Skip to main content

Modelling and System Identification of a Monotube Shock Absorber

  • Conference paper
  • First Online:
  • 757 Accesses

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 934))

Abstract

This paper demonstrates linear and nonlinear system identification methods based on a first-principles monotube shock absorber model. Two models were considered, namely low- and high-content a priori knowledge first-principles models. Operational data collected during testing of a shock absorber on a servo-hydraulic test rig were used in order to validate the proposed system identification methods and evaluate their accuracy. The proposed approach in system identification has potentials for a wide range of engineering applications such as control of active and semi-active suspension system.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bohlin, T.P.: Practical Grey-box Process Identification. Theory and Applications. Springer, London (2006)

    MATH  Google Scholar 

  2. Ljung, L.: Approaches to identification of nonlinear systems. In: Proceedings of the 29th Chinese Control Conference, pp. 1–5. IEEE Xplore Digital Library, China (2010)

    Google Scholar 

  3. Lang, H.H.: A study of the characteristics of automotive hydraulic dampers at high stroking frequencies. Ph.D. thesis, The University of Michigan, Michigan (1977)

    Google Scholar 

  4. Talbott, M., Starkey, J.: An experimentally validated physical model of a high-performance mono-tube damper. In: Proceedings of the 2002 SAE Motorsports Engineering Conference and Exhibition, Indianapolis, pp. 382–402 (2002)

    Google Scholar 

  5. Reybrouck, K.: A non linear parametric model of an automotive shock absorber. SAE Technical Paper 940869, Indianapolis (1994)

    Google Scholar 

  6. Simms, A., Crolla, D.: The influence of damper properties on vehicle dynamic behaviour. SAE Technical Paper 2002-01-0319, Indianapolis (2002)

    Google Scholar 

  7. Liu, Y., Zhang, J., Yu, F., Li, H.: Test and simulation of nonlinear dynamic response for the twin-tube hydraulic shock absorber. SAE Technical Paper 2002-01-0320, Indianapolis (2002)

    Google Scholar 

  8. Baracat, D.E.: A proposal for mathematical design of shock absorbers. SAE Technical Paper 931691, Sao Paulo (1993)

    Google Scholar 

  9. Duym, S.W.R.: Simulation tools, modelling and identification, for an automotive shock absorber in the context of vehicle dynamics. Int. J. Veh. Mech. Mob. 33(4), 261–285 (2010)

    Google Scholar 

  10. Duym, S.W., Reybrouck K.G., Baron, G.V., Stiens, R.: Physical modeling of the hysteretic behaviour of automotive shock absorbers. In: Steering and Suspensions Technology, pp. 125–137. SAE, Warrendale (1997)

    Google Scholar 

  11. Duym, S., Stiens, R., Reybrouck, K.: Evaluation of shock absorber models. Veh. Syst. Dyn. 27, 109–127 (1997)

    Article  Google Scholar 

  12. Basso, R.: Design of a single-tube shock absorber with a pre-established characteristic diagram. Int. J. Heavy Veh. Syst. 17, 179–195 (2010)

    Article  Google Scholar 

  13. Boggs, C., Ahmadian, M., Southward, S.: Efficient empirical modelling of a high-performance shock absorber for vehicle dynamics studies. Veh. Syst. Dyn. 48, 481–505 (2010)

    Article  Google Scholar 

  14. Cherng, J.G., Ge, T., Pipis, J., Gazala, R.: Characterization of air-borne noise of shock absorber by using acoustics index method. In: SAE Conference Proceedings: Noise and vibration, p. 342. SAE (1999)

    Google Scholar 

  15. Yamauchi, H., Sugahara, T., Mishima M., Noguchi, E.: Theoretical analysis and proposition to reduce self-excited vibration of automotive shock absorber. SAE Paper 2003-01-1471, Michigan (2003)

    Google Scholar 

  16. Kruse, A.: Characterizing and reducing structural noises of vehicle shock absorber systems. SAE Technical Paper 2002-01-1234, Michigan (2002)

    Google Scholar 

  17. Lee, C.T., Moon, B.Y.: Simulation and experimental validation of vehicle dynamic characteristics for displacement-sensitive shock absorber using fluid-flow modelling. Mech. Syst. Signal Process. 20, 373–388 (2006)

    Article  Google Scholar 

  18. Fukushima, N., Hidaka, K., Iwata, K.: Optimum characteristics of automotive shock absorbers under various driving conditions and road surfaces. Int. J. Veh. Des. 4, 463–472 (1983)

    Google Scholar 

  19. Sibielak, M.: Study of flow-induced vibration phenomena in automotive shock absorbers. Solid State Phenom. 248, 204–210 (2016)

    Article  Google Scholar 

  20. Subramanian, S., Surampudi, R., Thomson, K.: Development of a nonlinear shock absorber model for low-frequency NVH applications. SAE Paper 79-84, Michigan (2003)

    Google Scholar 

  21. Liu, S.W., Li, G., Hao, L.: Optimization research of vehicle damper matching parameters. In: Proceedings 2013 International Conference on Mechatronic Sciences, Electric Engineering and Computer (MEC), China, pp. 3284–3289 (2013)

    Google Scholar 

  22. Wang, W., Yu, D., Zhou, Z.: In-service parametric modelling a rail vehicle’s axle-box hydraulic damper for high-speed transit problems. Mech. Syst. Signal Process. 62, 517–533 (2015)

    Article  Google Scholar 

  23. Ljung, L.: System Identification: Theory for the User, 2nd edn. Prentice Hall, Upper Saddle River (1999)

    MATH  Google Scholar 

  24. Czop, P., Slawik, D.: A high-frequency first-principle model of a shock absorber and servo-hydraulic tester. Mech. Syst. Signal Process. 25, 1937–1955 (2011)

    Article  Google Scholar 

  25. Spencer Jr., B., Dyke, S., Sain, M., Carlson, J.D.: Phenomenological model for magnetorheological dampers. J. Eng. Mech. 123, 230–238 (1997)

    Article  Google Scholar 

  26. Kost, G., Wszołek, G., Czop, P., Jakubowski, D., Wlodarczyk, T.: Parameter estimation of first-principle models formulated using nonlinear ordinary differential equations. Silesian University Publishing House, Gliwice (2013)

    Google Scholar 

  27. Ljung, L.: System Identification Toolbox for Use with MATLAB. The MathWorks Inc., Natick (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariusz Hetmańczyk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Czop, P., Hetmańczyk, M., Wszołek, G., Słoniewski, J. (2019). Modelling and System Identification of a Monotube Shock Absorber. In: Świder, J., Kciuk, S., Trojnacki, M. (eds) Mechatronics 2017 - Ideas for Industrial Applications. MECHATRONICS 2017. Advances in Intelligent Systems and Computing, vol 934. Springer, Cham. https://doi.org/10.1007/978-3-030-15857-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-15857-6_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-15856-9

  • Online ISBN: 978-3-030-15857-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics