On Buildings that Compute. A Proposal

  • Andrew AdamatzkyEmail author
  • Konrad Szaciłowski
  • Zoran Konkoli
  • Liss C. Werner
  • Dawid Przyczyna
  • Georgios Ch. Sirakoulis
Part of the Emergence, Complexity and Computation book series (ECC, volume 35)


We present ideas aimed at bringing revolutionary changes on architectures and buildings of tomorrow by radically advancing the technology for the building material concrete and hence building components. We propose that by using nanotechnology we could embed computation and sensing directly into the material used for construction. Intelligent concrete blocks and panels advanced with stimuli-responsive smart paints are the core of the proposed architecture. In particular, the photo-responsive paint would sense the buildings internal and external environment while the nano-material-concrete composite material would be capable of sensing the building environment and implement massive-parallel information processing resulting in distributed decision making. A calibration of the proposed materials with in-materio suitable computational methods and corresponding building information modelling, computer-aided design and digital manufacturing tools could be achievedvia models and prototypes of information processing at nano-level. The emergent technology sees a building as high-level massive-parallel computer—assembled of computing concrete blocks. Based on the generic principles of neuromorphic computation and reservoir computing we envisage a single building or an urban quarter to turn into a large-scale sensing substrate. It could behave as a universal computer, collecting and processing environmental information in situ enabling appropriate data fusion. The broad range of spatio-temporal effects include infrastructural and human mobility, energy, bio-diversity, digital activity, urban management, art and socializing, robustness with regard to damage and noise or real-time monitoring of environmental changes. The proposed intelligent architectures will increase sustainability and viability in digitised urban environments by decreasing information transfer bandwidth by e.g, utilising 5G networks. The emergence of socio-cultural effect will create a cybernetic relationship with our dwellings and cities.



KS and DP acknowledge the financial support from the National Science Centre (Poland) within the OPUS project, contract No. UMO-2015/17/B/ST8/01783 and from Polish Ministry of Science and Higher Education. Authors thank Neil Phillips for precious technical discussions and Julian F. Miller for helping to improve the paper further.


  1. 1.
    Adamatzky, A.I.: Computation of shortest path in cellular automata. Math. Comput. Model. 23(4), 105–113 (1996)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Adamatzky, A.I.: Voronoi-like partition of lattice in cellular automata. Math. Comput. Model. 23(4), 51–66 (1996)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Adamatzky, A. (ed.): Game of Life Cellular Automata. Springer, Berlin (2010)zbMATHGoogle Scholar
  4. 4.
    Adamatzky, A.: Reaction-Diffusion Automata: Phenomenology, Localisations, Computation, vol. 1. Springer Science & Business Media, Berlin (2012)zbMATHGoogle Scholar
  5. 5.
    Adamatzky, A., Chua, L.: Memristor Networks. Springer International Publishing, Berlin (2013)zbMATHGoogle Scholar
  6. 6.
    Adamatzky, A., Wuensche, A.: Computing in spiral rule reaction-diffusion hexagonal cellular automaton. Complex Syst. 16(4), 277–298 (2006)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Addington, M., Schodek, D.: Smart Materials and Technologies in Architecture: For the Architecture and Design Professions. Routledge, Abingdon (2012)Google Scholar
  8. 8.
    Ahlquist, S., Ketcheson, L., Colombi, C.: Multisensory architecture: the dynamic interplay of environment, movement and social function. Arch. Des. 87(2), 90–99 (2017)Google Scholar
  9. 9.
    Alam, M.R., Reaz, M.B.I., Ali, M.A.M.: A review of smart homes—past, present, and future. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 42(6), 1190–1203 (2012)Google Scholar
  10. 10.
    Augusto, J.C., Nugent, C.D.: Designing Smart Homes: The Role of Artificial Intelligence, vol. 4008. Springer, Berlin (2006)Google Scholar
  11. 11.
    Bechthold, M., Weaver, J.C.: Materials science and architecture. Nat. Rev. Mater. 2(12), 17082 (2017)Google Scholar
  12. 12.
    Behring, C., Bracho, M., Castro, M., Moreno, J.A.: An algorithm for robot path planning with cellular automata. Theory and Practical Issues on Cellular Automata, pp. 11–19. Springer, Berlin (2001)Google Scholar
  13. 13.
    Blachecki, A., Mech-Piskorz, J., Gajewska, M., Mech, K., Pilarczyk, K., Szaciłowski, K.: Organotitania-based nanostructures as a suitable platform for the implementation of binary, ternary, and fuzzy logic systems. ChemPhysChem 18, 1798–1810 (2015)Google Scholar
  14. 14.
    Borghetti, J., Snider, G.S., Kuekes, P., Yang, J.J., Stewart, D.R., Stanley Williams, R.: ‘Memristive’ switches enable ‘stateful’ logic operations via material implication. Nature 464(7290), 873–876 (2010)Google Scholar
  15. 15.
    Broersma, H., Miller, J.F., Nichele, S.: Computational matter: evolving computational functions in nanoscale materials. Advances in Unconventional Computing, pp. 397–428. Springer, Berlin (2017)Google Scholar
  16. 16.
    Brush, A.J., Hazas, M., Albrecht, J.: Smart homes: undeniable reality or always just around the corner? IEEE Pervasive Comput. 17(1), 82–86 (2018)Google Scholar
  17. 17.
    Burkow, A.V.: Exploring physical reservoir computing using random boolean networks. Master’s thesis, (2016). NTNUGoogle Scholar
  18. 18.
    Chan, M., Estève, D., Escriba, C., Campo, E.: A review of smart homes - present state and future challenges. Comput. Methods Programs Biomed. 91(1), 55–81 (2008)Google Scholar
  19. 19.
    Chang, T., Jo, S.-H., Kim, K.-H., Sheridan, P., Gaba, S., Wei, L.: Synaptic behaviors and modeling of a metal oxide memristive device. Appl. Phys. A 102(4), 857–863 (2011)Google Scholar
  20. 20.
    Contandriopoulos, C.: Architecture and utopia in the 21st-century. J. Arch. Educ. 67(1), 3–6 (2013)Google Scholar
  21. 21.
    Dale, M., Miller, J.F., Stepney, S., Trefzer, M.A.: Evolving carbon nanotube reservoir computers. In: International Conference on Unconventional Computation and Natural Computation, pp. 49–61. Springer (2016)Google Scholar
  22. 22.
    Dale, M., Miller, J.F., Stepney, S.: Reservoir computing as a model for in-materio computing. In: Advances in Unconventional Computing, pp. 533–571. Springer (2017)Google Scholar
  23. 23.
    Darianian, M., Michael, M.P.: Smart home mobile RFID-based internet-of-things systems and services. In: International Conference on Advanced Computer Theory and Engineering, 2008, ICACTE’08, pp. 116–120. IEEE (2008)Google Scholar
  24. 24.
    Emerson, R.W.: Outdoor wayfinding and navigation for people who are blind: accessing the built environment. In: International Conference on Universal Access in Human-Computer Interaction, pp. 320–334. Springer (2017)Google Scholar
  25. 25.
    Gawęda, S., Podborska, A., Macyk, W., Szaciłowski, K.: Nanoscale optoelectronic switches and logic devices. Nanoscale 1, 299–316 (2009)Google Scholar
  26. 26.
    Hevner, A., Chatterjee, S.: Design Research in Information Systems: Theory and Practice, vol. 22. Springer Science & Business Media, Berlin (2010)Google Scholar
  27. 27.
    Horsman, C., Stepney, S., Wagner, R.C., Kendon, V.: When does a physical system compute? Proc R. Soc. A 470, 20140182 (2014)zbMATHGoogle Scholar
  28. 28.
    Kasabov, N., Scott, N.M., Tu, E., Marks, S., Sengupta, N., Capecci, E., Othman, M., Doborjeh, M.G., Murli, N., Hartono, R., et al.: Evolving spatio-temporal data machines based on the neucube neuromorphic framework: design methodology and selected applications. Neural Netw. 78, 1–14 (2016)Google Scholar
  29. 29.
    Konkoli, Z.: On reservoir computing: from mathematical foundations to unconventional applications. Theory, vol. 1. Springer, Berlin (2016)Google Scholar
  30. 30.
    Kuzum, D., Yu, S., Wong, H.S.P.: Synaptic electronics: materials, devices and applications. Nanotechnology 24(38), 382001 (2013)Google Scholar
  31. 31.
    Larger, L., Soriano, M.C., Brunner, D., Appeltant, L., Gutiérrez, J.M., Pesquera, L., Mirasso, C.R., Fischer, I.: Photonic information processing beyond turing: an optoelectronic implementation of reservoir computing. Opt. Express 20(3), 3241–3249 (2012)Google Scholar
  32. 32.
    Larger, L., Baylón-Fuentes, A., Martinenghi, R., Udaltsov, V.S., Chembo, Y.K., Jacquot, M.: High-speed photonic reservoir computing using a time-delay-based architecture: million words per second classification. Phys. Rev. X 7(1), 011015 (2017)Google Scholar
  33. 33.
    Lasi, H., Fettke, P., Kemper, H.-G., Feld, T., Hoffmann, M.: Industry 4.0. Bus. Inf. Syst. Eng. 6(4), 239–242 (2014)Google Scholar
  34. 34.
    Lee, J., Bagheri, B., Kao, H.-A.: A cyber-physical systems architecture for industry 4.0-based manufacturing systems. Manuf. Lett. 3(2015), 18–23 (2015)Google Scholar
  35. 35.
    Lewandowska, K., Podborska, A., Kwolek, P., Kim, T.-D., Lee, K.-S., Szaciłowski, K.: Optical signal demultiplexing and conversion in the fullerene–oligothiophene–CdS system. Appl. Surf. Sci. 319, 285–290 (2014)Google Scholar
  36. 36.
    Li, X., Lu, R., Liang, X., Shen, X., Chen, J., Lin, X.: Smart community: an internet of things application. IEEE Commun. Mag. 49(11), 68–75 (2011)Google Scholar
  37. 37.
    Lukoševičius, M., Jaeger, H.: Reservoir computing approaches to recurrent neural network training. Comput. Sci. Rev. 3(3), 127–149 (2009)zbMATHGoogle Scholar
  38. 38.
    Lukoševičius, M., Jaeger, H., Schrauwen, B.: Reservoir computing trends. KI-Künstliche Intelligenz 26(4), 365–371 (2012)Google Scholar
  39. 39.
    Maass, W., Natschläger, T., Markram, H.: Real-time computing without stable states: a new framework for neural computation based on perturbations. Neural Comput. 14(11), 2531–2560 (2002)zbMATHGoogle Scholar
  40. 40.
    Mandic, D.P., Chambers, J.: Recurrent Neural Networks for Prediction: Learning Algorithms, Architectures and Stability. Wiley, Hoboken (2001)Google Scholar
  41. 41.
    Margenstern, M.: New tools for cellular automata in the hyperbolic plane. J. Univers. Comput. Sci. 6(12), 1226–1252 (2000)MathSciNetzbMATHGoogle Scholar
  42. 42.
    Margenstern, M.: A universal cellular automaton on the heptagrid of the hyperbolic plane with four states. Theor. Comput. Sci. 412(1–2), 33–56 (2011)MathSciNetzbMATHGoogle Scholar
  43. 43.
    Margenstern, M.: Small Universal Cellular Automata in Hyperbolic Spaces: A Collection of Jewels, vol. 4. Springer Science & Business Media, Berlin (2013)zbMATHGoogle Scholar
  44. 44.
    Margenstern, M.: Hyperbolic gallery. Designing Beauty: The Art of Cellular Automata, pp. 65–71. Springer, Berlin (2016)Google Scholar
  45. 45.
    Mohamed, A.S.Y.: Smart materials innovative technologies in architecture; towards innovative design paradigm. Energy Procedia 115, 139–154 (2017)Google Scholar
  46. 46.
    Nabil, S., Plötz, T., Kirk, D.S.: Interactive architecture: Exploring and unwrapping the potentials of organic user interfaces. In: Proceedings of the Eleventh International Conference on Tangible, Embedded, and Embodied Interaction, pp. 89–100. ACM (2017)Google Scholar
  47. 47.
    Owens, N., Stepney, S.: Investigations of game of life cellular automata rules on penrose tilings: lifetime, ash, and oscillator statistics. J. Cell. Autom. 5(3), 207–225 (2010)MathSciNetzbMATHGoogle Scholar
  48. 48.
    Papandroulidakis, G., Vourkas, I., Vasileiadis, N., Sirakoulis, G.C.: Boolean logic operations and computing circuits based on memristors. IEEE Trans. Circuits Syst. II Express Briefs 61(12), 972–976 (2014)Google Scholar
  49. 49.
    Papandroulidakis, G., Vourkas, I., Abusleme, A., Sirakoulis, G.C., Rubio, A.: Crossbar-based memristive logic-in-memory architecture. IEEE Trans. Nanotechnol. 16(3), 491–501 (2017)Google Scholar
  50. 50.
    Park, S., Chu, M., Kim, J., Noh, J., Jeon, M., Lee, B.H., Hwang, H., Lee, B., Lee, B.-G.: Electronic system with memristive synapses for pattern recognition. Sci. Rep. 5, 10123 (2015)Google Scholar
  51. 51.
    Pilarczyk, K., Podborska, A., Lis, M., Kawa, M., Migdał, D., Szaciłowski, K.: Synaptic behavior in an optoelectronic device based on semiconductor-nanotube hybrid. Adv. Electron. Mater. 2, 1500471 (2016)Google Scholar
  52. 52.
    Pilarczyk, K., Wlaálak, E., Przyczyna, D., Blachecki, A., Podborska, A., Anathasiou, V., Konkoli, Z., Szaciłowski, K.: Molecules, semiconductors, light and information: towards future sensing and computing paradigms. Coord. Chem. Rev. 265, 22–40 (2017)Google Scholar
  53. 53.
    Podborska, A., Szaciłowski, K.: ‘computer-on-a-particle’ devices: optoelectronic 1:2 demultiplexer based on nanostructured cadmium sulfide. Aust. J. Chem. 63, 165–168 (2010)Google Scholar
  54. 54.
    Popovici, A., Popovici, D.: Cellular automata in image processing. In Proceeding of the Fifteenth International Symposium on Mathematical Theory of Networks and Systems, vol. 1, pp. 1–6. Citeseer (2002)Google Scholar
  55. 55.
    Putnam, H.: Representation and Reality. MIT Press, Cambridge (1988)Google Scholar
  56. 56.
    Raghavan, R.: Cellular automata in pattern recognition. Inf. Sci. 70(1–2), 145–177 (1993)Google Scholar
  57. 57.
    Rosin, P.L.: Training cellular automata for image processing. IEEE Trans. Image Process. 15(7), 2076–2087 (2006)Google Scholar
  58. 58.
    Rosin, P.L.: Image processing using 3-state cellular automata. Comput. Vis. Image Underst. 114(7), 790–802 (2010)Google Scholar
  59. 59.
    Rosin, P., Adamatzky, A., Sun, X.: Cellular Automata in Image Processing and Geometry. Springer, Berlin (2014)zbMATHGoogle Scholar
  60. 60.
    Scott, F.D.: Architecture or techno-utopia. Grey Room 112–126 (2001)Google Scholar
  61. 61.
    Sillin, H.O., Aguilera, R., Shieh, H.-H., Avizienis, A.V., Aono, M., Stieg, A.Z., Gimzewski, J.K.: A theoretical and experimental study of neuromorphic atomic switch networks for reservoir computing. Nanotechnology 24(38), 384004 (2013)Google Scholar
  62. 62.
    Simon, H.A.: Networks, complexity, models and measures. Access, Property and American Urban Space, p. 58 (2016)Google Scholar
  63. 63.
    Stauffer, M.T.: Utopian reflections, reflected utopias urban designs by archizoom and superstudio. AA Files (47), 23–36 (2002)Google Scholar
  64. 64.
    Stepney, S., Diaconescu, A., Doursat, R., Giavitto, J-L., Kowaliw, T., Leyser, O., Maclennan, B., Michel, O., Miller, J., Nikolic, I., Spicher, A., Teuscher, Ch., Tufte, G., Vico, F.J., Yamamoto, L.: Gardening cyber-physical systems. In: Unconventionnal Computation and Natural Computation (UCNC’2012), pp. 237–238 (2012)Google Scholar
  65. 65.
    Stepney, S.: The art of Penrose life. In: Adamatzky, A., Martineze, G. (eds.) Designing Beauty: The Art of Cellular Automata, pp. 103–109. Springer, Berlin (2016)Google Scholar
  66. 66.
    Szaciłowski, K., Macyk, W., Stochel, G.: Light-driven or and xor programmable chemical logic gates. J. Am. Chem. Soc. 128, 4550–4551 (2006)Google Scholar
  67. 67.
    Ulbricht, R., Hendry, E., Shan, J., Heinz, T.F., Bonn, M.: Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy. Rev. Mod. Phys. 83(2), 543 (2011)Google Scholar
  68. 68.
    Van der Sande, G., Brunner, D., Soriano, M.C.: Advances in photonic reservoir computing. Nanophotonics 6(3), 561–576 (2017)Google Scholar
  69. 69.
    Vandoorne, K., Dierckx, W., Schrauwen, B., Verstraeten, D., Baets, R., Bienstman, P., Van Campenhout, J.: Toward optical signal processing using photonic reservoir computing. Opt. Express 16(15), 11182–11192 (2008)Google Scholar
  70. 70.
    Vandoorne, K., Mechet, P., Van Vaerenbergh, T., Fiers, M., Morthier, G., Verstraeten, D., Schrauwen, B., Dambre, J., Bienstman, P.: Experimental demonstration of reservoir computing on a silicon photonics chip. Nat. Commun. 5, 3541 (2014)Google Scholar
  71. 71.
    Verstraeten, D., Schrauwen, B., d’Haene, M., Stroobandt, D.: An experimental unification of reservoir computing methods. Neural Netw. 20(3), 391–403 (2007)zbMATHGoogle Scholar
  72. 72.
    Vissol-Gaudin, E., Kotsialos, A., Massey, M.K., Zeze, D.A., Pearson, C., Groves, C., Petty, M.C.: Data classification using carbon-nanotubes and evolutionary algorithms. In: International Conference on Parallel Problem Solving from Nature, pp. 644–654. Springer (2016)Google Scholar
  73. 73.
    Vourkas, I., Sirakoulis, G.C.: Memristor-based combinational circuits: a design methodology for encoders/decoders. Microelectron. J. 45(1), 59–70 (2014)Google Scholar
  74. 74.
    Vourkas, I., Sirakoulis, G.C.: On the generalization of composite memristive network structures for computational analog/digital circuits and systems. Microelectron. J. 45(11), 1380–1391 (2014)Google Scholar
  75. 75.
    Vourkas, I., Sirakoulis, G.C.: Memristor-Based Nanoelectronic Computing Circuits and Architectures: Foreword by Leon Chua. Emergence, Complexity and Computation. Springer International Publishing, Berlin (2015)Google Scholar
  76. 76.
    Vourkas, I., Stathis, D., Sirakoulis, G.C.: Massively parallel analog computing: Ariadne’s thread was made of memristors. IEEE Trans. Emerg. Top. Comput. 6(1), 145–155 (2018)Google Scholar
  77. 77.
    Warzecha, M., Oszajca, M., Pilarczyk, K., Szaciłowski, K.: A three-valued photoelectrochemical logic device realising accept anything and consensus operations. Chem. Commun. 51, 3559–3561 (2015)Google Scholar
  78. 78.
    Whiting, J.G.H., Mayne, R., Adamatzky, A.: A parallel modular biomimetic cilia sorting platform. Biomimetics 3(2), 5 (2018)Google Scholar
  79. 79.
    Williams, R.J., Zipser, D.: A learning algorithm for continually running fully recurrent neural networks. Neural Comput. 1(2), 270–280 (1989)Google Scholar
  80. 80.
    Yi, Y., Liao, Y., Wang, B., Xin, F., Shen, F., Hou, H., Liu, L.: FPGA based spike-time dependent encoder and reservoir design in neuromorphic computing processors. Microprocess. Microsyst. 46, 175–183 (2016)Google Scholar
  81. 81.
    Zoran, K.: A perspective on Putnam’s realizability theorem in the context of unconventional computation. Int. J. Unconv. Comput. 11, 83–102 (2015)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Andrew Adamatzky
    • 1
    Email author
  • Konrad Szaciłowski
    • 2
  • Zoran Konkoli
    • 4
  • Liss C. Werner
    • 5
  • Dawid Przyczyna
    • 2
    • 3
  • Georgios Ch. Sirakoulis
    • 6
  1. 1.Unconventional Computing Laboratory, UWE BristolBristolUK
  2. 2.AGH University of Science and TechnologyAcademic Centre for Materials and NanotechnologyKrakówPoland
  3. 3.AGH University of Science and TechnologyFaculty of Physics and Applied Computer ScienceKrakówPoland
  4. 4.Chalmers University of TechnologyDepartment of Microtechnology and NanoscienceGöthenburgSweden
  5. 5.Institute of ArchitectureTechnical University of BerlinBerlinGermany
  6. 6.Department of Electrical & Computer EngineeringDemocritus University of ThraceXanthiGreece

Personalised recommendations