
  • Leonardo Falbo
    • 2
  • Sonali Das
    • 1
  • Nikita Dewangan
    • 1
  • Carlo Giorgio Visconti
    • 2
    Email author
  • Sibudjing Kawi
    • 1
    Email author
  1. 1.Department of Chemical and Biomolecular EngineeringNational University of SingaporeSingaporeRepublic of Singapore
  2. 2.Laboratory of Catalysis and Catalytic Processes, Department of EnergyPolitecnico di MilanoMilanItaly

Personalised recommendations